JPH06277434A - Separation of oxygen gas - Google Patents

Separation of oxygen gas

Info

Publication number
JPH06277434A
JPH06277434A JP5092559A JP9255993A JPH06277434A JP H06277434 A JPH06277434 A JP H06277434A JP 5092559 A JP5092559 A JP 5092559A JP 9255993 A JP9255993 A JP 9255993A JP H06277434 A JPH06277434 A JP H06277434A
Authority
JP
Japan
Prior art keywords
adsorption
adsorption tower
oxygen gas
gas
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5092559A
Other languages
Japanese (ja)
Inventor
Eiji Hayata
英司 早田
Tsutomu Takahashi
勉 高橋
Chiaki Marumo
千郷 丸茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP5092559A priority Critical patent/JPH06277434A/en
Publication of JPH06277434A publication Critical patent/JPH06277434A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To enable oxygen gas to be separated efficiently by performing four steps such as adsorption, exhaust, recovery, and adsorption of cleaned exhaust gas on one hand, and four steps such as adsorption, exhaust, cleaning and recovery on the other hand sequentially and repeatedly, in a dual adsorption tower filled with a molecular sieve carbon. CONSTITUTION:Two adsorption towers 3, 3a with an inner volume ratio of 1:1 to 3:1 are filled with molecular sieve carbon to perform a pressure swing adsorption method. In this case, four steps such as adsorption, exhaust, recovery and the adsorption of cleaned exhaust gas are performed as a series of operations at an adsorption tower 3 of the primary side, and four steps such as adsorption, exhaust, cleaning and recovery likewise as a series of operations at an adsorption tower 3a. These operations are repeated in a sequential interlocked fashion. The gas discharged from the adsorption tower 3a which is in a cleaning process is introduced from one end of the adsorption tower 3 which is through with a recovery process and is allowed to be adsorbed into the adsorption tower. Thus it is possible to obtain oxygen gas of high concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分子ふるい炭素の選択
的吸着特性を利用して、空気中の酸素ガスを分離する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for separating oxygen gas in air by utilizing the selective adsorption property of molecular sieving carbon.

【0002】[0002]

【従来の技術】近年、空気中の酸素ガスを分離する技術
として圧力スイング吸着法(以下PSA法と略す)が開
発され実用化が進展しつつある。このPSA法によるガ
スの分離法は、吸着剤の選択的吸着特性を利用してガス
を分離するものであり、深冷分離法に比較して装置が小
型となり、操作が簡便で、オンサイトで連続無人運転が
可能であるなどの特徴がある。
2. Description of the Related Art In recent years, a pressure swing adsorption method (hereinafter abbreviated as PSA method) has been developed and put into practical use as a technology for separating oxygen gas in air. This gas separation method using the PSA method separates gas by utilizing the selective adsorption property of the adsorbent, and the apparatus is smaller in size than the cryogenic separation method, and the operation is simple and on-site. It has features such as continuous unmanned operation.

【0003】従来、PSA法で空気中の酸素ガスを分離
する場合は、吸着剤としてゼオライトを使用し、加圧下
で窒素ガスを吸着除去して、非吸着成分の酸素ガスを製
品ガスとして分離する方法が採用されてきたが、ゼオラ
イトは親水性材料で、水の吸着力が強く、水を吸着する
と著しく性能が劣化するため、PSA操作に先立って、
あらかじめ原料ガス中の水分を十分除去しておかなけれ
ばならず、設備が煩雑になり、メンテナンス上も細かい
留意が必要であるなどの欠点を有している。
Conventionally, when the oxygen gas in the air is separated by the PSA method, zeolite is used as an adsorbent, nitrogen gas is adsorbed and removed under pressure, and oxygen gas which is a non-adsorbed component is separated as a product gas. Although a method has been adopted, since zeolite is a hydrophilic material and has a strong water adsorption power, and the performance is significantly deteriorated when water is adsorbed, prior to PSA operation,
It has drawbacks such that the water content in the raw material gas must be sufficiently removed in advance, the equipment becomes complicated, and careful attention is required in maintenance.

【0004】また、通常酸素製造に用いられる5A型や13
X 型ゼオライトでは、窒素が吸着成分となり、酸素とア
ルゴンが非吸着成分となるので、酸素とアルゴンの分離
が原理的に不可能である。そのため、空気中の酸素を濃
縮する酸素発生装置においては、原料空気中に含まれる
約0.93%のアルゴンが酸素と共に濃縮され、酸素濃度を
最高でも約95%までしか高めることができず、その用途
が限定されているのが現状である。このため、高濃度の
酸素ガスを得る場合には、あらたにアルゴン除去のため
の装置が必要となり酸素ガス精製コストも高くなる。
In addition, 5A type and 13 which are usually used for oxygen production
In X-type zeolite, nitrogen is an adsorbing component and oxygen and argon are non-adsorbing components, so that separation of oxygen and argon is theoretically impossible. Therefore, in an oxygen generator that concentrates oxygen in the air, about 0.93% of the argon contained in the raw material air is concentrated together with oxygen, and the oxygen concentration can be increased only up to about 95%. Is currently limited. For this reason, in the case of obtaining a high concentration oxygen gas, a device for removing argon is newly required, and the oxygen gas refining cost becomes high.

【0005】一方、分子ふるい炭素は、非極性の疎水性
材料であり、水分による極端な性能劣化がないこと、及
び、酸素が吸着成分となり、窒素とアルゴンが非吸着成
分となるため、酸素,窒素,アルゴンを含む原料空気よ
り、酸素のみを高濃度で取り出すことが原理的に可能に
なることなどの点で、酸素濃縮に適した材料であると考
えられる。
On the other hand, molecular sieving carbon is a non-polar hydrophobic material and does not undergo extreme performance deterioration due to moisture, and oxygen is an adsorbing component and nitrogen and argon are non-adsorbing components. It is considered to be a material suitable for oxygen enrichment because it is possible in principle to extract only oxygen in high concentration from the feed air containing nitrogen and argon.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、上記観
点より、鋭意研究の結果、新しい酸素ガスの分離方法と
して本発明を完成させたものである。本発明の目的は、
空気中の酸素ガスを高濃度で簡便かつ安価に分離するこ
とにある。
The present inventors have completed the present invention as a new method for separating oxygen gas as a result of intensive research from the above viewpoint. The purpose of the present invention is to
It is to separate oxygen gas in the air at a high concentration easily and inexpensively.

【0007】[0007]

【課題を解決するための手段】本発明の上記目的及び利
点は、内容積比が1:1〜3:1である2本の吸着塔
A,Bに分子ふるい炭素を充填し、加圧原料空気を供給
し、各々の吸着塔で順次加圧・減圧を繰返し、吸着成分
である酸素ガスを回収する圧力スイング吸着法におい
て、1次側の吸着塔Aでは 1)吸着塔に原料空気を供給して昇圧し、更に加圧状態
に保ちつつ原料空気の供給を継続し、酸素ガスを吸着す
る吸着工程 2)吸着工程終了後の吸着塔内の非吸着成分を排出し、
降圧する排気工程 3)排気工程終了後の吸着塔を減圧し、吸着している酸
素ガスを回収し、2次側の吸着塔Bに送り込む回収工程 4)回収工程終了後の吸着塔Aを洗浄工程中の2次側の
吸着塔Bと連結し、酸素ガスを吸着する洗浄排出ガス吸
着工程 の4工程より成る一連の操作を、2次側の吸着塔Bでは 1)1次側の吸着塔Aの回収ガスを供給して昇圧し、更
に加圧状態に保ちつつ回収ガスの供給を継続し、酸素ガ
スを吸着する吸着工程 2)吸着工程終了後の吸着塔内の非吸着成分を排出する
排気工程 3)排気工程終了後の吸着塔Bに製品酸素ガスの一部を
導入して洗浄する洗浄工程 4)洗浄工程終了後の吸着塔を減圧し、吸着している酸
素ガスを回収する回収工程 の4工程より成る一連の操作を互いに連動して順次連続
的に繰り返し、酸素ガスを継続して取り出すことを特徴
とする酸素ガスの分離方法により達成することができ
る。
The above objects and advantages of the present invention are obtained by filling two adsorption towers A and B having an internal volume ratio of 1: 1 to 3: 1 with molecular sieving carbon to obtain a pressurized raw material. In the pressure swing adsorption method in which air is supplied and pressure and decompression are sequentially repeated in each adsorption tower to recover oxygen gas as an adsorbed component, in the adsorption tower A on the primary side 1) Supply raw material air to the adsorption tower Adsorbing step for adsorbing oxygen gas by continuing to supply the raw material air while maintaining the pressurization state, and further discharging the non-adsorbed components in the adsorption tower after the adsorption step,
Exhaust process for reducing pressure 3) Recovery process after decompressing the adsorption tower after the exhaust process to collect adsorbed oxygen gas and send it to the adsorption tower B on the secondary side 4) Washing adsorption tower A after completion of the recovery process In the process, the secondary side adsorption tower B is connected to the secondary side adsorption tower B, and a series of four steps of cleaning exhaust gas adsorption step for adsorbing oxygen gas is performed. Adsorption step of supplying the recovered gas of A to increase the pressure and continuing supply of the recovered gas while maintaining the pressurized state, and adsorbing oxygen gas 2) Discharging non-adsorbed components in the adsorption tower after the adsorption step is completed Exhaust process 3) Cleaning process in which a part of the product oxygen gas is introduced into the adsorption tower B after completion of the exhaust process for cleaning 4) Decompression of the adsorption tower after completion of the cleaning process and recovery of adsorbed oxygen gas A series of operations consisting of 4 steps are sequentially and continuously repeated in conjunction with each other. It is taken to continue the oxygen gas can be accomplished by a method of separating oxygen gas, wherein.

【0008】本発明に用いる分子ふるい炭素は、石炭,
ヤシ殻炭あるいは種々の合成高分子材料などより製造す
ることができる。そして、これらの製造法は、例えば、
特公昭49−37036 号公報,特公昭52−1867号公報,特公
昭52−47758 号公報,特開昭59−45914 号公報,特開昭
61−6108号公報,特開昭62−59510 号公報などに開示さ
れている。
The molecular sieving carbon used in the present invention is coal,
It can be produced from coconut shell charcoal or various synthetic polymer materials. And these manufacturing methods, for example,
JP-B-49-37036, JP-B-52-1867, JP-B-52-47758, JP-A-59-45914, JP-A-SHO
It is disclosed in, for example, JP 61-6108 A, JP 62-59510 A, and the like.

【0009】本発明の酸素ガスの分離法に適用される分
子ふるい炭素は、公知の分子ふるい炭素より適宜選択す
れば良いが、特に特願昭63−57175 号に記載したフェノ
ール樹脂微粉末、熱硬化性樹脂溶液及び高分子バインダ
ーを主原料として製造した分子ふるい炭素を充填剤とし
て用いた場合、一層好ましい結果が得られる。この、特
願昭63−57175 号に記載の分子ふるい炭素は、 (A)粒径0.8 〜120 μmの多数の球状炭素粒子が三次
元的に不規則に重なり、かつ合体された構造を有し、 (B)該多数の炭素粒子間には、三次元的に不規則に走
る連続通路が存在し (C)該多数の炭素粒子のおのおのは、該粒子の間の通
路に連通する多数の細孔を有し、そして、 (D)少なくとも、85重量%の炭素含有率を有すること
を特徴とする分子ふるい炭素であり、その製造法は、 (イ)熱硬化性フェノール樹脂微粉末 (ロ)熱硬化性樹脂の溶液 ここで、熱硬化性樹脂はフェノール樹脂または、メラミ
ン樹脂である。及び、 (ハ)高分子バインダー ここで、該高分子バインダーは、ポリビニルアルコー
ル、及び水溶性または水膨潤性セルロース誘導体から選
ばれる。 から構成され、かつ該熱硬化性フェノール樹脂微粉末
(イ)100 重量部当たり、該熱硬化性樹脂の溶液(ロ)
5 〜50重量部(固形分として)および高分子バインダー
(ハ)1 〜30重量部である均一混合物を準備し、この均
一混合物を粒状物に成形し、そして、この粒状物を非酸
化性雰囲気下、500 〜1100℃の範囲の温度で加熱処理し
て炭化した粒状物を生成することを特徴とするものであ
る。
The molecular sieving carbon applied to the method for separating oxygen gas of the present invention may be appropriately selected from known molecular sieving carbons. Particularly, the phenol resin fine powder described in Japanese Patent Application No. 63-57175, thermal More preferable results are obtained when the molecular sieving carbon produced by using the curable resin solution and the polymer binder as the main raw material is used as the filler. The molecular sieving carbon described in Japanese Patent Application No. 63-57175 has (A) a structure in which a large number of spherical carbon particles having a particle size of 0.8 to 120 μm are three-dimensionally irregularly overlapped and united. (B) There are continuous passages that run irregularly in three dimensions between the plurality of carbon particles. (C) Each of the plurality of carbon particles has a plurality of fine passages that communicate with the passages between the particles. A molecular sieving carbon having pores, and (D) having a carbon content of at least 85% by weight, the production method of which is: (a) thermosetting phenolic resin fine powder (b) Thermosetting Resin Solution Here, the thermosetting resin is a phenol resin or a melamine resin. And (c) Polymer binder The polymer binder is selected from polyvinyl alcohol and water-soluble or water-swellable cellulose derivatives. And a solution of the thermosetting resin (b) per 100 parts by weight of the thermosetting phenol resin fine powder (a).
Prepare a uniform mixture of 5 to 50 parts by weight (as solids) and 1 to 30 parts by weight of the polymeric binder (c), form the homogeneous mixture into granules, and add the granules to a non-oxidizing atmosphere. It is characterized in that it is heat-treated at a temperature in the range of 500 to 1100 ° C. to produce carbonized particles.

【0010】本発明に用いる分子ふるい炭素は、好まし
くはミクロ孔の細孔直径および細孔容積は、後述するモ
レキュラープローブ法による測定の結果にり、細孔直径
分布は、3 〜5 Åの範囲にもっとも多く分布しており5
Å以上の直径を有する細孔の割合は、15%以下であり、
より好ましくは10%以下、もっとも好ましくは 5%以下
である。また細孔容積は、好ましくは分子ふるい炭素1
g当たり0.05〜4.0cc であり、より好ましくは0.08〜0.
3cc である。
The molecular sieving carbon used in the present invention preferably has a pore diameter and a pore volume of micropores as a result of measurement by a molecular probe method described later, and a pore diameter distribution of 3 to 5Å. Most distributed in
The proportion of pores having a diameter of Å or more is 15% or less,
It is more preferably 10% or less, and most preferably 5% or less. Also, the pore volume is preferably 1 molecular sieve carbon.
It is 0.05 to 4.0 cc per g, and more preferably 0.08 to 0.
It is 3cc.

【0011】また、本発明に用いる分子ふるい炭素は、
組成上の特徴として、通常少なくとも85重量%の炭素含
有率を有し、好ましくは少なくとも90重量%の炭素含有
率を有す。分子ふるい炭素の比表面積は、N2 吸着によ
るB.E.T.法により測定した値として通常5 〜600cm2/g、
好ましくは10〜400cm2/g、更に好ましくは20〜350cm2/g
程度である。この分子ふるい炭素は、例えば直径0.5 〜
5mm ,長さ1 〜10mm程度の円柱状の形態で提供される。
本発明に用いる分子ふるい炭素を吸着塔に充填した場合
の充填密度は通常0.5〜0.8g/cm3、好ましくは0.6 〜0.7
5g/cm3 である。
The molecular sieving carbon used in the present invention is
As a compositional characteristic, they usually have a carbon content of at least 85% by weight, preferably at least 90% by weight. The specific surface area of molecular sieving carbon is usually 5 to 600 cm 2 / g as a value measured by the BET method by N 2 adsorption,
Preferably 10 to 400 cm 2 / g, more preferably 20 to 350 cm 2 / g
It is a degree. This molecular sieving carbon has a diameter of 0.5-
It is provided in the form of a cylinder with a length of 5 mm and a length of 1 to 10 mm.
The packing density when the molecular sieving carbon used in the present invention is packed in an adsorption tower is usually 0.5 to 0.8 g / cm 3 , preferably 0.6 to 0.7.
It is 5 g / cm 3 .

【0012】本発明の酸素ガスの分離に用いる装置は、
分子ふるい炭素を充填した2塔の吸着塔、ブロワ−、コ
ンプレッサ−などの原料ガスを吸着塔に送り込む加圧供
給装置、吸着された酸素ガスを脱着・回収する真空ポン
プ、酸素を貯留するサ−ジタンクおよびこれらの構成要
素を連結する配管およびガスの流れを制御するための自
動弁とその制御系などから構成されており、必要に応じ
て原料空気の除湿器、流量調節計およびガス濃度分析計
などを取り付けても良い。
The apparatus used for separating oxygen gas according to the present invention is
Two adsorption towers filled with molecular sieving carbon, a pressure supply device for sending raw material gas to the adsorption tower such as a blower and a compressor, a vacuum pump for desorbing / recovering adsorbed oxygen gas, and a server for storing oxygen. It is composed of a ditank, piping connecting these components, an automatic valve for controlling the gas flow and its control system, etc., and if necessary, a dehumidifier for the raw air, a flow controller and a gas concentration analyzer. Etc. may be attached.

【0013】本発明の吸着塔Aの吸着工程とは、分子ふ
るい炭素を充填した吸着塔の一端から、原料加圧空気を
供給して昇圧し、更に、吸着塔の他端より非吸着ガスを
排出しながら吸着塔内を一定の加圧状態に保ちつつ、原
料の供給を継続し、酸素ガスを吸着する工程である。こ
の吸着工程における吸着塔内の圧力は、通常0.1 〜9.9
kgf/cm2 ・ G である。
The adsorption step of the adsorption tower A according to the present invention means that the raw material pressurized air is supplied from one end of the adsorption tower filled with molecular sieving carbon to increase the pressure, and the non-adsorption gas is supplied from the other end of the adsorption tower. It is a step of continuing to supply the raw material and adsorbing oxygen gas while maintaining a constant pressure inside the adsorption tower while discharging. The pressure in the adsorption tower in this adsorption step is usually 0.1 to 9.9.
It is kgf / cm2 · G.

【0014】吸着剤の吸着容量は、吸着圧力が高いほど
大きくなるが、一方、吸着圧が高いほど、装置の動力原
単位も上昇するため、通常上記範囲で操作するとよい。
この圧力範囲は、好ましくは0.5 〜7.0 kgf/cm2 ・G 、
最も好ましくは、1.0 〜5.0kgf/cm2 ・G である。
Although the adsorption capacity of the adsorbent increases as the adsorption pressure increases, on the other hand, the higher the adsorption pressure, the higher the unit power consumption of the apparatus increases. Therefore, it is usually preferable to operate within the above range.
This pressure range is preferably 0.5-7.0 kgf / cm 2 G,
Most preferably, it is 1.0 to 5.0 kgf / cm 2 · G.

【0015】吸着工程を継続すると、分子ふるい炭素へ
の酸素ガスの吸着量が、次第に増加し、吸着塔の他端の
出口より排出される非吸着ガス中の酸素濃度が次第に増
加する。吸着工程の所要時間は、吸着剤の吸着容量,吸
着塔内圧力,所望の製品ガスの純度などを考慮して設定
されるが、通常20〜240 秒,好ましくは40〜210 秒,最
も好ましくは60〜180 秒である。
When the adsorption step is continued, the amount of oxygen gas adsorbed on the molecular sieving carbon gradually increases, and the oxygen concentration in the non-adsorbed gas discharged from the outlet of the other end of the adsorption tower gradually increases. The time required for the adsorption step is set in consideration of the adsorption capacity of the adsorbent, the pressure in the adsorption tower, the purity of the desired product gas, etc., but is usually 20 to 240 seconds, preferably 40 to 210 seconds, and most preferably 60 to 180 seconds.

【0016】本発明の吸着塔Aの排気工程とは、吸着工
程の終了した吸着塔内に残存する非吸着成分を排出する
工程である。この排気工程は吸着塔を大気開放すること
により行なう。排気工程の所要時間は、短すぎると非吸
着成分の排出が不十分であり、長すぎると酸素ガスまで
排出されてしまうため通常1〜30秒、好ましくは2〜
25秒、もっとも好ましくは3〜20秒である。
The exhaust step of the adsorption tower A of the present invention is a step of discharging the non-adsorbed components remaining in the adsorption tower after the adsorption step. This evacuation step is performed by exposing the adsorption tower to the atmosphere. If the time required for the exhaust step is too short, the non-adsorbed components are insufficiently discharged, and if the time is too long, oxygen gas is also discharged, so that it is usually 1 to 30 seconds, preferably 2 to
25 seconds, most preferably 3 to 20 seconds.

【0017】本発明の吸着塔Aの回収工程とは排気工程
終了後の吸着塔A内を真空ポンプ等で減圧し分子ふるい
炭素に吸着している酸素ガスを脱着させ、2次側の吸着
塔Bに送り込む工程である。この工程における吸着塔内
の減圧度は、通常200torr以下、好ましくは10
0torr以下、更に好ましくは50torr以下であ
る。また、回収工程の所要時間は、通常10〜240 秒、好
ましくは20〜210 秒、更に好ましくは30〜180 秒であ
る。
The recovery step of the adsorption tower A of the present invention means to desorb the oxygen gas adsorbed on the molecular sieving carbon by depressurizing the inside of the adsorption tower A after the exhaust step with a vacuum pump or the like to make the adsorption tower on the secondary side. It is a process of sending to B. The degree of pressure reduction in the adsorption tower in this step is usually 200 torr or less, preferably 10 torr.
It is 0 torr or less, more preferably 50 torr or less. The time required for the recovery step is usually 10 to 240 seconds, preferably 20 to 210 seconds, more preferably 30 to 180 seconds.

【0018】本発明の洗浄排出ガス吸着工程とは、回収
工程終了後の吸着塔Aの一端から、洗浄工程にある吸着
塔Bから排出されるガスを導入し吸着させる工程であ
る。吸着塔Bの洗浄工程では、製品酸素ガスを使用して
洗浄を行うので、ここで排出されるガスの酸素濃度は原
料空気より高くなっている。そこで、この排出ガスを回
収工程終了後の吸着塔Aへ導入し、分子ふるい炭素へ吸
着させることにより、洗浄工程で排出される酸素ガスを
回収でき、また空気を供給した場合よりも酸素ガスの吸
着量が大きくなるため、高濃度の酸素ガスを回収するこ
とができる。
The cleaning exhaust gas adsorption step of the present invention is a step in which the gas exhausted from the adsorption tower B in the cleaning step is introduced and adsorbed from one end of the adsorption tower A after the recovery step. Since the product oxygen gas is used for cleaning in the cleaning step of the adsorption tower B, the oxygen concentration of the gas discharged here is higher than that of the raw material air. Therefore, by introducing this exhaust gas into the adsorption tower A after the completion of the recovery step and adsorbing it to the molecular sieving carbon, the oxygen gas exhausted in the cleaning step can be recovered, and the oxygen gas Since the amount of adsorption becomes large, it is possible to recover high-concentration oxygen gas.

【0019】この洗浄排出ガス吸着工程の所要時間は、
通常、吸着工程の所要時間に対して25〜150%好ましくは
40〜125%、最も好ましくは60〜100%である。
The time required for this cleaning exhaust gas adsorption step is
Usually, 25 to 150% of the time required for the adsorption step, preferably
40-125%, most preferably 60-100%.

【0020】本発明の吸着塔Bの吸着工程とは、1次側
の吸着塔Aの回収工程で回収された回収ガスを吸着塔B
に供給して昇圧し、更に加圧状態に保ちつつ回収ガスの
供給を継続し、酸素ガスを吸着する工程である。吸着塔
Bの吸着工程の所要時間は、吸着塔Aの回収工程と同じ
長さに設定される。またこの吸着塔Bの吸着圧力は、吸
着塔Aと吸着塔Bの比率および吸着塔Aの回収工程にお
ける減圧度によって決定される。吸着塔Aと吸着塔Bの
内容積比が吸着塔A:吸着塔B=1:1〜3:1よりも
小さい場合には吸着塔Bの吸着工程時の圧力が十分に上
昇せず、また大きい場合には吸着塔Bの圧力が上昇しす
ぎるために、次の排気工程で酸素ガスが多量に排気され
てしまうため、酸素ガスの回収率が低下し適当ではな
い。
The adsorption step of the adsorption tower B of the present invention means that the recovered gas recovered in the recovery step of the adsorption tower A on the primary side is adsorbed in the adsorption tower B.
Is a step of adsorbing oxygen gas while continuing to supply the recovered gas while maintaining the pressurized state. The time required for the adsorption process of the adsorption tower B is set to the same length as the recovery process of the adsorption tower A. The adsorption pressure of the adsorption tower B is determined by the ratio between the adsorption tower A and the adsorption tower B and the degree of pressure reduction in the adsorption tower A recovery process. When the internal volume ratio of the adsorption tower A and the adsorption tower B is smaller than the adsorption tower A: adsorption tower B = 1: 1 to 3: 1, the pressure in the adsorption step of the adsorption tower B does not rise sufficiently, and When it is large, the pressure of the adsorption tower B rises too much, and a large amount of oxygen gas is exhausted in the next exhaust step, and the recovery rate of oxygen gas decreases, which is not suitable.

【0021】本発明の吸着塔Bの排気工程とは、吸着工
程の終了した吸着塔内に残存する非吸着成分を排出する
工程である。この排気工程は吸着塔を大気開放すること
により行なう。排気工程の所要時間は、短すぎると非吸
着成分の排出が不十分であり、長すぎると酸素ガスまで
排出されてしまうため通常1〜30秒、好ましくは2〜
25秒、もっとも好ましくは3〜20秒である。
The exhaust step of the adsorption tower B of the present invention is a step of discharging the non-adsorbed components remaining in the adsorption tower after the adsorption step. This evacuation step is performed by exposing the adsorption tower to the atmosphere. If the time required for the exhaust step is too short, the non-adsorbed components are insufficiently discharged, and if the time is too long, oxygen gas is also discharged, so that it is usually 1 to 30 seconds, preferably 2 to
25 seconds, most preferably 3 to 20 seconds.

【0022】本発明の洗浄工程とは、吸着工程終了後の
吸着塔の一端から製品酸素ガスの一部を供給し、他端か
ら排出させる工程である。この工程では、吸着塔内に滞
留している酸素濃度の低い混合ガスを塔内より排出し、
また吸着塔内の酸素分圧を高めて、分子ふるい炭素にわ
ずかに吸着している窒素ガスを脱着,排出させて、回収
工程での製品酸素ガスの濃度を向上させることができ
る。洗浄ガスの供給圧力は、通常大気圧以上製品ガス取
り出し圧力以下であり、好ましくは0.3〜7.0kg
f/cm2 ・G、更に好ましくは0.5〜5.0kgf
/cm2 ・Gである。また、洗浄ガスの供給量は、その
増加にともない製品ガス濃度も上昇するが、余り多量に
なると製品ガス収率の低下をきたすので、通常サ−ジタ
ンクからの製品ガス取出量に対し10〜150vol
%,好ましくは30〜120%,更に好ましくは、40
〜100vol%である。
The cleaning step of the present invention is a step in which a part of the product oxygen gas is supplied from one end of the adsorption tower after the end of the adsorption step and discharged from the other end. In this step, the mixed gas with a low oxygen concentration remaining in the adsorption tower is discharged from the inside of the tower,
Further, the oxygen partial pressure in the adsorption tower can be increased to desorb and discharge the nitrogen gas slightly adsorbed on the molecular sieving carbon to improve the concentration of the product oxygen gas in the recovery step. The supply pressure of the cleaning gas is usually not less than the atmospheric pressure and not more than the product gas extraction pressure, preferably 0.3 to 7.0 kg.
f / cm 2 · G, more preferably 0.5 to 5.0 kgf
/ Cm 2 · G. In addition, the supply amount of the cleaning gas increases with the increase in the product gas concentration, but if the amount is too large, the yield of the product gas decreases, so the amount of the product gas taken out from the surge tank is usually 10 to 150 vol.
%, Preferably 30 to 120%, more preferably 40
Is about 100 vol%.

【0023】本発明の回収工程とは、洗浄工程終了後の
吸着塔内を真空ポンプで減圧し、分子ふるい炭素に吸着
している酸素ガスを脱着させ、サージタンクに回収する
工程である。この工程における吸着塔内の減圧度は、通
常200torr 以下、好ましくは100torr 以下、更に好まし
くは50torr以下である。また、回収工程の所要時間は、
通常20〜240 秒、好ましくは40〜210 秒、更に好ましく
は60〜180 秒である。
The recovery step of the present invention is a step of decompressing the inside of the adsorption tower after the cleaning step with a vacuum pump to desorb the oxygen gas adsorbed on the molecular sieving carbon and recovering it in the surge tank. The degree of pressure reduction in the adsorption tower in this step is usually 200 torr or less, preferably 100 torr or less, and more preferably 50 torr or less. Also, the time required for the recovery process is
It is usually 20 to 240 seconds, preferably 40 to 210 seconds, more preferably 60 to 180 seconds.

【0024】本発明においては、上記分子ふるい炭素を
充填した2塔の吸着塔より成るPSA装置において吸着
塔Aでは1)吸着工程 2)排気工程 3)回収工程
4)洗浄排ガス吸着工程の4工程より成る一連の操作を
吸着塔Bでは、1)吸着工程2)排気工程 3)洗浄工
程 4)回収工程 の4工程より成る一連の操作を互い
に連動して順次連続的に繰り返し実施することにより酸
素ガスの分離を効率的に行なうことができる。
In the present invention, in the PSA apparatus comprising the two adsorption towers filled with the above-mentioned molecular sieving carbon, the adsorption tower A has 1) adsorption step 2) exhaust step 3) recovery step
4) A series of operations consisting of four steps of the cleaning exhaust gas adsorption step is sequentially performed in the adsorption tower B by interlocking a series of operations consisting of four steps of 1) adsorption step 2) exhaust step 3) cleaning step 4) recovery step. Oxygen gas can be efficiently separated by continuously and repeatedly performing.

【0025】また本発明においては、各工程時間の適切
な組み合わせや、原料空気供給量,製品取出量,洗浄ガ
ス供給量の設定により、製品酸素濃度を20% 台〜90% 台
まで任意に選ぶことができる。
In the present invention, the product oxygen concentration is arbitrarily selected from the 20% to 90% range by appropriately setting the process time and setting the feed air supply amount, the product extraction amount, and the cleaning gas supply amount. be able to.

【0026】以下、図1に示す2塔式PSA装置を使用
した場合について具体的に説明する。図1において、吸
着塔3,3aには、それぞれ分子ふるい炭素が充填されてい
る。吸着塔3の吸着工程では、弁8、12、13を開状
態にし、空気圧縮機1により加圧された空気を除湿器2
を通した後、弁8、パイプ21を通して吸着塔3に供給
する。そして所定の加圧状態に保ちつつ、原料空気の供
給を継続し、空気中の酸素ガスを吸着させる。この間主
に窒素ガスより成るガスがパイプ23、弁12、パイプ
24、弁13、絞り弁16を通して排出される。
Hereinafter, the case of using the two-column PSA apparatus shown in FIG. 1 will be specifically described. In FIG. 1, each of the adsorption towers 3 and 3a is filled with molecular sieving carbon. In the adsorption step of the adsorption tower 3, the valves 8, 12, 13 are opened, and the air pressurized by the air compressor 1 is dehumidified by the dehumidifier 2
Then, the gas is supplied to the adsorption tower 3 through the valve 8 and the pipe 21. Then, while maintaining a predetermined pressurization state, the supply of the raw material air is continued and the oxygen gas in the air is adsorbed. During this time, gas mainly consisting of nitrogen gas is discharged through the pipe 23, the valve 12, the pipe 24, the valve 13 and the throttle valve 16.

【0027】吸着塔3が吸着工程にあるとき、吸着塔3
aは回収工程にある。すなわち弁18を開とし、吸着塔
3a内の分子ふるい炭素に吸着している酸素ガスはパイ
プ25、弁18を通して、真空ポンプ5により回収され
サ−ジタンク6に導入する。
When the adsorption tower 3 is in the adsorption step, the adsorption tower 3
a is in the recovery step. That is, the valve 18 is opened, and the oxygen gas adsorbed on the molecular sieving carbon in the adsorption tower 3a is recovered by the vacuum pump 5 and introduced into the surge tank 6 through the pipe 25 and the valve 18.

【0028】吸着塔3の分子ふるい炭素への酸素ガスの
吸着が飽和する直前に弁8,13を閉じ吸着塔3の吸着
工程を終了する。次に弁15を開状態(弁12は開のま
ま)にし、吸着塔3の排気工程を行なう。吸着塔3内の
非吸着成分はパイプ23、弁12、パイプ24、弁15
を通じて大気中に排気される。このとき吸着塔3aは引
き続き回収工程にある。吸着塔3は排気工程が終了する
と弁12、15は閉じられ(弁18も閉)回収工程に移
る。すなわち弁9が開状態となり、吸着塔3内の分子ふ
るい炭素に吸着されていた酸素ガスは、パイプ21、弁
9を通じて、真空ポンプ4によって脱着回収され、パイ
プ25を通して吸着塔3aに送り込まれる。すなわちこ
のとき吸着塔3aでは吸着工程となる。
Immediately before the adsorption of oxygen gas on the molecular sieving carbon of the adsorption tower 3 is saturated, the valves 8 and 13 are closed and the adsorption step of the adsorption tower 3 is completed. Next, the valve 15 is opened (the valve 12 is kept open), and the adsorption tower 3 is exhausted. The non-adsorbed components in the adsorption tower 3 are the pipe 23, the valve 12, the pipe 24 and the valve 15.
Exhausted through the atmosphere. At this time, the adsorption tower 3a is still in the recovery step. When the exhaust step is completed, the adsorption tower 3 closes the valves 12 and 15 (closes the valve 18) and moves to the recovery step. That is, the valve 9 is opened, and the oxygen gas adsorbed on the molecular sieving carbon in the adsorption tower 3 is desorbed and collected by the vacuum pump 4 through the pipe 21 and the valve 9 and sent to the adsorption tower 3 a through the pipe 25. That is, at this time, the adsorption process is performed in the adsorption tower 3a.

【0029】吸着塔3の回収工程(吸着塔3aの吸着工
程)が終了すると、弁9は閉じられる。引き続き吸着塔
3aでは排気工程に移る。弁12a,15が開かれ吸着
塔3a内の非吸着成分はパイプ23a弁12aパイプ2
4弁15を通して排出される。吸着塔3aの排気工程が
終了すると弁12a,15は閉じられる。
When the recovery step of the adsorption tower 3 (adsorption step of the adsorption tower 3a) is completed, the valve 9 is closed. Then, in the adsorption tower 3a, the exhaust process is started. The valves 12a and 15 are opened and the non-adsorbed components in the adsorption tower 3a are pipe 23a Valve 12a Pipe 2
It is discharged through the four-valve 15. When the exhaust process of the adsorption tower 3a is completed, the valves 12a and 15 are closed.

【0030】次に吸着塔3では洗浄排ガス吸着工程、吸
着塔3aでは洗浄工程に移る。すなわち弁10、11
a,12,14,19を開状態とし、製品酸素ガスの一
部を絞り弁20弁19を通して吸着塔3aに送り込み、
更に吸着塔3aからの排ガスをパイプ23a 、弁11
a, パイプ22, 弁10, パイプ21を通して吸着塔3
に送り込み、パイプ23, 弁12パイプ24, 弁14,
絞り弁17を通して排出する。
Next, the adsorption tower 3 proceeds to the cleaning exhaust gas adsorption step, and the adsorption tower 3a proceeds to the cleaning step. I.e. valves 10, 11
a, 12, 14, 19 are opened, a part of the product oxygen gas is sent to the adsorption tower 3a through the throttle valve 20 valve 19,
Further, the exhaust gas from the adsorption tower 3a is fed to the pipe 23a and the valve 11
a, pipe 22, valve 10, pipe 21 through adsorption tower 3
Pipe 23, valve 12 pipe 24, valve 14,
Discharge through the throttle valve 17.

【0031】吸着塔3の洗浄排ガス吸着工程、吸着塔3
aの洗浄工程が終了すると各弁は閉じられ1サイクルが
終了し吸着塔3は、再び吸着工程に移る。これらの各工
程を繰り返すことにより空気中から酸素ガスを分離する
ことができる。
Cleaning of adsorption tower 3 Exhaust gas adsorption step, adsorption tower 3
When the washing step of a is completed, each valve is closed and one cycle is completed, and the adsorption tower 3 moves to the adsorption step again. By repeating these steps, oxygen gas can be separated from the air.

【0032】本発明においては、上記の如く吸着塔Aで
は、1)吸着工程 2)排気工程3)回収工程 4)洗
浄排ガス吸着工程 の4工程より成る一連の操作を吸着
塔Bでは、1) 吸着工程 2)排気工程 3)洗浄工
程 4)回収工程 の4工程より成る一連の操作を互い
に連動して順次連続的に繰り返し実施することにより空
気中より酸素ガスの分離を効率的に行なうことができ
る。また、本発明においては、上記8工程以外の工程、
例えば、吸着塔3aの吸着工程の後に吸着塔3aと吸着
塔3を連結し、両塔の圧力を平均化する均圧工程や、吸
着塔3aの回収工程の後に吸着塔3aに製品酸素ガスを
送り込む還流工程等をつけ加えることはなんら制限する
ものではない。
In the present invention, as described above, in the adsorption tower A, a series of operations consisting of 1) adsorption step 2) exhaust step 3) recovery step 4) cleaning exhaust gas adsorption step is performed in the adsorption tower B by 1). Adsorption step 2) Exhaust step 3) Washing step 4) Recovery step A series of operations, which are four steps, are interlocked with each other and sequentially and repeatedly performed to efficiently separate oxygen gas from the air. it can. Further, in the present invention, steps other than the above eight steps,
For example, after the adsorption step of the adsorption tower 3a, the adsorption tower 3a and the adsorption tower 3 are connected and the pressure equalization step of equalizing the pressures of both towers, or after the recovery step of the adsorption tower 3a, the product oxygen gas is fed to the adsorption tower 3a. Addition of a refluxing step for sending in is not limited at all.

【0033】[0033]

【発明の効果】本発明の酸素ガス分離法は、空気に比較
してやや酸素ガス濃度を高めた酸素富化空気の製造か
ら、酸素濃度95% 以上の高濃度酸素の製造まで広範囲の
濃度の酸素ガス製造装置として用いることができるた
め、その応用範囲は多岐にわたる。
The oxygen gas separation method of the present invention has a wide range of oxygen concentration from the production of oxygen-enriched air in which the oxygen gas concentration is slightly higher than that of air to the production of high-concentration oxygen having an oxygen concentration of 95% or more. Since it can be used as a gas production device, its application range is wide.

【0034】例えば、本発明の装置で製造した酸素富化
空気は、各種燃焼設備の酸素富化燃焼用ガスとして用い
ることができ、酸素濃度30〜45% 程度の製品ガスは、各
種バイオリアクター用の酸素富化空気として利用でき
る。また、酸素濃度90〜95% 程度の製品酸素ガスは、廃
水処理での曝気用,医療用,その他、各種用途に対し、
安価な酸素供給源として利用できる。更にまた、98% 以
上の高濃度酸素は、特に、溶接,溶断用など高温を必要
とする分野で利用することができる。本発明で得られる
酸素ガスは、上記用途以外にも、各種の用途に対し、酸
素ボンベの代替用としてもいることができる。
For example, the oxygen-enriched air produced by the apparatus of the present invention can be used as an oxygen-enriched combustion gas for various combustion facilities, and a product gas having an oxygen concentration of about 30 to 45% can be used for various bioreactors. It can be used as oxygen enriched air. In addition, product oxygen gas with an oxygen concentration of 90 to 95% is used for aeration in medical treatment of wastewater, medical use, and other various applications.
It can be used as an inexpensive oxygen source. Furthermore, high-concentration oxygen of 98% or more can be utilized especially in fields requiring high temperatures such as welding and fusing. The oxygen gas obtained in the present invention can be used as a substitute for an oxygen cylinder for various uses other than the above-mentioned uses.

【0035】[0035]

【測定法】本発明で使用した分子ふるい炭素のミクロ孔
の細孔直径および容積の測定は、全自動ガス吸着測定装
置(BELLSORP28)(日本ベル(株)製)を用い
て、モレキュラープローブ法により行なった。
[Measurement method] The pore diameter and volume of the micropores of the molecular sieving carbon used in the present invention are measured by a molecular probe method using a fully automatic gas adsorption measuring device (BELLSORP28) (manufactured by Bell Japan Ltd.). I did.

【0036】測定法は、298Kにおける酸素(分子径2.8
Å),エタン(分子径4.0 Å),イソブタン(分子径5.
0 Å)の 0〜 760mmHgにおける吸着等温線の測定結果を
式(1),(2)の Dubinin −Astakhov式により整理
して、吸着の特性エネルギーE,ミクロ孔容積W0 を決
定し、細孔径分布ヒストグラムを作成した。
The measuring method is oxygen at 298 K (molecular size 2.8
Å), ethane (molecular diameter 4.0 Å), isobutane (molecular diameter 5.
(0 Å) The adsorption isotherm measurement results from 0 to 760 mmHg are organized by the Dubinin-Astakhov equations (1) and (2) to determine the characteristic energy E of adsorption and the micropore volume W0, and to determine the pore size distribution. Created a histogram.

【0037】 W/W0 =exp{−(A/E)n} ・・・(1) A =R・T・ln(P0 /P) ・・・(2) ここで、 W :平衡圧Pにおける吸着量 W0 :極限吸着量(ミクロ孔容積) A :吸着ポテンシャル E :吸着特性エネルギー R :気体定数 T :測定温度 P0 :飽和蒸気圧 P :平衡圧 n :2または3 である。 以下、実施例を挙げて本発明を具体的に説明する。W / W 0 = exp {-(A / E) n} (1) A = R · T · ln (P 0 / P) (2) where W: at equilibrium pressure P Adsorption amount W0: Ultimate adsorption amount (micropore volume) A: Adsorption potential E: Adsorption characteristic energy R: Gas constant T: Measurement temperature P0: Saturated vapor pressure P: Equilibrium pressure n: 2 or 3. Hereinafter, the present invention will be specifically described with reference to examples.

【0038】[0038]

【実施例1】400Lの反応容器に、塩酸18%及びホ
ルムアルデヒド8%から成る混合水溶液300kgを入
れ、温度を20℃とした。次に、この反応容器に濃度9
8%(2%は水)のフェノ−ルと水とを用いて調整し
た、濃度90%のフェノ−ル水溶液(20℃)を12k
g添加した。添加後30〜40秒間攪拌し、反応容器内
の内容物が急激に白濁すると同時に攪拌を中止し静置し
た。静置を続けると内温が徐々に上昇し、内容物は次第
に淡いピンクに変色し、白濁してから30分後には、い
づれもスラリ−状あるいは樹脂状物の生成がみられた。
上記工程の後、引き続いて内容物を75〜76℃まで3
9分間で昇温し、この温度で攪拌しながら40分間保持
した。次にこの内容物を水洗した後、濃度0.1%のア
ンモニア水溶液で、50℃において6時間中和処理し、
ついで水洗濾過し80℃において6時間攪拌した。その
結果、目的とする粒子形状が球状のフェノ−ル樹脂粉末
が得られた。
Example 1 A 400-liter reaction vessel was charged with 300 kg of a mixed aqueous solution of hydrochloric acid 18% and formaldehyde 8%, and the temperature was set to 20 ° C. Then, add 9
12% of a phenol aqueous solution (20 ° C.) having a concentration of 90%, which was prepared by using 8% (2% is water) phenol and water.
g was added. After the addition, the mixture was stirred for 30 to 40 seconds, and the contents in the reaction vessel suddenly turned cloudy, at the same time, the stirring was stopped and the mixture was allowed to stand. When left to stand, the internal temperature gradually increased, the contents gradually turned pale pink, and after 30 minutes from becoming cloudy, a slurry-like or resinous product was observed.
After the above steps, the contents are continuously heated to 75 to 76 ° C for 3 minutes.
The temperature was raised in 9 minutes, and the temperature was maintained for 40 minutes while stirring. Next, this content is washed with water, and then neutralized with a 0.1% aqueous ammonia solution at 50 ° C. for 6 hours,
Then, it was washed with water, filtered, and stirred at 80 ° C. for 6 hours. As a result, a desired phenol resin powder having a spherical particle shape was obtained.

【0039】次に、上記方法により作成した球状フェノ
−ル樹脂10kgを計量し、更に該球状フェノ−ル樹脂
粉末100重量部に対して水溶性メラミン樹脂(住友化
学(株)製、スミテックスレジンM−3、固形分濃度8
0%)を固形分の量で20重量部、重合度1700、け
ん化度88%のポリビニルアルコ−ル4重量部、馬鈴薯
澱粉20重量部及びエチレングリコ−ル4重量部を計量
した。上記原料のうちポリビニルアルコ−ルを温水で2
0重量%の水溶液となるように溶解し、このポリビニル
アルコ−ル水溶液に水溶性メラミン樹脂、馬鈴薯澱粉お
よびエチレングリコ−ルを加えてニ−ダ−で10分間混
合した。その後球状フェノ−ル樹脂を加えてさらに10
分間混合した。
Next, 10 kg of the spherical phenol resin prepared by the above method was weighed, and 100 parts by weight of the spherical phenol resin powder was further mixed with a water-soluble melamine resin (Sumitex Resin, manufactured by Sumitomo Chemical Co., Ltd.). M-3, solid content 8
20% by weight of solid content, 4 parts by weight of polyvinyl alcohol having a degree of polymerization of 1700 and a saponification degree of 88%, 20 parts by weight of potato starch and 4 parts by weight of ethylene glycol were weighed. Of the above raw materials, use 2 parts of polyvinyl alcohol with warm water.
The mixture was dissolved to give a 0% by weight aqueous solution, and a water-soluble melamine resin, potato starch and ethylene glycol were added to this polyvinyl alcohol aqueous solution and mixed for 10 minutes with a kneader. Then add spherical phenol resin and add 10 more.
Mix for minutes.

【0040】この混合組成物を2軸押出造粒機(不二パ
ウダル(株)製、ペレッタダブル、EXDF−100
型)で押出し、平均粒子径が3mmφ×6mmLの粒状
体を造粒した。該粒状体を80℃で24時間熱処理した
後、有効寸法800mmφ×2000mmLのロ−タリ
キルンに入れ、窒素雰囲気下60℃/hrデ昇温し、8
00℃で1時間保持し、その後炉冷し、平均粒子径24
mmφ×4mmのペレット状の分子ふるい炭素を得た。
A biaxial extrusion granulator (manufactured by Fuji Paudal Co., Ltd., Peretta Double, EXDF-100) was mixed with this mixed composition.
And a granule having an average particle diameter of 3 mmφ × 6 mmL was granulated. After heat-treating the granules at 80 ° C. for 24 hours, the granules were put into a rotary kiln having an effective size of 800 mmφ × 2000 mmL, and the temperature was raised to 60 ° C./hr in a nitrogen atmosphere.
Hold at 00 ° C for 1 hour, then cool in a furnace, average particle size 24
mmφ × 4 mm pellet-like molecular sieving carbon was obtained.

【0041】この分子ふるい炭素の特性を評価するた
め、図2に示す吸着特性測定装置により窒素ガス及び酸
素ガスの吸着量を測定した。同図において試料室4(2
00ml)に3gの試料をいれ、バルブ11、8を閉
じ、バルブ2、3を開けて30分間脱気した後、バルブ
2、3を閉じバルブ11を開けて30分間脱気した後、
バルブ2、3を閉じバルブ11を開け、調整室5(20
0ml)内に酸素ガスまたは窒素ガスを送り込み、設定
圧(6.00kgf/cm2 ・G)になったところでバ
ルブ11を閉じ、バルブを開け所定時間における内部圧
力の変化を測定して、酸素および窒素の吸着量を求め
た。なお1は真空ポンプ、6、7は圧力センサ−、9は
記録計、10は圧力計、14、15はガスレギュレ−タ
−、16は窒素ボンベ、17は酸素ボンベである。
In order to evaluate the characteristics of this molecular sieving carbon, the adsorption amounts of nitrogen gas and oxygen gas were measured by the adsorption characteristic measuring device shown in FIG. In the figure, the sample chamber 4 (2
(00 ml), put 3 g of sample, close valves 11 and 8, open valves 2 and 3 for 30 minutes to degas, then close valves 2 and 3 to open valve 11 and degas for 30 minutes,
The valves 2 and 3 are closed, the valve 11 is opened, and the adjustment chamber 5 (20
Oxygen gas or nitrogen gas is fed into the chamber, and when the set pressure (6.00 kgf / cm 2 · G) is reached, the valve 11 is closed, the valve is opened, and the change in internal pressure at a predetermined time is measured. The amount of nitrogen adsorbed was determined. 1 is a vacuum pump, 6 and 7 are pressure sensors, 9 is a recorder, 10 is a pressure gauge, 14 and 15 are gas regulators, 16 is a nitrogen cylinder, and 17 is an oxygen cylinder.

【0042】測定の結果、この分子ふるい炭素1g当た
りの吸着量は、吸着開始1分後で、窒素が1.0mg/
g(吸着圧2.613kgf/cm2 ・G)酸素が1
9.5mg/g(吸着圧2.527kgf/cm2
G),平行吸着量は、窒素が21.3mg/g(吸着圧
2.509kgf/cm2 ・G)酸素が22.8mg/
g(吸着圧2.504kgf/cm2 ・G)であった。
As a result of the measurement, the amount of adsorption per 1 g of this molecular sieving carbon was found to be 1.0 mg / nitrogen at 1 minute after the start of adsorption.
g (adsorption pressure 2.613 kgf / cm 2 · G) 1 oxygen
9.5 mg / g (adsorption pressure 2.527 kgf / cm 2 ·
G), the parallel adsorption amount is 21.3 mg / g for nitrogen (adsorption pressure 2.509 kgf / cm 2 · G) and 22.8 mg / for oxygen.
It was g (adsorption pressure 2.504 kgf / cm 2 · G).

【0043】この分子ふるい炭素を図1に示す2塔式P
SA装置の吸着塔(吸着塔3は内径53.5mmφ×1
200L、吸着塔3aは内径53.5mmφ×800
L)に充填し、表1に示す運転サイクルおよび操作時間
で運転した。
This molecular sieving carbon is shown in FIG.
Adsorption tower of SA device (Adsorption tower 3 has an inner diameter of 53.5 mmφ x 1
200 L, adsorption tower 3a has an inner diameter of 53.5 mmφ × 800
L) was filled, and the operation cycle and operation time shown in Table 1 were operated.

【0044】[0044]

【表1】 [Table 1]

【0045】この時、吸着塔3での吸着圧力は、3kg
f/cm2 ・G、各回収工程の減圧度は50torrと
し、原料空気供給量は5NL/min,洗浄用製品ガス
流量は0.15NL/min(1サイクルの平均流
量)、塔内圧力0.1kgf/cm2 ・Gとした。この
結果得られた製品酸素ガスの取出量、回収率を表2に示
す。ここで、製品酸素ガスの回収率 Y(%)は、次式
に従い求めた。
At this time, the adsorption pressure in the adsorption tower 3 is 3 kg.
f / cm 2 · G, the degree of decompression in each recovery step is 50 torr, the feed rate of raw material air is 5 NL / min, the product gas flow rate for cleaning is 0.15 NL / min (average flow rate in one cycle), and the column pressure is 0. It was set to 1 kgf / cm 2 · G. Table 2 shows the amount of product oxygen gas taken out and the recovery rate obtained as a result. Here, the product oxygen gas recovery rate Y (%) was determined according to the following equation.

【0046】[0046]

【数1】 [Equation 1]

【0047】[0047]

【表2】 [Table 2]

【0048】本実施例により酸素濃度50.3〜86.
1%の製品ガスが回収率20.6%〜50.4%で得ら
れ、特に実験9では、酸素濃度が最も優れていた。ま
た、実験1では、各工程の時間が短いため、製品酸素濃
度が低く、実験8が濃度、回収率とも優れていた。
According to this embodiment, the oxygen concentration is 50.3 to 86.
A product gas of 1% was obtained with a recovery rate of 20.6% to 50.4%, and especially in Experiment 9, the oxygen concentration was the best. Further, in Experiment 1, since the time of each step was short, the product oxygen concentration was low, and Experiment 8 was excellent in both concentration and recovery rate.

【0049】[0049]

【実施例2】実施例1で使用した分子ふるい炭素を図1
に示す、2塔式PSA装置の吸着塔(吸着塔3は内径5
3.5mmφ×1200L、吸着塔3aは内径53.5
mmφ×800L)に充填し、各回収工程における減圧
度の影響について調べた。即ち、PSA装置の操作条件
として、各回収工程における減圧度を表3の如く設定
し、その他の条件は実施例1の実験番号8と同一にして
実験を行った。この結果得られた製品酸素ガスの取出
量、濃度、回収率を表3に示す。
Example 2 The molecular sieving carbon used in Example 1 is shown in FIG.
The adsorption tower of the two-tower PSA device shown in Fig.
3.5 mmφ x 1200 L, adsorption tower 3a has an inner diameter of 53.5
(mmφ × 800 L), and the influence of the degree of reduced pressure in each recovery step was examined. That is, as the operating conditions of the PSA apparatus, the degree of pressure reduction in each recovery step was set as shown in Table 3, and the other conditions were the same as the experiment number 8 of Example 1 and the experiment was conducted. Table 3 shows the amount, concentration, and recovery rate of the product oxygen gas obtained as a result.

【0050】[0050]

【表3】 [Table 3]

【0051】本実施例により、回収工程における塔内圧
力が低くなるほど、製品酸素ガス濃度が高くなり、また
回収率も上昇した。特に100torr以下の場合には
濃度83%以上の製品酸素が回収率42%以上で得られ
た。
According to this example, the lower the column pressure in the recovery step, the higher the product oxygen gas concentration and the higher the recovery rate. In particular, when the pressure was 100 torr or less, product oxygen having a concentration of 83% or more was obtained with a recovery rate of 42% or more.

【0052】[0052]

【実施例3】実施例1で使用した分子ふるい炭素を、図
1に示す2塔式PSA装置の吸着塔(吸着塔3は内径5
3.5mmφ×1200L、吸着塔3aは内径53.5
mmφ×800L)に充填し、PSA装置の操作条件を
洗浄ガスは表4に示す条件で、その他の条件は実施例1
の実験番号8と同一で実験を行った。
Example 3 The molecular sieving carbon used in Example 1 was used in the adsorption tower of the two-column PSA apparatus shown in FIG. 1 (the adsorption tower 3 has an inner diameter of 5).
3.5 mmφ x 1200 L, adsorption tower 3a has an inner diameter of 53.5
(mmφ × 800 L), the operating conditions of the PSA device are as shown in Table 4 for the cleaning gas, and the other conditions are those of Example 1.
The experiment was performed in the same manner as Experiment No. 8 of.

【0053】[0053]

【表4】 [Table 4]

【0054】本実施例により洗浄ガス流量を多くするほ
ど、製品酸素ガス濃度が高くなり、洗浄ガス流量が製品
酸素ガス取出量に対して20%以上であると製品酸素ガ
ス濃度は、80%以上となった。一方、実験番号15で
は、洗浄ガス流量が少ないため、製品ガス濃度が低く、
実験番号20では洗浄ガス流量が多いため製品酸素濃度
は高いが製品取出量が減少し、回収率が低くなった。
According to this embodiment, the higher the cleaning gas flow rate, the higher the product oxygen gas concentration. If the cleaning gas flow rate is 20% or more of the product oxygen gas removal amount, the product oxygen gas concentration is 80% or more. Became. On the other hand, in Experiment No. 15, since the cleaning gas flow rate is small, the product gas concentration is low,
In Experiment No. 20, since the cleaning gas flow rate was high, the product oxygen concentration was high, but the product withdrawal amount decreased and the recovery rate was low.

【0055】[0055]

【実施例4】実施例1で使用した分子ふるい炭素を図1
に示す2塔式PSA装置(吸着塔3は内径53.5mm
φ×1600L、吸着塔3aは内径53.5mmφ×8
00L)に充填し、PSA装置の操作条件を表5に示す
運転サイクル及び時間で実験を行った。
Example 4 The molecular sieving carbon used in Example 1 is shown in FIG.
2 tower type PSA device shown in (The adsorption tower 3 has an inner diameter of 53.5 mm.
φ × 1600L, adsorption tower 3a has an inner diameter of 53.5 mm φ × 8
00L) and the operating conditions of the PSA apparatus were the experiments conducted at the operating cycle and time shown in Table 5.

【0056】[0056]

【表5】 [Table 5]

【0057】この時、吸着塔3での吸着圧力は、3kg
f/cm2 ・G、各回収工程の減圧度は25torrと
し、原料空気供給量は6NL/min,洗浄用製品ガス
流量は0.2NL/min,塔内圧力0.1kgf/c
2 ・Gとした。この結果得られた製品酸素ガスの取出
量、回収率を表6に示す。
At this time, the adsorption pressure in the adsorption tower 3 is 3 kg.
f / cm 2 · G, the degree of decompression in each recovery step is 25 torr, the feed rate of raw material air is 6 NL / min, the product gas flow rate for cleaning is 0.2 NL / min, and the internal pressure of the column is 0.1 kgf / c.
m 2 · G. Table 6 shows the amount of product oxygen gas taken out and the recovery rate obtained as a result.

【0058】[0058]

【表6】 [Table 6]

【0059】本実施例において、酸素濃度92.5〜9
9.9%の製品ガスが回収率31.8〜36.8%で得
られ、特に、実験23では、99.9%と非常に高濃度
の製品酸素ガスが得られた。
In this embodiment, the oxygen concentration is 92.5-9.
A product gas of 9.9% was obtained with a recovery rate of 31.8 to 36.8%. In particular, in Experiment 23, a product oxygen gas having a very high concentration of 99.9% was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る2塔式PSA装置の一例を示す説
明図である。 3,3a 吸着塔 1 空気圧縮機 2 除湿器 4,5 真空ポンプ 6 サ−ジタンク 7 流量計 8〜15,18,19,11a,12a 自動弁 16,17,20 絞り弁 21〜25,23a パイプ
FIG. 1 is an explanatory diagram showing an example of a two-tower PSA device according to the present invention. 3,3a Adsorption tower 1 Air compressor 2 Dehumidifier 4,5 Vacuum pump 6 Surge tank 7 Flowmeter 8-15,18,19,11a, 12a Automatic valve 16,17,20 Throttle valve 21-25,23a Pipe

【図2】本発明で使用した分子ふるい炭素の吸着特性測
定装置の説明図である。 1 真空ポンプ 2,3,8,11,12,13 バルブ 4 試料室 5 調整室 6,7 圧力センサ− 9 記録計 10 圧力計 14,15 ガスレギュレ−タ−
FIG. 2 is an explanatory diagram of an apparatus for measuring adsorption characteristics of molecular sieving carbon used in the present invention. 1 Vacuum pump 2,3,8,11,12,13 Valve 4 Sample chamber 5 Adjustment chamber 6,7 Pressure sensor-9 Recorder 10 Pressure gauge 14,15 Gas regulator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内容積比が1:1〜3:1である2本の
吸着塔A,Bに分子ふるい炭素を充填し、加圧原料空気
を供給し、各々の吸着塔で順次加圧・減圧を繰返し、吸
着成分である酸素ガスを回収する圧力スイング吸着法に
おいて、1次側の吸着塔Aでは1)吸着塔に原料空気を
供給して昇圧し、更に加圧状態に保ちつつ原料空気の供
給を継続し、酸素ガスを吸着する吸着工程 2)吸着工程終了後の吸着塔内の非吸着成分を排出し、
降圧する排気工程 3)排気工程終了後の吸着塔を減圧し、吸着している酸
素ガスを回収し、2次側の吸着塔Bに送り込む回収工程 4)回収工程終了後の吸着塔Aを洗浄工程中の2次側の
吸着塔Bと連結し、酸素ガスを吸着する洗浄排出ガス吸
着工程 の4工程より成る一連の操作を、2次側の吸着塔Bでは 1)1次側の吸着塔Aの回収ガスを供給して昇圧し、更
に加圧状態に保ちつつ回収ガスの供給を継続し、酸素ガ
スを吸着する吸着工程 2)吸着工程終了後の吸着塔内の非吸着成分を排出する
排気工程 3)排気工程終了後の吸着塔Bに製品酸素ガスの一部を
導入して洗浄する洗浄工程 4)洗浄工程終了後の吸着塔を減圧し、吸着している酸
素ガスを回収する回収工程 の4工程より成る一連の操作を互いに連動して順次連続
的に繰り返し、酸素ガスを継続して取り出すことを特徴
とする酸素ガスの分離方法
1. Two adsorption towers A and B having an internal volume ratio of 1: 1 to 3: 1 are filled with molecular sieving carbon, pressurized raw material air is supplied, and each adsorption tower is sequentially pressurized. In the pressure swing adsorption method in which decompression is repeated to recover oxygen gas as an adsorbing component, in the adsorption tower A on the primary side, 1) feed air is supplied to the adsorption tower to raise the pressure, and the raw material while maintaining a pressurized state Adsorption step of continuing to supply air and adsorbing oxygen gas 2) Discharging non-adsorption components in the adsorption tower after the adsorption step is completed,
Exhaust process for reducing pressure 3) Recovery process after decompressing the adsorption tower after the exhaust process to collect adsorbed oxygen gas and send it to the adsorption tower B on the secondary side 4) Washing adsorption tower A after completion of the recovery process In the process, the secondary side adsorption tower B is connected to the secondary side adsorption tower B, and a series of four steps of cleaning exhaust gas adsorption step for adsorbing oxygen gas is performed. Adsorption step of supplying the recovered gas of A to increase the pressure and continuing supply of the recovered gas while maintaining the pressurized state, and adsorbing oxygen gas 2) Discharging non-adsorbed components in the adsorption tower after the adsorption step is completed Exhaust process 3) Cleaning process in which a part of the product oxygen gas is introduced into the adsorption tower B after completion of the exhaust process for cleaning 4) Decompression of the adsorption tower after completion of the cleaning process and recovery of adsorbed oxygen gas A series of operations consisting of 4 steps are sequentially and continuously repeated in conjunction with each other. The method of separating oxygen gas, characterized in that taken to continue the oxygen gas
JP5092559A 1993-03-26 1993-03-26 Separation of oxygen gas Pending JPH06277434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5092559A JPH06277434A (en) 1993-03-26 1993-03-26 Separation of oxygen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5092559A JPH06277434A (en) 1993-03-26 1993-03-26 Separation of oxygen gas

Publications (1)

Publication Number Publication Date
JPH06277434A true JPH06277434A (en) 1994-10-04

Family

ID=14057785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5092559A Pending JPH06277434A (en) 1993-03-26 1993-03-26 Separation of oxygen gas

Country Status (1)

Country Link
JP (1) JPH06277434A (en)

Similar Documents

Publication Publication Date Title
KR100851241B1 (en) Absorbent for Separating Nitrogen from Mixed Gas of Oxygen And Nitrogen
TWI382956B (en) Gas purification process
EP0264523B1 (en) Method of separating gaseous mixture
JPH01160816A (en) Method for selectively adsorpting co2 by zeolite
EP0276309A1 (en) Process for separation of high purity gas from mixed gas
JPH05168916A (en) Oxygen and carbon dioxide selective composite drting agent, preparation thereof, and method for adsorptive separation of nitrogen from oxygen
EP0145539B1 (en) Mercury adsorbent carbons and carbon molecular sieves
Nandi et al. Carbon molecular sieves for the concentration of oxygen from air
Baksh et al. A new composite sorbent for methane-nitrogen separation by adsorption
JPH08224468A (en) Cylindrically pelletized carbon based adsorbent
CN110711456B (en) Application of PVDC resin derived microporous carbon material in adsorption separation of xenon and krypton
JPH05168839A (en) Separation of gaseous oxygen
JP2623487B2 (en) Nitrogen gas separation method
JP2681894B2 (en) Oxygen gas separation method
JPH06277434A (en) Separation of oxygen gas
JP3229033B2 (en) Molecular sieve carbon material for hydrogen purification
JPH06277435A (en) Separation of high-purity oxygen gas
JP2546797B2 (en) Separation method of gas mixture
JP2788164B2 (en) Separation method of high purity oxygen gas
JP2619839B2 (en) Nitrogen gas separation method
JPH06234504A (en) Separation of gaseous oxygen
JPH06154595A (en) Molecular sieve carbon for pressure swing type adsorption apparatus
JP3062759B2 (en) Manufacturing method of carbon dioxide adsorbent
JPH08165104A (en) Separation of high purity hydrogen gas
JP2003019415A (en) Method for separating gaseous mixture