JPH06279004A - Production of synthetic gas - Google Patents

Production of synthetic gas

Info

Publication number
JPH06279004A
JPH06279004A JP5065276A JP6527693A JPH06279004A JP H06279004 A JPH06279004 A JP H06279004A JP 5065276 A JP5065276 A JP 5065276A JP 6527693 A JP6527693 A JP 6527693A JP H06279004 A JPH06279004 A JP H06279004A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
hours
ruthenium
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5065276A
Other languages
Japanese (ja)
Other versions
JP3413235B2 (en
Inventor
Shoichi Nishiyama
正一 西山
Tetsuo Asakawa
哲夫 淺川
Yoshifumi Sasaki
好文 佐々木
Sotaro Nakamura
宗太郎 中村
Hisanori Okada
久則 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI KANKYO GIJUTSU ITEN KE
KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER
Tosoh Corp
Original Assignee
KOKUSAI KANKYO GIJUTSU ITEN KE
KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI KANKYO GIJUTSU ITEN KE, KOKUSAI KANKYO GIJUTSU ITEN KENKYU CENTER, Tosoh Corp filed Critical KOKUSAI KANKYO GIJUTSU ITEN KE
Priority to JP06527693A priority Critical patent/JP3413235B2/en
Publication of JPH06279004A publication Critical patent/JPH06279004A/en
Application granted granted Critical
Publication of JP3413235B2 publication Critical patent/JP3413235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To provide a process for converting carbon dioxide which is a main causal substance for global warming into industrially useful carbon monoxide and hydrogen by using methane as a reducing agent. CONSTITUTION:Carbon monoxide and hydrogen are produced by contacting a gas containing carbon dioxide and methane with a catalyst. The catalyst to be used in the above process is produced by supporting at least one kind of oxide selected from calcium oxide and lanthanum oxide on a heat-resistant oxide and supporting a ruthenium compound on the obtained carrier.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、メタンを還元剤として
地球温暖化の主要な原因物質となっている二酸化炭素
を、工業的に有用な一酸化炭素と水素(以下、合成ガス
と略す)に変換する方法に関する。
The present invention relates to industrially useful carbon monoxide and hydrogen (hereinafter abbreviated as syngas) for carbon dioxide, which is a major causative substance of global warming using methane as a reducing agent. On how to convert to.

【0002】[0002]

【従来の技術】二酸化炭素は地球温暖化の主要原因物質
として、排出の削減、有効利用が緊急の課題として求め
られ、近年、二酸化炭素の化学的変換法が多方面(電気
的還元法、光合成法、接触水素還元法等)で検討されて
いる。
2. Description of the Related Art As carbon dioxide is a major causative agent of global warming, it is urgently required to reduce and effectively use carbon dioxide. In recent years, carbon dioxide chemical conversion methods have been widely used (electric reduction method, photosynthesis method). Method, catalytic hydrogen reduction method, etc.).

【0003】そのなかで、メタンを還元剤として二酸化
炭素を各種有機化合物を合成する際の原料等として有用
な合成ガスに変換する報告例は少なく、アルミナ及びシ
リカ担持貴金属或いはVIII族遷移金属触媒を使用した接
触法(React.Kinet.catal.,24
(3−4),253(1984)、第68回触媒討論会
(A)予稿集,3H327(1991)及び第70団触
媒討論会(A)予稿集,3F420(1992))があ
るにすぎない。
[0003] Among them, there are few reports of converting carbon dioxide into a synthesis gas useful as a raw material when synthesizing various organic compounds by using methane as a reducing agent, and alumina and silica-supported noble metals or Group VIII transition metal catalysts are used. The contact method used (React. Kinet. Catal., 24
(3-4), 253 (1984), 68th Catalytic Discussion Group (A) Proceedings, 3H327 (1991) and 70th Group Catalysis Discussion Group (A) Proceedings, 3F420 (1992)). .

【0004】特に、アルミナに担持されたVIII族遷移金
属に属するニッケル触媒や貴金属であるロジウム、ルテ
ニウム触媒が反応初期において高活性であることが記載
されている。
In particular, it is described that a nickel catalyst belonging to a Group VIII transition metal supported on alumina and a noble metal rhodium or ruthenium catalyst are highly active in the initial stage of the reaction.

【0005】しかし、より長時間の反応においてアルミ
ナに担持されたニッケル触媒は、触媒表面上での炭素折
出が激しく短時間で活性が減少する。
However, in the reaction for a longer time, the nickel catalyst supported on alumina has a large amount of carbon exudation on the surface of the catalyst, and the activity decreases in a short time.

【0006】一方、アルミナに担持されたロジウム、ル
テニウム触媒ではニッケル触媒との比較において炭素析
出が小さい結果、触媒寿命の面で優れているが、アルミ
ナに担持されたロジウム触媒及びルテニウム触媒を比較
すると、ルテニウム触媒はロジウム触媒と同等の活性は
あるものの触媒寿命の点で劣るという報告がある(Ap
plied Catalysis,61(199
0))。
On the other hand, the rhodium and ruthenium catalysts supported on alumina are superior in terms of catalyst life as a result of less carbon deposition as compared with nickel catalysts. However, comparing rhodium catalysts and ruthenium catalysts supported on alumina, , Ruthenium catalyst has the same activity as rhodium catalyst, but is inferior in catalyst life (Ap
plied Catalysis, 61 (199
0)).

【0007】[0007]

【発明が解決しょうとする課題】しかし、ロジウム触媒
は、高価であり経済的にも不利であることから、より安
価なルテニウム触媒を用い、ロジウム触媒と同等の活性
及び触媒寿命を有する触媒の開発が望まれている。
However, since the rhodium catalyst is expensive and economically disadvantageous, a less expensive ruthenium catalyst is used and a catalyst having activity and catalyst life equivalent to that of the rhodium catalyst is developed. Is desired.

【0008】[0008]

【課題を解決するための手段】本発明者らは、ルテニウ
ム触媒について鋭意検討した結果、耐熱性酸化物に酸化
カルシウム、酸化ランタンのうち少なくとも1つ以上の
酸化物を担持した担体を使用することで安定した活性を
示すことを見いだし本発明を完成するに至った。
Means for Solving the Problems As a result of earnest studies on a ruthenium catalyst, the present inventors have found that a support having at least one oxide of calcium oxide and lanthanum oxide as a heat-resistant oxide is used. The present invention was completed by discovering that the stable activity was exhibited by.

【0009】即ち、本発明は、二酸化炭素及びメタンを
含有するガスを触媒に接触させ一酸化炭素と水素を製造
するにあたり、触媒として、耐熱性酸化物に酸化カルシ
ウム、酸化ランタンのうち少なくとも1つ以上の酸化物
を担持した担体に、さらにルテニウムを担持させてなる
触媒を用いることを特徴とする合成ガスの製造方法であ
る。以下、本発明を詳細に説明する。
That is, according to the present invention, when a gas containing carbon dioxide and methane is brought into contact with a catalyst to produce carbon monoxide and hydrogen, as a catalyst, at least one of calcium oxide and lanthanum oxide is used as a heat-resistant oxide. A method for producing a synthesis gas is characterized in that a catalyst prepared by further supporting ruthenium on the carrier supporting the above oxide is used. Hereinafter, the present invention will be described in detail.

【0010】本発明の特徴の一つは、耐熱性酸化物に酸
化カルシウム、酸化ランタンのうち少なくとも1つ以上
の酸化物を担持した担体を用いることにある。
One of the features of the present invention is to use a carrier in which at least one oxide of calcium oxide and lanthanum oxide is supported on a heat-resistant oxide.

【0011】耐熱性酸化物は、α、δ、θ、γ型及びそ
れらの混合結晶相を持つ酸化アルミニウムであり、特に
γ型酸化アルミニウムを700〜1100℃で空気焼成
し、30〜150m2 /gの表面積を有するものが触媒
の活性・寿命向上の点において好ましい。耐熱性酸化物
に酸化カルシウム、酸化ランタンを担持させた担体は、
各金属塩水溶液を浸漬する含浸法で調製後、乾燥・焼成
により得られる。なお、含浸法において含浸させる際、
各金属塩を同時に浸漬してもよいし、またカルシウム金
属塩を先に浸漬・焼成した後、ランタン金属塩を浸漬あ
るいはランタン金属塩を先に浸漬・焼成した後、カルシ
ウム金属塩を浸漬してもかまわない。
The heat-resistant oxide is aluminum oxide having α-, δ-, θ-, and γ-type and a mixed crystal phase thereof, and in particular, γ-type aluminum oxide is air-calcined at 700 to 1100 ° C. and 30 to 150 m 2 / Those having a surface area of g are preferable from the viewpoint of improving the activity and life of the catalyst. A carrier in which heat-resistant oxides carry calcium oxide and lanthanum oxide are
It can be obtained by drying and firing after preparation by an impregnation method in which each aqueous solution of metal salt is immersed. When impregnating in the impregnation method,
Each metal salt may be dipped at the same time, or the calcium metal salt may be dipped and fired first, and then the lanthanum metal salt may be dipped or the lanthanum metal salt may be dipped and fired first, and then the calcium metal salt may be dipped. I don't care.

【0012】カルシウム金属塩としては、炭酸カルシウ
ム、酢酸カルシウム、塩化カルシウム、硝酸カルシウ
ム、シュウ酸カルシウム、硫酸カルシウム、第一燐酸カ
ルシウム、第二燐酸カルシウム、ギ酸カルシウムが、ま
たランタン金属塩としては酢酸ランタン、炭酸ランタ
ン、塩化ランタン、硝酸ランタン、修酸ランタンなどが
挙げられる。より好ましくは、加熱により分解し易い硝
酸塩、酢酸塩、シュウ酸塩を用いることが好ましい。
The calcium metal salts include calcium carbonate, calcium acetate, calcium chloride, calcium nitrate, calcium oxalate, calcium sulfate, monobasic calcium phosphate, dibasic calcium phosphate and calcium formate, and the lanthanum metal salts include lanthanum acetate. , Lanthanum carbonate, lanthanum chloride, lanthanum nitrate, lanthanum oxalate and the like. More preferably, nitrates, acetates, and oxalates that are easily decomposed by heating are preferably used.

【0013】また、上記方法において焼成温度は、通常
300〜1100℃で空気焼成により行われる。より好
ましくは700〜1000℃で焼成することが良い。
In the above method, the firing temperature is usually 300 to 1100 ° C. and air firing is performed. More preferably, firing is performed at 700 to 1000 ° C.

【0014】本発明において用いられる触媒における担
体中の酸化カルシウム及び酸化ランタンの濃度は、合計
量で1〜60重量%であり、より好ましくは5〜40重
量%である。酸化カルシウム及び酸化ランタンの混合比
率は特に制限はない。
The total concentration of calcium oxide and lanthanum oxide in the carrier in the catalyst used in the present invention is 1 to 60% by weight, more preferably 5 to 40% by weight. The mixing ratio of calcium oxide and lanthanum oxide is not particularly limited.

【0015】また、この担体には酸化ナトリウム、酸化
カリウム等のアルカリ金属酸化物類及び酸化マグネシウ
ム、酸化ストロンチウム等のアルカリ土類金属酸化物類
を担持しても差し支えない。
The carrier may carry alkali metal oxides such as sodium oxide and potassium oxide and alkaline earth metal oxides such as magnesium oxide and strontium oxide.

【0016】本発明において用いられる触媒における該
担体に担持させるルテニウム化合物は金属換算で、0.
01〜10重量%、より好ましくは0.1〜5重量%で
ある。ルテニウム含有量が0.01重量%未満では十分
な二酸化炭素の転化率が得られないことがあり、一方1
0重量%を越えても期待するほどの転化率の向上は認め
られない。
The ruthenium compound supported on the carrier in the catalyst used in the present invention is 0.
It is from 01 to 10% by weight, more preferably from 0.1 to 5% by weight. If the ruthenium content is less than 0.01% by weight, a sufficient carbon dioxide conversion rate may not be obtained.
Even if it exceeds 0% by weight, the expected improvement in conversion is not recognized.

【0017】ルテニウムを担持させる触媒の調製法とし
ては、例えばルテニウム塩を用いて通常の含浸法などの
方法で調製後活性化処理により製造されるが、より好ま
しくは、メタノール、エタノール等のアルコール類及び
アセトン等の有機溶媒中で浸漬し調整したものがよい。
The catalyst for supporting ruthenium is prepared by, for example, an ordinary impregnation method using a ruthenium salt, followed by activation treatment, and more preferably alcohols such as methanol and ethanol. Also, it is preferable to adjust by immersing in an organic solvent such as acetone.

【0018】この触媒調製に使用するルテニウム塩は、
特に制限はないが、触媒の活性・寿命を考慮すればルテ
ニウムアセチルアセトナト、ルテニウムカルボニル、塩
化ルテニウムのようなアルコールに対し可溶性である金
属塩を用いることが好ましい。
The ruthenium salt used in the preparation of this catalyst is
Although there is no particular limitation, it is preferable to use a metal salt that is soluble in alcohol such as ruthenium acetylacetonato, ruthenium carbonyl, and ruthenium chloride in consideration of the activity and life of the catalyst.

【0019】また、触媒の活性化処理とは、空気等によ
る焼成及び水素、硫化水素等による還元をいう。十分な
二酸化炭素の転化率を得るためには300〜1000℃
で還元処理を行うことが好ましい。
The catalyst activation treatment means calcination with air or the like and reduction with hydrogen, hydrogen sulfide or the like. 300-1000 ° C to obtain sufficient carbon dioxide conversion
It is preferable to carry out the reduction treatment.

【0020】触媒は成型して用いても或いは粉末のまま
用いても差し支えなく、反応方法によって所望の大きさ
に成型して用いればよい。
The catalyst may be molded or used as it is, and may be molded into a desired size according to the reaction method.

【0021】本発明におけるメタンの量は、二酸化炭素
に対するメタンのモル比として規定することができる。
具体的には、メタンと二酸化炭素の比は0.05〜25
とすることができ、0.1〜20が好ましい。メタンと
二酸化炭素との比が0.05未満ではリサイクルする二
酸化炭素の量が多くなり、一方、メタンと二酸化炭素の
比が25を越えると十分な一酸化炭素生成速度が得られ
ず不経済となり、また触媒上で炭素析出が起こり易くな
り活性の低下を引き起こす。
The amount of methane in the present invention can be defined as the molar ratio of methane to carbon dioxide.
Specifically, the ratio of methane to carbon dioxide is 0.05 to 25
And 0.1 to 20 is preferable. If the ratio of methane to carbon dioxide is less than 0.05, the amount of carbon dioxide to be recycled increases, while if the ratio of methane to carbon dioxide exceeds 25, a sufficient carbon monoxide generation rate cannot be obtained, which is uneconomical. Also, carbon deposition is likely to occur on the catalyst, resulting in a decrease in activity.

【0022】なお、本発明において、系中に希釈ガスと
して窒素、空気または水蒸気を添加することは触媒寿命
の観点から好ましい。
In the present invention, it is preferable to add nitrogen, air or steam as a diluent gas to the system from the viewpoint of catalyst life.

【0023】本発明における反応温度は300〜100
0℃でよい。より好ましくは400〜950℃である。
反応温度が300℃未満では二酸化炭素の十分な転化率
が得られず、また、1000℃を越える場合には触媒の
シンタリングによる活性の低下を起こしたりする。
The reaction temperature in the present invention is 300 to 100.
0 ° C is sufficient. More preferably, it is 400-950 degreeC.
If the reaction temperature is lower than 300 ° C., a sufficient conversion rate of carbon dioxide cannot be obtained, and if it exceeds 1000 ° C., the activity may decrease due to the sintering of the catalyst.

【0024】反応圧力については特に制限はなく常圧か
ら20気圧、好ましくは常圧から10気圧で反応を行う
のがよい。
The reaction pressure is not particularly limited, and the reaction may be carried out at atmospheric pressure to 20 atm, preferably atmospheric pressure to 10 atm.

【0025】触媒に対する原料供給速度は単位触媒体積
あたりの原料供給速度(SV)で規定することができ
る。本発明の方法において、SVは500〜10000
0/hである。SVが500/h未満では一酸化炭素の
生成速度が小さく、またSVが100000/hを越え
ると原料の転化率が低下し経済的でなくなることがあ
る。
The raw material supply rate to the catalyst can be defined by the raw material supply rate (SV) per unit catalyst volume. In the method of the present invention, the SV is 500 to 10,000.
It is 0 / h. If the SV is less than 500 / h, the carbon monoxide generation rate is low, and if the SV is more than 100,000 / h, the conversion rate of the raw material is lowered, which may be uneconomical.

【0026】反応方法は触媒と原料が効率的に接触でき
れば特に制限はなく、たとえば固定床、流動床、移動床
で反応を行うことができる。
The reaction method is not particularly limited as long as the catalyst and the raw materials can be efficiently contacted, and the reaction can be carried out in a fixed bed, a fluidized bed or a moving bed, for example.

【0027】[0027]

【実施例】以下に本発明を実施例を用いて説明するが、
本発明はこれらの実施例によって制限されるものではな
い。
EXAMPLES The present invention will be described below with reference to examples.
The invention is not limited by these examples.

【0028】実施例1 3mm径の球状γ型アルミナ(住友化学、KHA−2
4、比表面積172m2/g)10.2gを1000℃
で6時間加熱処理した。その酸化アルミニウム(比表面
積61m2 /g)20.0gを硝酸ランタン六水和物
4.65gをイオン交換水20ccに溶かした溶液に添
加し3時間浸漬した。その後60℃の湯浴上で蒸発乾固
したのち、800℃で2時間空気焼成し8重量%の酸化
ランタンを含む担体を得た。その担体7.0gを0.2
重量%塩化ルテニウム含有エタノール溶液8gに3時間
浸漬し、250mmHg/50℃で減圧乾燥した。その
後10%水素気流中で700℃、2時間還元を行い0.
1重量%ルテニウム触媒とした。
Example 1 Spherical γ-type alumina having a diameter of 3 mm (KHA-2, Sumitomo Chemical Co., Ltd.)
4, specific surface area 172m 2 / g) 10.2g at 1000 ℃
And heat treated for 6 hours. 20.0 g of the aluminum oxide (specific surface area 61 m 2 / g) was added to a solution of 4.65 g of lanthanum nitrate hexahydrate dissolved in 20 cc of ion-exchanged water and immersed for 3 hours. Then, after evaporating to dryness in a hot water bath at 60 ° C., air calcination was performed at 800 ° C. for 2 hours to obtain a carrier containing 8% by weight of lanthanum oxide. The carrier 7.0 g 0.2
It was dipped in 8 g of an ethanol solution containing a wt% ruthenium chloride for 3 hours and dried under reduced pressure at 250 mmHg / 50 ° C. After that, reduction was carried out at 700 ° C. for 2 hours in a 10% hydrogen flow, and then, to 0.
A 1 wt% ruthenium catalyst was used.

【0029】この触媒1.5gを内径16mmのSUS
310s反応管に充填し、反応温度を700℃に保ち、
ここに二酸化炭素:メタン:窒素のモル比が1:1:3
となる混合ガスを400cc/minで供給した(SV
=12000h-1)。なお、出口ガスの分折はガスクロ
マトグラフィーにより行い、一酸化炭素の収率、転化率
減少度は以下の計算式により算出した。結果を表1に示
す。
1.5 g of this catalyst was added to SUS having an inner diameter of 16 mm.
Fill the 310s reaction tube, keep the reaction temperature at 700 ℃,
Where the carbon dioxide: methane: nitrogen molar ratio is 1: 1: 3.
The mixed gas to be supplied was supplied at 400 cc / min (SV
= 12000h- 1 ). The outlet gas was fractionated by gas chromatography, and the yield of carbon monoxide and the degree of conversion reduction were calculated by the following formulas. The results are shown in Table 1.

【0030】CO収率(%)=出口COのモル数/(供
給CO2 のモル数+供給CH4 モル数)×100 転化率減少度(%)=20時間目の転化率―反応初期の
転化率 実施例2 実施例1で加熱処理した酸化アルミニウム(比表面積6
1m2 /g)23.1gを硝酸カルシウム四水和物8.
47gをイオン交換水23ccに溶かした溶液に添加し
3時間浸漬した。その後60℃の湯浴上で蒸発乾固した
のち800℃で2時間空気焼成し8重量%の酸化カルシ
ウムを含む担体を得た。実施例1と同様な操作により
0.1重量%ルテニウム触媒を得、その後実施例1と同
じ反応条件により反応させた。結果を表1に示す。
CO yield (%) = mol number of outlet CO / (mol number of fed CO 2 + mol number of fed CH 4 ) × 100 conversion degree reduction rate (%) = conversion rate after 20 hours-initial stage of reaction Conversion Example 2 Aluminum oxide heat-treated in Example 1 (specific surface area 6
1 m 2 / g) 23.1 g of calcium nitrate tetrahydrate 8.
47 g was added to a solution prepared by dissolving 23 cc of ion-exchanged water and immersed for 3 hours. After that, it was evaporated to dryness in a hot water bath at 60 ° C. and then air-baked at 800 ° C. for 2 hours to obtain a carrier containing 8% by weight of calcium oxide. The same operation as in Example 1 was carried out to obtain a 0.1 wt% ruthenium catalyst, and then the reaction was carried out under the same reaction conditions as in Example 1. The results are shown in Table 1.

【0031】実施例3 実施例1で加熱処理した酸化アルミニウム(比表面積6
1m2 /g)20.0gを硝酸カルシウム四水和物1
6.0gをイオン交換水23ccに溶かした溶液に添加
し3時間浸漬した。その後60℃の湯浴上で蒸発乾固し
たのち800℃で2時間空気焼成し16重量%の酸化カ
ルシウムを含む担体を得た。実施例1と国様な操作によ
り0.1重量%ルテニウム触媒を得、その後実施例1と
同じ反応条件により反応させた。結果を表1に示す。
Example 3 Aluminum oxide heat-treated in Example 1 (specific surface area 6
1 m 2 / g) 20.0 g of calcium nitrate tetrahydrate 1
6.0 g was added to a solution prepared by dissolving 23 cc of ion-exchanged water and immersed for 3 hours. After that, it was evaporated to dryness in a hot water bath at 60 ° C. and then air-baked at 800 ° C. for 2 hours to obtain a carrier containing 16% by weight of calcium oxide. A 0.1 wt% ruthenium catalyst was obtained by the same procedure as in Example 1, and then reacted under the same reaction conditions as in Example 1. The results are shown in Table 1.

【0032】実施例4 実施例1で加熱処理した酸化アルミニウム(比表面積6
1m2 /g)20.0gを硝酸ランタン六水和物2.9
gをイオン交換水23ccに溶かした溶液に添加し3時
間浸漬した。その後60℃の湯浴上で蒸発乾固したの
ち、800℃で2時間空気焼成し5重量%の酸化ランタ
ンを含む担体を得た。実施例1と同様な操作により0.
1重量%ルテニウム触媒を得、その後実施例1と同じ反
応条件により反応させた。結果を表1に示す。
Example 4 Aluminum oxide heat treated in Example 1 (specific surface area 6
1 m 2 / g) 20.0 g of lanthanum nitrate hexahydrate 2.9
g was added to a solution prepared by dissolving 23 cc of ion-exchanged water and immersed for 3 hours. Then, after evaporating to dryness in a hot water bath at 60 ° C., air calcination was performed at 800 ° C. for 2 hours to obtain a carrier containing 5% by weight of lanthanum oxide. By the same operation as in Example 1, 0.
A 1 wt% ruthenium catalyst was obtained and then reacted under the same reaction conditions as in Example 1. The results are shown in Table 1.

【0033】実施例5 実施例1で加熱処理した酸化アルミニウム(比表面積6
1m2 /g)20.0gを硝酸ランタン六水和物3.3
g、硝酸カルシウム四水和物8.9gをイオン交換水2
3ccに溶かした溶液に添加し3時間浸漬した。その後
60℃の湯浴上で蒸発乾固したのち、800℃で2時間
空気焼成し4.9重量%の酸化ランタン及び8.3重量
%の酸化カルシウムを含む担体を得た。実施例1と同様
な操作により0.1重量%ルテニウム触媒を得、その後
実施例1と同じ反応条件により反応させた。結果を表1
に示す。
Example 5 The aluminum oxide heat-treated in Example 1 (specific surface area 6
1 m 2 / g) 20.0 g of lanthanum nitrate hexahydrate 3.3
g, calcium nitrate tetrahydrate 8.9 g, ion-exchanged water 2
It was added to a solution dissolved in 3 cc and immersed for 3 hours. Then, after evaporating to dryness in a hot water bath at 60 ° C., it was air-baked at 800 ° C. for 2 hours to obtain a carrier containing 4.9 wt% lanthanum oxide and 8.3 wt% calcium oxide. The same operation as in Example 1 was carried out to obtain a 0.1% by weight ruthenium catalyst, and then the reaction was carried out under the same reaction conditions as in Example 1. The results are shown in Table 1.
Shown in.

【0034】実施例6 実施例1で加熱処理した酸化アルミニウム(比表面積6
1m2 /g)20.0gを硝酸ランタン六水和物8.0
g、硝酸カルシウム四水和物4.2gをイオン交換水2
3ccに溶かした溶液に添加し3時間浸漬した。その後
60℃の湯浴上で蒸発乾固したのち、800℃で2時間
空気焼成し12.5重量%の酸化ランタン及び4.2重
量%の酸化カルシウムを含む担体を得た。実施例1と同
様な燥作により0.1重量%ルテニウム触媒を得、その
後実施例1と同じ反応条件により反応させた。結果を表
1に示す。
Example 6 Aluminum oxide heat treated in Example 1 (specific surface area 6
1 m 2 / g) 20.0 g of lanthanum nitrate hexahydrate 8.0
g, calcium nitrate tetrahydrate 4.2 g, ion-exchanged water 2
It was added to a solution dissolved in 3 cc and immersed for 3 hours. Then, after evaporating to dryness in a water bath at 60 ° C., the mixture was air-baked at 800 ° C. for 2 hours to obtain a carrier containing 12.5 wt% lanthanum oxide and 4.2 wt% calcium oxide. A 0.1 wt% ruthenium catalyst was obtained by the same drying process as in Example 1, and then reacted under the same reaction conditions as in Example 1. The results are shown in Table 1.

【0035】比較例1 塩化ロジウム16.1mgを無水エタノール6ccに溶
解した溶液に3mm径の球状アルミナ(住友化学、表面
積172m2 /g)6.0を加え3時間浸漬した。減圧
乾燥の後700℃で2時間水素還元し0.1重量%ロジ
ウム触媒を調製した。
Comparative Example 1 To a solution of 16.1 mg of rhodium chloride dissolved in 6 cc of absolute ethanol was added spherical alumina having a diameter of 3 mm (Sumitomo Chemical Co., surface area 172 m 2 / g) 6.0, and the mixture was immersed for 3 hours. After drying under reduced pressure, hydrogen was reduced at 700 ° C. for 2 hours to prepare a 0.1 wt% rhodium catalyst.

【0036】この触媒1.5gを、実施例1と同様の反
応条件で反応させた。結果を表1に示す。
1.5 g of this catalyst was reacted under the same reaction conditions as in Example 1. The results are shown in Table 1.

【0037】比較例2 塩化ルテニウム12mgを無水エタノール5ccに溶解
した溶液に、3mm径の球状アルミナ(住友化学、表面
積172m2 /g)5.07gを加え3時間浸漬した。
比較例1と同様の活性化処理を行い0.1重量%ルテニ
ウム触媒を調製した後、実施例1と同様の反応操作で反
応を行った。結果を表1に示す。
Comparative Example 2 5.07 g of spherical alumina having a diameter of 3 mm (Sumitomo Chemical, surface area 172 m 2 / g) was added to a solution prepared by dissolving 12 mg of ruthenium chloride in 5 cc of absolute ethanol, and immersed for 3 hours.
The same activation treatment as in Comparative Example 1 was performed to prepare a 0.1% by weight ruthenium catalyst, and then the reaction was performed by the same reaction operation as in Example 1. The results are shown in Table 1.

【0038】比較例3 3mm径の球状アルミナ(住友化学、表面積172m2
/g)10.0gを、塩化ロジウム25.6mgを水1
0ccに溶かした溶液に3時間浸漬の後、60℃の湯浴
上で蒸発乾固し、引き続き700℃で2時間水素還元を
行い、重量比で0.1%ロジウムを含有した触媒を得
た。この触媒1.5gを使用し、実施例1と同様の反応
操作を行った。結果を表1に示す。
Comparative Example 3 Spherical alumina having a diameter of 3 mm (Sumitomo Chemical, surface area 172 m 2
/ G) 10.0 g, rhodium chloride 25.6 mg in water 1
After being immersed in a solution of 0 cc for 3 hours, the mixture was evaporated to dryness in a water bath at 60 ° C., and subsequently hydrogen reduced at 700 ° C. for 2 hours to obtain a catalyst containing 0.1% rhodium by weight. . Using 1.5 g of this catalyst, the same reaction operation as in Example 1 was performed. The results are shown in Table 1.

【0039】[0039]

【表1】 [Table 1]

【0040】実施例7 実施例1で得た担体10gを、塩化ルテニウム123g
をエタノール10ccに溶かした溶液に添加し、3時間
浸漬した。減圧乾燥の後700℃で2時間水素還元し
0.5重量%ルテニウム触媒を調製した。
Example 7 10 g of the carrier obtained in Example 1 was replaced with 123 g of ruthenium chloride.
Was added to a solution prepared by dissolving 10 cc of ethanol and immersed for 3 hours. After drying under reduced pressure, hydrogen reduction was performed at 700 ° C. for 2 hours to prepare a 0.5 wt% ruthenium catalyst.

【0041】この触媒1.5gを、実施例1と同様の反
応条件で反応させた。100時間反応を行い、転化率減
少度は表2のようになった。また反応開始後200時間
までの経時変化を図1に示す。
1.5 g of this catalyst was reacted under the same reaction conditions as in Example 1. After reacting for 100 hours, the degree of conversion reduction was as shown in Table 2. In addition, FIG. 1 shows the change with time up to 200 hours after the start of the reaction.

【0042】実施例8 実施例2で得た担体10gを、塩化ルテニウム123m
gをエタノール10ccに溶かした溶液に添加し、3時
間浸漬した。減圧乾燥の後700℃で2時間水素還元し
0.5重量%ルテニウム触媒を調製した。
Example 8 10 g of the carrier obtained in Example 2 was added to 123 m of ruthenium chloride.
g was added to a solution prepared by dissolving 10 cc of ethanol and immersed for 3 hours. After drying under reduced pressure, hydrogen reduction was performed at 700 ° C. for 2 hours to prepare a 0.5 wt% ruthenium catalyst.

【0043】この触媒1.5gを、実施例1と同様の反
応条件で反応させた。
1.5 g of this catalyst was reacted under the same reaction conditions as in Example 1.

【0044】100時間反応を行い、転化率減少度は表
2のようになった。
After reacting for 100 hours, the degree of conversion reduction is shown in Table 2.

【0045】比較例4 128mgの塩化ロジウムを用いて、比較例3と同様の
触媒調製により0.5重量%ロジウム触媒を得、その後
実施例1と同様の反応条件で反応させた。転化率減少度
を表2に示す。
Comparative Example 4 Using 128 mg of rhodium chloride, a 0.5 wt% rhodium catalyst was obtained by the same catalyst preparation as in Comparative Example 3, and then reacted under the same reaction conditions as in Example 1. Table 2 shows the degree of conversion reduction.

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【発明の効果】本発明のようにメタンを二酸化炭素の還
元剤として用い、且つ特定の触媒を使用することで、触
媒劣化を伴わず安定に合成ガスを製造することができ
る。
EFFECTS OF THE INVENTION By using methane as a reducing agent for carbon dioxide as in the present invention and using a specific catalyst, a synthesis gas can be stably produced without catalyst deterioration.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例7における反応でのCO2 、C
4 転化率、CO、H2 収率、反応管入口、出口の炭素
収支及びCO選択率の経時変化を示す図である。
FIG. 1 CO 2 , C in the reaction in Example 7 of the present invention
H 4 conversion is a diagram illustrating CO, H 2 yield, the reaction tube inlet, the time course of the carbon balance and CO selectivity outlet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 宗太郎 三重県鈴鹿市長太旭町6丁目19−18 (72)発明者 岡田 久則 三重県四日市市別名6丁目8−20 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sotaro Nakamura 6-chome, 18th, Asahi-cho, Suzuka City, Mie Prefecture 19-18 (72) Inori Inori Hisada Okada, 6-8-20, Yokkaichi-shi, Mie Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二酸化炭素及びメタンを含有するガスを
触媒に接触させ一酸化炭素と水素を製造するにあたり、
触媒として、耐熱性酸化物に酸化カルシウム、酸化ラン
タンのうち少なくとも1つ以上の酸化物を担持した担体
に、さらにルテニウム化合物を担持させてなる触媒を用
いることを特徴とする合成ガスの製造方法。
1. In producing carbon monoxide and hydrogen by bringing a gas containing carbon dioxide and methane into contact with a catalyst,
A method for producing a synthesis gas, which comprises using as a catalyst a catalyst in which a ruthenium compound is further supported on a carrier in which at least one oxide of calcium oxide and lanthanum oxide is supported on a heat-resistant oxide.
【請求項2】 耐熱性酸化物がγ型酸化アルミニウムで
あることを特徴とする請求項1に記載の合成ガスの製造
方法。
2. The method for producing synthesis gas according to claim 1, wherein the refractory oxide is γ-type aluminum oxide.
JP06527693A 1993-03-24 1993-03-24 Synthesis gas production method Expired - Fee Related JP3413235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06527693A JP3413235B2 (en) 1993-03-24 1993-03-24 Synthesis gas production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06527693A JP3413235B2 (en) 1993-03-24 1993-03-24 Synthesis gas production method

Publications (2)

Publication Number Publication Date
JPH06279004A true JPH06279004A (en) 1994-10-04
JP3413235B2 JP3413235B2 (en) 2003-06-03

Family

ID=13282245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06527693A Expired - Fee Related JP3413235B2 (en) 1993-03-24 1993-03-24 Synthesis gas production method

Country Status (1)

Country Link
JP (1) JP3413235B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507389A (en) * 2004-07-09 2008-03-13 ズードケミー インコーポレイテッド Promoted calcium-aluminate supported catalysts for synthesis gas generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008507389A (en) * 2004-07-09 2008-03-13 ズードケミー インコーポレイテッド Promoted calcium-aluminate supported catalysts for synthesis gas generation

Also Published As

Publication number Publication date
JP3413235B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
WO1998046525A1 (en) Process for preparing synthesis gas by autothermal reforming
CN1541139A (en) Processfor activation of catalyst comprising cobalt compound and support
UA77384C2 (en) Catalyst and process for producing vinyl acetate
WO1998046523A1 (en) Catalyst for preparation of synthesis gas and process for preparing carbon monoxide
KR20060132818A (en) Process for the manufacture of methylmercaptan
JPH08231204A (en) Production of hydrogen and carbon monoxide by carbon dioxide performing reaction
JPH04305541A (en) Method of manufacturing chloroform from carbon tetrachloride and catalyst composition used therefor
JP3638358B2 (en) Carbon dioxide reforming catalyst and reforming method using the same
JP2685130B2 (en) Ethanol production method
JPH05221602A (en) Production of synthesis gas
JP3413235B2 (en) Synthesis gas production method
JP3413234B2 (en) Synthesis gas production method
JPS6113689B2 (en)
JPH09221437A (en) Production of ethanol
JPH06279012A (en) Production of carbon monoxide
JP3095497B2 (en) How to convert carbon dioxide with ethane
JP2002255941A (en) Method for producing imidazole compound
JPH0635401B2 (en) Method for producing methanol from carbon dioxide
JP4488321B2 (en) Synthesis gas production catalyst and synthesis gas production method
JPH05995A (en) Production of acetic acid
JPH05170404A (en) Method for converting carbon dioxide by methane
JP3089677B2 (en) How to reduce carbon dioxide with propane
KR870000522B1 (en) Contisuous process preparing indole
JP2000080053A (en) Production of cyloalkyldimethanol
JP7332871B2 (en) Methanol production method and methanol production catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees