JPH06279824A - Production of iron powder utilizing microwaves - Google Patents

Production of iron powder utilizing microwaves

Info

Publication number
JPH06279824A
JPH06279824A JP5091977A JP9197793A JPH06279824A JP H06279824 A JPH06279824 A JP H06279824A JP 5091977 A JP5091977 A JP 5091977A JP 9197793 A JP9197793 A JP 9197793A JP H06279824 A JPH06279824 A JP H06279824A
Authority
JP
Japan
Prior art keywords
iron
iron oxide
reduction
raw material
microwaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5091977A
Other languages
Japanese (ja)
Other versions
JP3295673B2 (en
Inventor
Hitoshi Sakai
均 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Iron Powder Co Ltd
New Japan Radio Co Ltd
Original Assignee
Dowa Iron Powder Co Ltd
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Iron Powder Co Ltd, New Japan Radio Co Ltd filed Critical Dowa Iron Powder Co Ltd
Priority to JP09197793A priority Critical patent/JP3295673B2/en
Publication of JPH06279824A publication Critical patent/JPH06279824A/en
Application granted granted Critical
Publication of JP3295673B2 publication Critical patent/JP3295673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To rapidly produce the iron powder by solid reduction of iron oxides at a high reduction ratio without substantially melting the iron oxides by loading powdery iron oxide raw materials together with an excessive carbonaceous materials and carbonates into a vessel and projecting microwaves thereto. CONSTITUTION:The carbonaceous materials and the carbonates are compounded with the powdery iron oxide raw materials to prepare the refining materials. These materials are loaded into the vessel consisting of alumina, etc., and the vessel is loaded into an applicator. The loaded raw materials are then irradiated with the microwaves regulated to an extent of not melting the raw materials for a specific period of time to reduce the iron oxides to iron. The amt. of the carbonaceous materials to be compounded at that time is specified to >=2 times, more preferably about 4 to 6 times the equiv. (stoichiometric quantity complying with reaction formula = oxygen of oxidized iron + carbon = CO2) required for reduction of the iron oxides mentioned above. The carbonates are preferably CaCO3. The iron oxide raw materials consist preferably of hematite which is the essential component of Fe2O3 and consists essentially of the balance Fe2O3 or the raw material contg. the essential component of the Fe2O3 at >=40% ratio of the raw material are more preferable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,マイクロ波を利用した
鉄粉の製造法に関する。
TECHNICAL FIELD The present invention relates to a method for producing iron powder using microwaves.

【0002】[0002]

【従来の技術】周波数が1〜数100GHz の電磁波
(マイクロ波) を誘電体に照射してこれを加熱するマイ
クロ波加熱技術は, 調理用電子レンジはもとより,工業
的にもゴム加硫装置, 各種材料の乾燥装置, 解凍装置,
溶融装置等の分野で広く利用されている。
2. Description of the Related Art Electromagnetic waves having a frequency of 1 to several hundred GHz
The microwave heating technology that heats the dielectric material by irradiating it with (microwave) is not only used in microwave ovens for cooking, but also industrially, rubber vulcanization equipment, drying equipment for various materials, thawing equipment,
It is widely used in the field of melting equipment.

【0003】このマイクロ波加熱を金属酸化物の還元に
利用しようとする提案がワーナ氏によって例えば特開昭
64-52028号公報においてなされた。該公報によれば,各
種の酸化物系の鉱石と炭素源との混合物をアプリケータ
内に装入してマイクロ波を照射すると,該混合物が高温
に加熱され, 還元反応が進行すると教示する。
A proposal to use this microwave heating for the reduction of metal oxides was made by Mr.
64-52028. The publication teaches that when a mixture of various oxide ores and a carbon source is charged into an applicator and irradiated with microwaves, the mixture is heated to a high temperature and a reduction reaction proceeds.

【0004】一方,粉状鉄鉱石を固体状態で鉄にまて還
元することによって鉄粉を製造する技術には,ヘガネス
鉄粉等に見られるように,鉄鉱石と炭材を容器に装填し
これをトンネル炉に装入して外部加熱する方法がある。
On the other hand, in the technique for producing iron powder by reducing powdery iron ore to iron in a solid state, iron ore and carbonaceous materials are loaded into a container as seen in Heganes iron powder and the like. There is a method of charging this in a tunnel furnace and externally heating it.

【0005】[0005]

【発明が解決しようとする課題】ワーナ氏は前記の公報
において,マイクロ波による鉄鉱石の還元について赤鉄
鉱(Fe2O3) から磁鉄鉱(Fe3O4) に還元されたことを報じ
ている。この磁鉄鉱をさらに金属鉄にまで還元するに
は, バス精錬炉での精錬を推奨している (例えば当該公
報の実験例2)。
[Problems to be Solved by the Invention] In the above-mentioned publication, Mr. Warner reported that the reduction of iron ore by microwaves resulted in the reduction of hematite (Fe 2 O 3 ) to magnetite (Fe 3 O 4 ). . In order to further reduce this magnetite to metallic iron, refining in a bath refining furnace is recommended (for example, Experimental Example 2 of the publication).

【0006】鉄鉱石に炭素源を配合し,この混合物がマ
イクロ波に当たれば昇温することは確かである。炭素源
(石炭やコークス等のカーボン)はマイクロ波をよく吸
収するから,マイクロ波によって高温に加熱され,混合
物全体を還元が進行する温度にまで昇温させることがで
きる。また Fe3O4も一般にはマイクロ波をよく吸収する
ので,カーボン程ではないがマイクロ波によって加熱さ
れ得る。だが Fe2O3は一般には加熱されない。
It is certain that the iron ore is mixed with a carbon source, and if the mixture is exposed to microwaves, the temperature rises. Since the carbon source (carbon such as coal and coke) absorbs microwaves well, it can be heated to a high temperature by the microwaves and the entire mixture can be heated to a temperature at which reduction proceeds. In addition, since Fe 3 O 4 generally absorbs microwaves well, it can be heated by microwaves, although not as much as carbon. However, Fe 2 O 3 is generally not heated.

【0007】一方,トンネル炉による鉄粉(スポンジ
鉄)製造では鉄酸化物の還元に要する熱の供給効率が低
く,長い反応時間と膨大な熱の供給が必要なことから,
エネルギー効率および操業能率の点で問題がある。
On the other hand, in the production of iron powder (sponge iron) in a tunnel furnace, the efficiency of heat supply required for reduction of iron oxide is low, and a long reaction time and enormous heat supply are required.
There are problems in terms of energy efficiency and operational efficiency.

【0008】本発明は,このような実状に鑑み,ワーナ
氏の提案に係るマイクロ波利用技術を一層発展させ,粉
状の鉄酸化物を実質上溶融することなく金属鉄にまでマ
イクロ波加熱で固体還元する技術の確立を課題としたも
のである。
In view of such circumstances, the present invention further develops the microwave utilization technique proposed by Mr. Warner, and it is possible to perform microwave heating to metallic iron without substantially melting powdery iron oxide. The challenge was to establish a technology for solid reduction.

【0009】[0009]

【課題を解決するための手段】本発明によれば,粉状の
鉄酸化物原料に炭材と炭酸塩を配合してなる精錬材料を
容器に装填し,この材料装填容器をマイクロ波が投射さ
れているアプリケータ内に所定の時間滞在させることに
より該鉄酸化物を鉄にまで還元する方法であって,該炭
材を該鉄酸化物の還元に要する当量(酸化鉄の酸素+炭
素=CO2 の反応式に従う化学量論量)の2倍以上の量
で配合することを特徴とするマイクロ波利用の鉄粉製造
法を提供する。
According to the present invention, a refining material prepared by mixing powdery iron oxide raw material with carbonaceous material and carbonate is loaded into a container, and the material loading container is irradiated with microwaves. A method of reducing the iron oxide to iron by allowing it to stay in an applicator for a predetermined period of time, wherein the carbonaceous material is equivalent to the reduction of the iron oxide (oxygen of iron oxide + carbon = Provided is a method for producing iron powder using microwaves, which comprises blending in an amount of at least twice the stoichiometric amount according to the reaction formula of CO 2 .

【0010】[0010]

【作用】精錬材料中に,鉄酸化物の還元に要する当量よ
りも過剰量の炭材を配合すると例えば後記の図4に示す
ように,マイクロ波加熱によって鉄酸化物を鉄にまで高
い還元率で還元させることができる。この炭材量の配合
量を適切に調節することが還元速度と還元率を高めるう
えで重要な作用をはたす。好ましい炭材の配合量は,鉄
酸化物の還元に要する当量の2倍以上,好ましくは4倍
以上6倍までである。
[Function] When an excess amount of carbonaceous material is added to the refining material in excess of the equivalent amount required for iron oxide reduction, for example, as shown in Fig. 4 below, high reduction rate of iron oxide to iron is achieved by microwave heating. Can be reduced with. Properly adjusting the blending amount of the carbonaceous material plays an important role in increasing the reduction rate and the reduction rate. The preferable amount of the carbonaceous material is 2 times or more, preferably 4 times or more to 6 times the equivalent required to reduce the iron oxide.

【0011】炭酸塩を精錬材料中に配合すると,同じマ
イクロ波照射時間内においては,より高い還元率が得ら
れる。これは炭酸塩の熱分解によって生じたCO2がC
と反応し,直接還元反応にあずかるCO濃度が増大する
からであると考えられる。後述の図5に見られるよう
に,炭酸塩のうちでは炭酸カルシウムがその作用が大き
い。
When the carbonate is blended in the refining material, a higher reduction rate can be obtained within the same microwave irradiation time. This is because CO 2 generated by thermal decomposition of carbonate is C
It is considered that this is because the CO concentration which is involved in the direct reduction reaction increases with the reaction. As shown in FIG. 5 described later, among carbonates, calcium carbonate has a large effect.

【0012】Fe3O4はマイクロ波を吸収して発熱する性
質があるのに対し Fe2O3はその性質が弱い。したがっ
て,鉄鉱石のうちでも Fe2O3を主成分とするヘマタイト
系のものを使用する場合には,マイクロ波加熱による自
己発熱は期待できない。したがって,ヘマタイトを鉄原
料とする場合には Fe3O4原料も配合することが有利とな
る。 Fe3O4を主成分とするもの(実施例ではミルスケー
ル)を全鉄酸化物に対して40%以上配合すると,マイク
ロ波の吸収性の性質だけでは予期しえないような高い還
元率が得られる (例えば後述の図6)。
Fe 3 O 4 has a property of absorbing microwaves to generate heat, whereas Fe 2 O 3 has a weak property. Therefore, among iron ores, when using a hematite-based material containing Fe 2 O 3 as the main component, self-heating due to microwave heating cannot be expected. Therefore, when using hematite as an iron raw material, it is advantageous to mix Fe 3 O 4 raw material. When a compound containing Fe 3 O 4 as a main component (mill scale in the example) is mixed in an amount of 40% or more with respect to the total iron oxide, a high reduction rate that cannot be predicted only by the microwave absorbing property is obtained. Obtained (for example, FIG. 6 described later).

【0013】高い還元速度と還元率を得るうえでは炭材
としてチャー炭が有利である。また炭材はその粒度がを
小さくすればする程,高い還元速度と還元率が得られ
る。コークスを使用する場合には150μm 以下の粒度
のものを使用するのがよい。
Char charcoal is advantageous as a carbonaceous material for obtaining a high reduction rate and a high reduction rate. Also, the smaller the particle size of the carbonaceous material, the higher the reduction rate and reduction rate obtained. When using coke, it is preferable to use one having a particle size of 150 μm or less.

【0014】炭材の少なくとも一部を,鉄酸化物原料と
は層状に分離するように容器内に装填して還元処理する
と,還元産物のメタル鉄品位を92%以上にできる。
When at least a part of the carbonaceous material is charged in a container so as to be separated from the iron oxide raw material in a layered state and subjected to a reduction treatment, the metal iron grade of the reduction product can be increased to 92% or more.

【0015】鉄粉製造のうえからは,鉄酸化物から鉄に
まで固体状態で還元を進行させ,溶融が生じないように
反応温度をコントロールすることが有利である。これは
アプリケータ内に装入された容器へのマイクロ波照射量
の調節によって行なうことができ,例えば過度に高温に
なるのを防止するうえからは,アルミナ製のカバー等を
用いればよい。精錬容器もマイクロ波が透過するアルミ
ナやシリカ等の耐火物材料のものを用いるのがよい。
From the standpoint of producing iron powder, it is advantageous to control the reaction temperature so that melting is not caused by progressing reduction in a solid state from iron oxide to iron. This can be done by adjusting the microwave irradiation amount to the container loaded in the applicator. For example, an alumina cover or the like may be used to prevent the temperature from becoming excessively high. The refining vessel is preferably made of a refractory material such as alumina or silica through which microwaves can pass.

【0016】[0016]

【実施例】以下の実験において,マイクロ波照射還元装
置としては,出力500W,周波数2.45GHzの電子オ
ーブンを使用した。このオーブンの底部に厚さ11mmの磁
性板を置き, この磁性板の上に精錬容器を載せ, マイク
ロ波の照射は特に断らない限り10分間の一定とした。精
錬容器は内容積30mlのアルミナ製磁性るつぼを用い
た。温度の測定は,オーブン上部に穿った穴から磁性管
を挿入し,この磁性管を容器装入物中の底より7mmの位
置にまで挿入し,この磁性管の底部をフアイバー式放射
温度計を用いて測温した。
EXAMPLES In the following experiments, a microwave oven with an output of 500 W and a frequency of 2.45 GHz was used as the microwave irradiation reduction apparatus. A magnetic plate having a thickness of 11 mm was placed on the bottom of the oven, a refining vessel was placed on the magnetic plate, and microwave irradiation was kept constant for 10 minutes unless otherwise specified. As the refining container, an alumina magnetic crucible having an inner volume of 30 ml was used. To measure the temperature, insert a magnetic tube through the hole drilled in the top of the oven, insert the magnetic tube to a position 7 mm from the bottom in the container, and attach the fiber tube to the bottom of the magnetic tube with a fiber-type radiation thermometer. The temperature was measured using.

【0017】精錬に供した材料は次のとおりである。 〔粉状の鉄酸化物原料〕 鉄鉱石:インド国 Bailadila鉱山産の粒度−60meshのヘ
マタイト ミルスケール:製鉄所圧延工場で発生する粒度−32mesh
の酸化鉄粉(Fe3O4) 〔炭材〕 チャー炭,コークス粉またはホンゲイ炭 〔炭酸塩〕 足立鉱山産の粒度−48meshの石灰石粉 (CaCO3)
The materials used for refining are as follows. [Powdered iron oxide raw material] Iron ore: Hematite with a grain size of -60 mesh from the Bailadila mine, India Mill scale: Grain size generated at a steel mill rolling mill -32 mesh
Iron oxide powder (Fe 3 O 4 ) [Carbon material] Char charcoal, Coke powder or Hongay coal [Carbonate] Limestone powder (CaCO 3 ) with a grain size of −48mesh from the Adachi Mine

【0018】各実験において,マイクロ波照射を終えた
試料は温度が高く, そのまま放置すると再酸化するの
で,照射後はただちにN2ガスを吹き込んで急速に冷却
し,室温に到達したあとで容器 (るつぼ) から取り出
し, ハンドマグネットで磁着分と非磁着分に分離後, 磁
着分中の金属鉄を化学分析し,還元によって生成された
金属鉄と鉄酸化物原料中の鉄分量との比の百分率をもっ
て還元率を算出した。
In each experiment, the sample after microwave irradiation has a high temperature and re-oxidizes if left as it is. Therefore, immediately after irradiation, N 2 gas is blown into the sample to rapidly cool it, and after reaching the room temperature, the container ( After removing it from the crucible and separating it into magnetic and non-magnetic components with a hand magnet, the metallic iron in the magnetic component is chemically analyzed, and the metallic iron produced by reduction and the iron content in the iron oxide raw material are compared. The reduction rate was calculated as a percentage of the ratio.

【0019】〔実施例1〕本例ではヘマタイト10g,石
灰石1gの条件で一定とし,これらに加えるチャー炭量
を3g, 5gおよび10gの3段階に変化させ,ヘマタイトの
還元速度に及ぼすチャー炭添加量の影響を調べた。その
結果を図1に示した。
[Example 1] In this example, the amount of char coal added to the hematite and the limestone was kept constant under the conditions of 10 g of hematite and 1 g of limestone, and the amount of char coal added was changed to three stages of 3 g, 5 g, and 10 g, and char char addition on the reduction rate of hematite was added. The effect of quantity was investigated. The results are shown in Fig. 1.

【0020】図1から明らかなように,チャー炭添加量
3gの場合では誘導期間 (inductionperiod) の存在によ
る逆S字型の速度曲線を示し, 定常状態に達してもヘマ
タイトの還元速度は小さい。これはヘマタイトの還元反
応の引金となりうる反応系の温度上昇に時間がかかるた
めであると解される。一方, チャー炭量5gおよび10gの
条件下では誘導期間は認められず, 一般的にはチャー炭
量の増加とともに還元速度は増大する傾向が認められ
る。
As is apparent from FIG. 1, the amount of char charcoal added
In the case of 3 g, an inverse S-shaped velocity curve due to the presence of the induction period is shown, and the reduction rate of hematite is small even when the steady state is reached. It is understood that this is because it takes time to raise the temperature of the reaction system that can trigger the reduction reaction of hematite. On the other hand, the induction period was not observed under the conditions of char coal amounts of 5 g and 10 g, and generally the reduction rate tended to increase as the char coal amount increased.

【0021】図2は,図1から50%還元までの時間を求
め, その逆数をもって平均速度を計算し,チャー炭量に
対しプロットしたものである。図2の結果から明らかな
ように,R50はチャー炭添加量の増加とともにほぼ直線
的に増大する。チャー炭添加量が約2.5g以下ではR50
0になるが,このことはこの範囲のチャー炭添加量では
ヘマタイトの50%還元が達成されないことを意味すると
考えられる。
FIG. 2 is a graph in which the time required for 50% reduction from FIG. 1 is obtained, the average speed is calculated by the reciprocal thereof, and the average speed is plotted against the amount of char coal. As is clear from the results shown in FIG. 2, R 50 increases almost linearly as the charcoal addition amount increases. The R 50 becomes 0 when the amount of charcoal added is about 2.5 g or less, which means that 50% reduction of hematite cannot be achieved with the amount of charcoal added within this range.

【0022】一方, 図3はチャー炭のみを容器に装填
し,この容器をアルミナ製のカバーで覆ったうえでマイ
クロ波加熱を行った場合のチャー炭層の昇温速度を測定
したものである。この図に明らかなようにチャー炭量を
増すにつれ,チャー炭層の温度上昇速度ならびに最高到
達温度は増大する傾向が認められる。この結果は図1お
よび図2の結果の妥当性を示している。
On the other hand, FIG. 3 shows the rate of temperature rise of the char coal layer when only char char was loaded into the container, the container was covered with an alumina cover, and microwave heating was performed. As is clear from this figure, as the amount of char coal increases, the rate of temperature rise in the char coal bed and the maximum temperature reached tend to increase. This result shows the validity of the results of FIGS. 1 and 2.

【0023】〔実施例2〕図1のヘマタイトの還元速度
曲線から判るようにチャー炭添加量5gおよび10gの条件
下では,マイクロ波照射開始10分後の金属鉄への還元率
はその条件下における最大還元率の85%近くにまで到達
している。したがってマイクロ波照射開始を一定条件
(10分間) に固定し,今度はミルスケールについての還
元反応開始10分後の還元産物のメタル鉄品位に及ぼすチ
ャー炭添加量の影響を調べた。そのさい,ミルスケール
の添加量は10g, 石灰石の添加量は1gの一定とし,チ
ャー炭の添加量を変化させた。その結果を図4に示し
た。
[Example 2] As can be seen from the reduction rate curve of hematite in Fig. 1, under the conditions of the charcoal addition amounts of 5 g and 10 g, the reduction rate to metallic iron 10 minutes after the start of microwave irradiation The maximum return rate in Japan has reached close to 85%. Therefore, start microwave irradiation under certain conditions
It was fixed at (10 minutes), and this time, the effect of the charcoal addition amount on the metal iron grade of the reduction product 10 minutes after the start of the reduction reaction on the mill scale was investigated. At that time, the addition amount of mill scale was fixed at 10 g and the addition amount of limestone was fixed at 1 g, and the addition amount of char charcoal was changed. The results are shown in Fig. 4.

【0024】図4の下段横軸はミルスケールに対するチ
ャー炭の重量比を,また上段横軸はミルスケールに対す
るチャー炭の当量比を示す。当量比は Fe3O4をCで還元
してCO2 を生成する反応式( Fe3O4中の酸素+炭素=
CO2 )に基づく当量比である。
The lower horizontal axis of FIG. 4 shows the weight ratio of char charcoal to mill scale, and the upper horizontal axis shows the equivalent ratio of char charcoal to mill scale. The equivalent ratio is a reaction formula for reducing Fe 3 O 4 with C to produce CO 2 (oxygen in Fe 3 O 4 + carbon =
It is an equivalent ratio based on CO 2 ).

【0025】図4の結果から明らかなように,チャー炭
の当量比が増大するにつれて還元産物中のメタル鉄品位
は急激に高くなる。チャー炭の当量比が1付近ではメタ
ル鉄品位は20%にも満たず,当量比が2付近からメタ
ル鉄品位が50%を超えるようになり,当量比が4近傍
からはメタル鉄品位はほぼ飽和状態に達する傾向が見ら
れる。
As is clear from the results shown in FIG. 4, as the equivalent ratio of char coal increases, the grade of metal iron in the reduction product sharply rises. When the equivalent ratio of char coal is around 1, the metal iron grade is less than 20%, and when the equivalence ratio is around 2, the metal iron grade exceeds 50%, and when the equivalence ratio is around 4, the metal iron grade is almost the same. There is a tendency to reach saturation.

【0026】すなわち炭材を該鉄酸化物の還元に要する
当量(酸化鉄の酸素+炭素=CO2の反応式に従う化学
量論量)で配合しても,鉄への還元は殆んど進行せず,
少なくとも当量比で2倍以上,好ましくは3倍以上,よ
り好ましくは4倍以上の量で炭材を配合することがマイ
クロ波加熱による鉄酸化物の金属鉄への還元には必要で
あることがわかる。しかし当量比で6を超えて炭材を配
合しても,それだけではメタル鉄品位をそれほど高くす
ることはできない。
That is, even if the carbonaceous material is blended in an equivalent amount required for the reduction of the iron oxide (a stoichiometric amount according to the reaction formula of iron oxide oxygen + carbon = CO 2 ), the reduction to iron almost proceeds. Without
It is necessary for the reduction of iron oxides to metallic iron by microwave heating to mix carbonaceous materials in an amount of at least 2 times, preferably 3 times or more, more preferably 4 times or more in terms of equivalent ratio. Recognize. However, even if the carbonaceous material is blended in an equivalence ratio of more than 6, the metal iron grade cannot be so high by itself.

【0027】〔実施例3〕本例では炭酸塩の還元率に及
ぼす影響を調べた。鉄酸化物としてはミルスケール6g+
ヘマタイト4gの混合物,炭材としてはチャー炭 (−16me
sh) 5gを使用し,炭酸塩としてはCaCO3 とMgCO3
・Mg(OH)2をそれぞれ1g配合した。またこれらを配
合しない試験と,比較のためにCaOとMgOを1g配合
した試験も行った。マイクロ波照射時間はいずれも10分
の一定である。その結果を図5に示した。
Example 3 In this example, the effect on the reduction rate of carbonate was investigated. Mill scale 6g + for iron oxide
Hematite 4g mixture, charcoal as charcoal (−16me
sh) 5 g, and as the carbonate, CaCO 3 and MgCO 3
-Mg (OH) 2 was added to each 1 g. Further, a test in which these were not compounded and a test in which 1 g of CaO and MgO were compounded were also performed for comparison. The microwave irradiation time was constant for 10 minutes. The results are shown in Fig. 5.

【0028】図5から明らかなように,同じマイクロ波
加熱時間において,炭酸塩を添加するれば,より高い還
元率が得られ, 炭酸カルシウムはその効果が大きいこと
がわかる。
As is apparent from FIG. 5, if carbonate is added at the same microwave heating time, a higher reduction rate can be obtained, and calcium carbonate has a great effect.

【0029】〔実施例4〕本例は Fe2O3が主成分でマイ
クロ波の吸収性が低いヘマタイトと,Fe3O4が主成分でマ
イクロ波の吸収性が高いミルスケールを鉄酸化物原料と
した場合に,両者の混合割合に適切な範囲が存在するか
否かを調べた。
Example 4 In this example, hematite having Fe 2 O 3 as a main component and low microwave absorptivity and mill scale having Fe 3 O 4 as a main component and high microwave absorptivity were used as iron oxides. When used as raw materials, it was investigated whether or not there was an appropriate range for the mixing ratio of the two.

【0030】試験は,鉄酸化物原料=10g,石灰石=1
g,炭材(チャー炭)=5gとし,鉄酸化物原料10gの
うちミルスケールとヘマタイトの混合比を変化させ,前
記同様のマイクロ波加熱試験を行って還元率を調べた。
その結果を図6に示した。
The test was carried out with iron oxide raw material = 10 g, limestone = 1
g, carbon material (char charcoal) = 5 g, the mixing ratio of mill scale and hematite in 10 g of iron oxide raw material was changed, and the microwave heating test similar to the above was conducted to examine the reduction rate.
The results are shown in Fig. 6.

【0031】図6に明らかなように,ミルスケール添加
量が40%以下ではミルスケールとヘマタイトの加成性と
して理解できるような還元挙動をするのに対し, それ以
上ミルスケールを混在させると加成性から予期される以
上の還元率が得られた。この現象は再現性の良好なもの
である。
As is apparent from FIG. 6, when the addition amount of the mill scale is 40% or less, the reduction behavior can be understood as the additivity of the mill scale and hematite. A reduction rate higher than expected from the formation was obtained. This phenomenon has good reproducibility.

【0032】すなわち,ミルスケール添加量が40%まで
はマイクロ波吸収性のよいミルスケールの増量に伴って
還元率が向上するが,ミルスケール添加量がさらに多く
なるとマイクロ波吸収性の違いだけでは予期しえない高
い還元率が得られた。
That is, the reduction rate increases with the increase of the mill scale with good microwave absorption up to the addition amount of mill scale of 40%. An unexpectedly high reduction rate was obtained.

【0033】〔実施例5〕本例は炭材の種類を変えて行
った試験結果を示す。炭材としてチャー炭,コークス粉
およびホンゲイ炭を選び,いずれも−32+80meshに整粒
して使用した。鉄酸化物原料には,ミルスケールとヘマ
タイトの混合物(重量比60:40)を使用した。鉄酸化物
原料:炭材:石灰石の混合割合はいずれの試験でも10
g:5g:1gとした。各炭材を配合した場合のマイクロ波
照射時間と還元率との関係を図7にしめした。
[Embodiment 5] This embodiment shows the results of tests conducted by changing the type of carbonaceous material. Char charcoal, coke powder, and hongay charcoal were selected as carbonaceous materials, and all were sized to -32 + 80mesh before use. A mixture of mill scale and hematite (weight ratio 60:40) was used as the iron oxide raw material. Mixing ratio of iron oxide raw material: carbonaceous material: limestone is 10 in any test.
g: 5g: 1g. FIG. 7 shows the relationship between the microwave irradiation time and the reduction rate when each carbon material was blended.

【0034】図7の結果みられるようにチャー炭では極
めて速く還元され,5分のマイクロ波照射により既に75
%の還元率に達するのに対し, コークスを用いた場合の
還元率は極めて低く, マイクロ波照射15分後の還元率
も,わずかに13%である。
As can be seen from the results shown in FIG. 7, char charcoal is reduced extremely rapidly, and it has already been reduced to 75% by microwave irradiation for 5 minutes.
Although the reduction rate of 100% was reached, the reduction rate using coke was extremely low, and the reduction rate after 15 minutes of microwave irradiation was only 13%.

【0035】かような差異が現れた理由については必ず
しも明確ではない。SEM写真で各炭材の表面を観察する
と肉眼的にはホンゲイ炭の表面が極めて平滑性を示すこ
と以外には大きな差異が認められず,またチャー炭とコ
ークスでは揮発分には大きな差異はあるものの固定炭素
含量には,それほど大きな違いが認められない。揮発分
の影響と考えるならば揮発分含量がチャー炭とほぼ同じ
ホンゲイ炭を用いた実験での還元速度が低いことが説明
できない。
The reason why such a difference appears is not always clear. When observing the surface of each carbonaceous material in the SEM photograph, no significant difference is observed with the naked eye except that the surface of hongay charcoal shows extremely smoothness, and there is a large difference in volatile matter between char charcoal and coke. There is no significant difference in the fixed carbon content of the products. If we consider it as the effect of volatile matter, it cannot be explained that the reduction rate is low in the experiment using Hongay coal, which has almost the same volatile content as char coal.

【0036】そこで各炭材だけのマイクロ波加熱試験を
行った。その結果を図8に示した,試験はいずれの炭材
も−32+80meshに整粒し,10gをそれぞれるつぼへ入れ
てマイクロ波照射し温度測定をしたもので,この結果を
みると明らかにチャー炭の昇温が圧倒的に速い。その結
果から,図7のようにチャー炭を用いた還元が最も大き
い還元速度を示し, 高い還元率を達成したものと見てよ
い。
Therefore, a microwave heating test was conducted only on each carbon material. The results are shown in Fig. 8. In the test, all the carbonaceous materials were sized to -32 + 80mesh, 10g was placed in each crucible, and the temperature was measured by microwave irradiation. The temperature rise is overwhelmingly fast. From the results, it can be considered that reduction using char charcoal showed the largest reduction rate as shown in Fig. 7, and that a high reduction rate was achieved.

【0037】一方, 図8に見られるようにコークスの昇
温速度は, チャー炭のそれに次ぐものがあるが,最高到
達温度はホンゲイ炭に比して低く, その差がコークスと
ホンゲイ炭を用いた場合の還元率の差として現れたと考
えられる。
On the other hand, as can be seen in FIG. 8, the rate of temperature rise of coke is second to that of char coal, but the maximum temperature reached is lower than that of Hongay coal, and the difference is between coke and Hongay coal. It is considered that this appears as a difference in the reduction rate in the case of the presence.

【0038】〔実施例6〕本例は炭材の粒度が還元率に
及ぼす影響を調べたものである。炭材として粒度の異な
るコークスを用いた。酸化物原料にはミルスケールとヘ
マタイトの混合物(重量比60:40)を使用し,鉄酸化物
原料:コークス:石灰石の混合割合はいずれの試験でも
10g:5g:1gである。コークスの平均粒度と還元率との
関係を図9に示した。
Example 6 In this example, the effect of the particle size of carbonaceous material on the reduction rate was investigated. Coke with different grain sizes was used as the carbonaceous material. A mixture of mill scale and hematite (weight ratio 60:40) was used as the oxide raw material, and the mixing ratio of iron oxide raw material: coke: limestone was used in all tests.
It is 10g: 5g: 1g. The relationship between the average particle size of coke and the reduction rate is shown in FIG.

【0039】図9から明らかなように, 同じコークスで
あっても粒度が細かくなるにつれて還元率は大幅に上昇
し,平均粒径が150μm 以下のものであれば還元率は
50%以上とすることができる。これは, コークスの粒
度が細かくなると鉄鉱石とコークスの接触が良くなり,
間隙が小さくなることによりCOの濃度が高まることに
よるものと考えられる。
As is clear from FIG. 9, even with the same coke, the reduction rate greatly increases as the grain size becomes finer, and if the average grain size is 150 μm or less, the reduction rate should be 50% or more. You can This is because the finer the coke, the better the contact between the iron ore and the coke.
It is considered that this is because the concentration of CO increases due to the decrease in the gap.

【0040】〔実施例7〕本例は炭材と鉄酸化物原料と
を分離して容器に装填して還元試験を行った例である。
試験は,ミルスケール6g,ヘマタイト4g,チャー炭
(−16mesh)1.2gを混合して第一混合物とし,他方,チ
ャー炭3.8gと石灰石1gを混合して第二混合物とした。
第一混合物はこれを紙でくるみ,これを第二混合物で囲
むようにして容器に装填した。また,比較のために,全
装入物を均一に混合したものの試験も行った。各試験に
おけるマイクロ波照射時間と還元産物のメタル鉄品位
(%)の関係を調べ,図10の結果を得た。
[Embodiment 7] In this embodiment, a carbonaceous material and an iron oxide raw material are separated and loaded into a container to carry out a reduction test.
In the test, 6 g of mill scale, 4 g of hematite, and 1.2 g of char charcoal (-16 mesh) were mixed into a first mixture, while 3.8 g of char charcoal and 1 g of limestone were mixed into a second mixture.
The first mixture was wrapped in paper and enclosed in a container such that it was surrounded by the second mixture. For comparison, a test was also conducted on a mixture of all the charges uniformly. Microwave irradiation time and metal iron grade of reduction products in each test
The relationship of (%) was investigated and the results shown in FIG. 10 were obtained.

【0041】図10から明らかなように,混合装入では
マイクロ波照射時間を長くしても還元産物中のメタル鉄
品位はは約87%程度にまでしか達しないが,分離装入
を行った場合には還元産物中のメタル鉄品位が92%ま
で達するようになる。
As is clear from FIG. 10, in the mixed charging, even if the microwave irradiation time was lengthened, the metal iron grade in the reduction product reached only about 87%, but the separation charging was carried out. In this case, the quality of metal iron in the reduced product reaches 92%.

【0042】[0042]

【発明の効果】以上説明したように,本発明によると,
鉄酸化物原料から鉄にまで固体状態で還元が進行し,そ
の還元反応は極めて短時間で且つ還元率も高い。このた
め,粉状の鉄酸化物を用いることによって鉄粉が高いエ
ネルギー効率のもとで収率よく製造できる。
As described above, according to the present invention,
The reduction proceeds from the iron oxide raw material to iron in a solid state, and the reduction reaction is extremely short and the reduction rate is high. Therefore, iron powder can be produced in high yield with high energy efficiency by using powdered iron oxide.

【図面の簡単な説明】[Brief description of drawings]

【図1】チャー炭添加量が鉄酸化物の還元率に及ぼす影
響を示す図である。
FIG. 1 is a diagram showing the effect of the amount of charcoal added on the reduction rate of iron oxide.

【図2】チャー炭添加量が鉄酸化物の還元速度に及ぼす
影響を示す図である。
FIG. 2 is a diagram showing the effect of the amount of charcoal added on the reduction rate of iron oxide.

【図3】チャー炭のみをマイクロ波加熱した場合の加熱
速度を示す図である。
FIG. 3 is a diagram showing a heating rate when only char charcoal is microwave-heated.

【図4】配合されたチャー炭の当量比と還元産物のメタ
ル鉄品位との関係を示す図である。
FIG. 4 is a diagram showing a relationship between an equivalent ratio of blended char coal and a metal iron grade of a reduction product.

【図5】炭酸塩の種類と還元率の関係を示す図である。FIG. 5 is a diagram showing the relationship between the type of carbonate and the reduction rate.

【図6】ミルスケールとヘマタイトの混合比が還元率に
及ぼす影響を示す図である。
FIG. 6 is a diagram showing the effect of the mixing ratio of mill scale and hematite on the reduction rate.

【図7】炭材の種類と還元率との関係を示す図である。FIG. 7 is a diagram showing the relationship between the type of carbonaceous material and the reduction rate.

【図8】マイクロ波加熱される炭材の種類と昇温速度と
の関係を示す図である。
FIG. 8 is a diagram showing the relationship between the type of carbonaceous material to be microwave-heated and the heating rate.

【図9】コークスの平均粒径と還元率との関係を示す図
である。
FIG. 9 is a diagram showing the relationship between the average particle size of coke and the reduction rate.

【図10】鉄酸化物と炭材を分離装入した場合と混合装
入した場合の還元産物のメタル鉄品位を比較した図であ
る。
FIG. 10 is a diagram comparing the metal iron grades of the reduction products when the iron oxide and the carbonaceous material are separately charged and when they are mixedly charged.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 粉状の鉄酸化物原料に炭材と炭酸塩を配
合してなる精錬材料を容器に装填し,この材料装填容器
をマイクロ波が投射されているアプリケータ内に所定の
時間滞在させることにより該鉄酸化物を鉄にまで還元す
る方法であって,該炭材を該鉄酸化物の還元に要する当
量(酸化鉄の酸素+炭素=CO2 の反応式に従う化学量
論量)の2倍以上の量で配合することを特徴とするマイ
クロ波利用の鉄粉製造法。
1. A container is charged with a refining material obtained by mixing powdery iron oxide raw material with carbonaceous material and carbonate, and the material loading container is placed in an applicator for which microwaves are projected for a predetermined time. A method for reducing the iron oxide to iron by allowing it to stay, wherein the carbonaceous material is equivalent to the reduction of the iron oxide (stoichiometric amount according to the reaction formula of iron oxide oxygen + carbon = CO 2 ). (2) or more than twice the amount of the above).
【請求項2】 炭酸塩は炭酸カルシウムである請求項1
に記載のマイクロ波利用の鉄粉製造法。
2. The carbonate is calcium carbonate.
The method for producing iron powder using the microwave described in.
【請求項3】 鉄酸化物原料は,その少なくとも一部が
Fe2O3を主成分とするヘマタイトであり,残部が Fe3O4
を主成分とする原料である請求項1または2に記載のマ
イクロ波利用の鉄粉製造法。
3. At least a part of the iron oxide raw material is
Hematite mainly composed of Fe 2 O 3 and the balance Fe 3 O 4
The method for producing iron powder using microwaves according to claim 1, which is a raw material containing as a main component.
【請求項4】 鉄酸化物原料中の Fe3O4を主成分とする
原料割合が40重量%以上である請求項3に記載のマイ
クロ波利用の鉄粉製造法。
4. The method for producing iron powder using microwaves according to claim 3, wherein the proportion of the raw material containing Fe 3 O 4 as a main component in the iron oxide raw material is 40% by weight or more.
【請求項5】 炭材は微粉状のチャー炭または平均粒度
が150μm 以下の粉コークスである請求項1に記載の
マイクロ波利用の鉄粉製造法。
5. The method for producing iron powder utilizing microwaves according to claim 1, wherein the carbonaceous material is charcoal in the form of fine powder or powder coke having an average particle size of 150 μm or less.
【請求項6】 炭材の少なくとも一部は,鉄酸化物原料
とは層状に分離するように容器内に装填される請求項1
または2に記載のマイクロ波利用の鉄粉製造法。
6. The container according to claim 1, wherein at least a part of the carbonaceous material is loaded into the container so as to be separated from the iron oxide raw material in layers.
Alternatively, the method for producing iron powder using microwave according to 2 above.
JP09197793A 1993-03-26 1993-03-26 Iron powder production using microwaves Expired - Lifetime JP3295673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09197793A JP3295673B2 (en) 1993-03-26 1993-03-26 Iron powder production using microwaves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09197793A JP3295673B2 (en) 1993-03-26 1993-03-26 Iron powder production using microwaves

Publications (2)

Publication Number Publication Date
JPH06279824A true JPH06279824A (en) 1994-10-04
JP3295673B2 JP3295673B2 (en) 2002-06-24

Family

ID=14041572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09197793A Expired - Lifetime JP3295673B2 (en) 1993-03-26 1993-03-26 Iron powder production using microwaves

Country Status (1)

Country Link
JP (1) JP3295673B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6918945B2 (en) 2001-02-14 2005-07-19 Jfe Steel Corporation Method for producing sponge iron, and reduced iron powder and method for production thereof
JP2006509704A (en) * 2002-12-11 2006-03-23 ゾルファイ ケミカルス ゲゼルシャフト ミット ベシュレンクテル ハフツング Super dry calcium carbonate
JP2007205639A (en) * 2006-02-01 2007-08-16 Kazuhiro Nagata Blast furnace and manufacture of pig iron using it
JP2010222667A (en) * 2009-03-25 2010-10-07 Nippon Steel Corp Method for reducing iron oxide-containing material
JP2011500495A (en) * 2007-10-17 2011-01-06 マイ ヤン−フィリプ Method and apparatus for producing silicon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102794455B (en) * 2012-09-05 2014-10-01 昆明理工大学 Method for preparing primary reduction iron powder by combining inner and outer carbon matching and microwave heating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6918945B2 (en) 2001-02-14 2005-07-19 Jfe Steel Corporation Method for producing sponge iron, and reduced iron powder and method for production thereof
JP2006509704A (en) * 2002-12-11 2006-03-23 ゾルファイ ケミカルス ゲゼルシャフト ミット ベシュレンクテル ハフツング Super dry calcium carbonate
JP2007205639A (en) * 2006-02-01 2007-08-16 Kazuhiro Nagata Blast furnace and manufacture of pig iron using it
JP2011500495A (en) * 2007-10-17 2011-01-06 マイ ヤン−フィリプ Method and apparatus for producing silicon
JP2010222667A (en) * 2009-03-25 2010-10-07 Nippon Steel Corp Method for reducing iron oxide-containing material

Also Published As

Publication number Publication date
JP3295673B2 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
EP2004868B1 (en) Reduction processing of metal-containing ores in the presence of microwave and rf energy
Kasai et al. Influence of properties of fluxing materials on the flow of melt formed in the sintering process
US5750045A (en) Preparation of ferrite materials
Turkova et al. CO reactivity and porosity of manganese materials
CA3021181C (en) Method for smelting oxide ore
JP3280435B2 (en) Method and apparatus for producing iron powder using microwaves
JP3295673B2 (en) Iron powder production using microwaves
DE102009043639A1 (en) Method and apparatus for controlling the production of a foamed slag in a metallic melt
US3153586A (en) Slag coated ore compacts and process for making the same
JP5811017B2 (en) Method for producing reduced iron
Prakash et al. Morphology and reduction kinetics of fluxed iron ore pellets
US4001007A (en) Material for sintering emitting a lesser amount of nitrogen oxide and a method for manufacturing the same
JP4762446B2 (en) Method for producing sintered ore
JP2002129247A (en) High grade sintered agglomerate for iron manufacturing and method for manufacturing the same
JPH0310027A (en) Pretreatment of high goethite ore
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
US4082540A (en) Material for sintering emitting a lesser amount of nitrogen oxide and a method for manufacturing the same
RU2069234C1 (en) Method of producing agglomerate
JP3952988B2 (en) Method for producing low SiO2 sintered ore
JP4501656B2 (en) Method for producing sintered ore
RU2006344C1 (en) Method for production of iron powder of low apparent density
JPH05339654A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP2019131847A (en) Manufacturing method of sintered ore and blast furnace operation method
TW202325859A (en) Method for producing sintered ore
JPH07278684A (en) Production of sintered ore

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020326

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110405

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120405

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130405

Year of fee payment: 11