JPH06273705A - Acousto-optic modulating element - Google Patents

Acousto-optic modulating element

Info

Publication number
JPH06273705A
JPH06273705A JP5088095A JP8809593A JPH06273705A JP H06273705 A JPH06273705 A JP H06273705A JP 5088095 A JP5088095 A JP 5088095A JP 8809593 A JP8809593 A JP 8809593A JP H06273705 A JPH06273705 A JP H06273705A
Authority
JP
Japan
Prior art keywords
acousto
optic
optic medium
medium
optic modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5088095A
Other languages
Japanese (ja)
Inventor
Yoshikazu Toba
良和 鳥羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP5088095A priority Critical patent/JPH06273705A/en
Publication of JPH06273705A publication Critical patent/JPH06273705A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the change in the diffraction efficiency regardless of long- time use with respect to the acousto-optic modulating element produced by joining an acousto-optic medium and a piezoelectric oscillator. CONSTITUTION:Peltier elements 11 are closely fixed to two faces facing each other except an optical face 9, the junction face of a piezoelectric oscillator 13, and a polished part 10 in the acousto-optic modulating element produced by joining an acousto-optic medium 8 and the piezoelectric oscillator 13, thus fixing the temperature of the acousto-optic medium at the time of ultrasonic driving.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレーザプリンタ、レーザ
スキャナ、レーザファクシミリ、光スイッチ等に用いら
れる、光偏向、光スイッチング、光変調等に使用される
音響光学変調素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acousto-optic modulator used in laser printers, laser scanners, laser facsimiles, optical switches and the like for optical deflection, optical switching, optical modulation and the like.

【0002】[0002]

【従来の技術】光エレクトロニクスの発展に伴い、その
実用化が急ピッチに進められているが、その中で光を電
気的に制御するための手段の一つの装置に音響光学変調
器がある。
2. Description of the Related Art With the development of optoelectronics, its practical application has been progressing at a rapid pace. Among them, an acousto-optic modulator is one of the devices for electrically controlling light.

【0003】図1に示す音響光学変調器は音響光学媒体
6と圧電振動子5とを接合して作られた音響光学変調素
子と、圧電振動子5を駆動するための共振回路を含む高
周波電源7から構成され、高周波電圧を音響光学変調素
子に印加することにより音響光学媒体中に発生する屈折
率が周期的に変化する光弾性効果を利用して、光の進路
変化、光の周波数変調、即ち、回折された光は移動する
超音波によって一種のドップラー効果を受けてその周波
数が超音波の周波数だけシフトする事を利用することが
可能となる。これらの光変調効果は、ガスレーザを用い
たレーザプリンタ、レーザスキャナ、レーザファクシミ
リ等に広く用いられており、近年の電子計算機の高速化
にともなう電子計算機周辺装置の高速化、低ノイズ化及
び高速スイッチング化に重要な役割を果たしている。
The acousto-optic modulator shown in FIG. 1 is a high-frequency power source including an acousto-optic modulator made by joining an acousto-optic medium 6 and a piezoelectric vibrator 5 and a resonance circuit for driving the piezoelectric vibrator 5. 7 is used to apply a high-frequency voltage to the acousto-optic modulator, and the photoelastic effect in which the refractive index is periodically changed in the acousto-optic medium is used to change the path of the light, modulate the frequency of the light, That is, it is possible to utilize that the diffracted light undergoes a kind of Doppler effect by the moving ultrasonic wave and its frequency shifts by the frequency of the ultrasonic wave. These optical modulation effects are widely used in laser printers, laser scanners, laser facsimiles, etc. that use gas lasers, and with the recent increase in the speed of electronic computers, the speedup, noise reduction, and high-speed switching of computer peripheral devices have been achieved. Plays an important role in

【0004】ところで、前記光変調効果には、超音波の
波長と入射光のビーム径の関係により、光の屈折と回折
の2つの現象が存在する。即ち、超音波の波長がビーム
径と比較して十分に長い低周波の超音波の場合には、光
は緩やかに屈折率が変化して音響光学媒体中を通過する
ことになり、屈折現象を生ずる。一方、波長がビーム径
と比較して十分に短い高周波の超音波の場合には、音響
光学媒体中の周期的屈折率変化が回折格子として作用す
るために光が回折される。一般に、音響光学変調素子で
は後者の回折現象が利用されている。
In the light modulation effect, there are two phenomena, light refraction and diffraction, depending on the relationship between the wavelength of ultrasonic waves and the beam diameter of incident light. That is, in the case of a low frequency ultrasonic wave in which the wavelength of the ultrasonic wave is sufficiently longer than the beam diameter, the light gradually changes its refractive index and passes through the acousto-optic medium, which causes the refraction phenomenon. Occurs. On the other hand, in the case of a high frequency ultrasonic wave whose wavelength is sufficiently shorter than the beam diameter, light is diffracted because the periodic refractive index change in the acoustooptic medium acts as a diffraction grating. Generally, the latter diffraction phenomenon is used in an acousto-optic modulator.

【0005】前記光変調効果を利用する音響光学変調素
子による回折現象には、複数の回折光が現われるラマン
−ナス回折、1次回折光のみが現われるブラッグ回折、
及びその中間領域での回折に分けられるが、高い回折効
率が得られるブラッグ回折が最も広く使われる。ブラッ
グ回折は(1)式で与えられる角度、即ち、ブラッグ回
折角で入射した光を、波面と同じ角度をなす方向にだけ
回折され、図1は入射光1が音響光学変調素子により回
折角を2θ偏向する現象を示す。 θ=sin-1(λfa/2v) (1) θ:ブラッグ回折角(deg)、λ:光の波長(m)、
v:音響光学媒体中の超音波の音速(m/s)、fa
超音波の周波数(Hz)
The diffraction phenomenon by the acousto-optic modulator utilizing the light modulation effect includes Raman-Nass diffraction, in which a plurality of diffracted lights appear, and Bragg diffraction, in which only first-order diffracted light appears.
And the diffraction in the intermediate region, but Bragg diffraction is most widely used because of its high diffraction efficiency. In Bragg diffraction, light incident at an angle given by equation (1), that is, at a Bragg diffraction angle, is diffracted only in the direction forming the same angle as the wavefront. The phenomenon of 2θ deflection is shown. θ = sin −1 (λf a / 2v) (1) θ: Bragg diffraction angle (deg), λ: wavelength of light (m),
v: Ultrasonic speed of sound in acousto-optic medium (m / s), f a :
Ultrasonic frequency (Hz)

【0006】つまり、1次回折光は電気入力をオンした
時に発生し、オフ状態では回折しない。従って、スリッ
トやピンホールなどで1次回折光のみを取り出せば、極
めて消光比の高いレーザビームのスイッチングが出来
る。ここで消光比の高低は、次の(2)式に示す回折効
率として表される。 回折効率(%)={(1次回折光強度)/(透過光強度)}×100 (2) 実用上、消光比の高いレーザビームスイッチング実現の
為には回折効率が60%以上であることが望まれてい
る。
That is, the first-order diffracted light is generated when the electric input is turned on, and is not diffracted in the off state. Therefore, if only the first-order diffracted light is taken out through a slit or a pinhole, it is possible to switch a laser beam having an extremely high extinction ratio. Here, the level of the extinction ratio is expressed as the diffraction efficiency shown in the following equation (2). Diffraction efficiency (%) = {(first-order diffracted light intensity) / (transmitted light intensity)} × 100 (2) Practically, in order to realize laser beam switching with a high extinction ratio, the diffraction efficiency should be 60% or more. Is desired.

【0007】一般に超音波入力パワーを高くすることに
より、回折効率もそれに伴い上昇する。しかしながら、
超音波入力パワーを増加させると圧電振動子部、及び超
音波衝突部からの発熱により音響光学媒体中に屈折率の
不均一性を生じさせ、光ビームの回折角や強度の揺らぎ
を生じていた。更には回折効率の熱による低下をも引き
起こしていた。このため従来は、アルミニウムなどの熱
伝導性の良い金属ブロックを音響光学変調素子に接着
し、放熱効果を上げることにより音響光学媒体中の屈折
率の不均一を防止していたが、必ずしも充分ではなかっ
た。
Generally, by increasing the ultrasonic input power, the diffraction efficiency also increases accordingly. However,
When the ultrasonic input power is increased, heat generated from the piezoelectric vibrator part and the ultrasonic collision part causes non-uniformity of the refractive index in the acousto-optic medium, which causes fluctuation of the diffraction angle and intensity of the light beam. . Furthermore, it also caused a decrease in diffraction efficiency due to heat. Therefore, conventionally, a metal block having good thermal conductivity such as aluminum is adhered to the acousto-optic modulation element to improve the heat dissipation effect to prevent uneven refractive index in the acousto-optic medium, but this is not always sufficient. There wasn't.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、圧電
振動子及び超音波衝突部からの発熱によって生ずる音響
光学媒体中の屈折率不均一の低減と、回折効率の劣化、
及び光ビームの回折角や、強度揺らぎのない音響光学変
調素子を提供する事にある。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce the non-uniform refractive index in an acousto-optic medium caused by heat generation from a piezoelectric vibrator and an ultrasonic wave collision section, and to deteriorate diffraction efficiency.
Another object of the present invention is to provide an acousto-optic modulator that does not have a diffraction angle of a light beam or intensity fluctuation.

【0009】[0009]

【課題を解決するための手段】本発明は、上記問題を解
決するため、音響光学媒体内部温度を一定に保持するた
め、音響光学媒体の両側面にペルチェ素子を接着し、ペ
ルチェ素子により音響光学媒体を冷却して音響光学媒体
の温度を制御することにより解決を図った。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention adheres Peltier elements to both side surfaces of an acousto-optic medium in order to keep the internal temperature of the acousto-optic medium constant, and uses the Peltier element for acousto-optics. The solution was achieved by cooling the medium and controlling the temperature of the acousto-optic medium.

【0010】即ち本発明は、音響光学媒体と圧電振動子
を接合してなる音響光学変調素子に於いて、光学面、圧
電振動子接合面、及び斜め研磨部(超音波反射防止用)
を除く相対する2面にペルチェ素子を密着させ、音響光
学媒体内部温度を20±2℃に制御させてなることを特
徴とする音響光学変調素子である。
That is, according to the present invention, in an acousto-optic modulation element in which an acousto-optic medium and a piezoelectric vibrator are bonded, an optical surface, a piezoelectric vibrator bonding surface, and an oblique polishing portion (for preventing ultrasonic reflection).
The acousto-optic modulator is characterized in that a Peltier element is brought into close contact with two surfaces opposite to each other except to control the inside temperature of the acousto-optic medium to 20 ± 2 ° C.

【0011】[0011]

【作用】一般に回折効率は超音波入力パワーに依存する
事が知られている。即ち、超音波入力パワーを高くする
事により回折効率を高くする事が可能となる。しかしな
がら、超音波入力パワーを増大させると音響光学媒体内
部の温度が上昇し、それに伴い光ビームの回折角、強度
揺らぎが生じる。また、更には回折効率低下が起こる。
特にこれらの現象は、屈折率の温度変化の大きいものに
ついて顕著である。
Function: It is generally known that the diffraction efficiency depends on the ultrasonic input power. That is, it is possible to increase the diffraction efficiency by increasing the ultrasonic input power. However, when the ultrasonic input power is increased, the temperature inside the acousto-optic medium rises, which causes the diffraction angle and intensity fluctuation of the light beam. Moreover, the diffraction efficiency is further lowered.
In particular, these phenomena are remarkable when the refractive index changes greatly with temperature.

【0012】これらの事実を踏まえ本発明者は音響光学
媒体内部温度を20±2℃以内にペルチェ素子により制
御することにより解決できることを見いだした。即ち、
音響光学媒体の側面にペルチェ素子を接合し音響光学媒
体を冷却して、音響光学媒体内に発生した熱をペルチェ
素子により冷却して、音響光学媒体中の屈折率不均一を
低減し、光ビームの回折角や強度の揺らぎ、回折効率低
下を抑えることを可能とする。
Based on these facts, the present inventor has found that the problem can be solved by controlling the internal temperature of the acousto-optic medium within 20 ± 2 ° C. by the Peltier device. That is,
The Peltier element is joined to the side surface of the acousto-optic medium to cool the acousto-optic medium, and the heat generated in the acousto-optic medium is cooled by the Peltier element to reduce the non-uniformity of the refractive index in the acousto-optic medium, It is possible to suppress fluctuations in the diffraction angle and intensity of, and reduction in diffraction efficiency.

【0013】[0013]

【実施例】本発明の音響光学変調素子を図面を用い説明
する。図2に於て、音響光学媒体8にセレン化砒素(A
s2Se3)、圧電振動子13にニオブ酸リチウム(LiNb
3)を用い、音響光学媒体の端面に形成した下地電極
12上にエポキシ樹脂接着剤にて圧電振動子13を接合
し、大きさが10mm×8mm×5mmの音響光学変調
素子を形成する。次に光を入射する薄い酸化硅素の多層
膜を形成した光学面9、圧電振動子を張り付ける下地電
極12の形成面、及び斜め研磨部10を除く相対する2
面の音響光学変調素子面との接合面に,20mm×10
mmで厚さが2mmの、図3に示すサーモボックス社製
のペルチェ素子11を熱伝導性に優れたサーマルコンパ
ウンドを音響光学媒体とペルチェ素子との間に介挿し密
着させた。図2は本実施例で作製した音響光学変調素子
の概略構成図を示し、上記作製した音響光学素子を高周
波発振回路に組み込み、図4に示す光学系を用い、波長
が1.3μmの光源16と光パワーメータ20との間に
音響光学変調素子を設置し、音響光学変調素子に140
MHz、0.5Wの超音波信号を圧電振動子のLiNbO
3の電極間に入力し、100時間通電試験を行なった。
この時、ペルチェ素子により音響光学媒体の温度を18
℃〜22℃に制御した。その結果、図5に示す如く、回
折効率の低下は起こらなかったし、またビームドリフト
や音響光学変調素子の変形についても観察されなかっ
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An acousto-optic modulator of the present invention will be described with reference to the drawings. In FIG. 2, the arsenic selenide (A
s 2 Se 3 ), the piezoelectric vibrator 13 and lithium niobate (LiNb
Using O 3 ), the piezoelectric vibrator 13 is bonded to the base electrode 12 formed on the end surface of the acousto-optic medium with an epoxy resin adhesive to form an acousto-optic modulator having a size of 10 mm × 8 mm × 5 mm. Next, except for the optical surface 9 on which a thin silicon oxide multilayer film is formed to which light is incident, the surface on which the base electrode 12 to which the piezoelectric vibrator is adhered, and the oblique polishing portion 10 are provided.
20mm × 10 on the surface to be joined to the acousto-optic modulator surface
A Peltier element 11 having a thickness of 2 mm and a thickness of 2 mm and manufactured by Thermobox Co., Ltd. shown in FIG. 3 was adhered by inserting a thermal compound having excellent thermal conductivity between the acousto-optic medium and the Peltier element. FIG. 2 is a schematic configuration diagram of the acousto-optic modulator manufactured in this example. The acousto-optic modulator manufactured as described above is incorporated in a high-frequency oscillation circuit, and the optical system shown in FIG. The acousto-optic modulator is installed between the optical power meter 20 and the
Ultrasonic signals of 0.5MHz and 0.5W are transmitted by the piezoelectric vibrator LiNbO.
Input was made between the three electrodes, and a current-carrying test was conducted for 100 hours.
At this time, the temperature of the acousto-optic medium is increased to 18 by the Peltier element.
The temperature was controlled to -22 ° C. As a result, as shown in FIG. 5, the diffraction efficiency did not decrease, and neither beam drift nor deformation of the acousto-optic modulator was observed.

【0014】[0014]

【比較例】実施例のペルチェ素子を取り除いた以外は、
実施例と同様にして音響光学変調素子を作製した。上記
作製した音響光学素子を共振回路に組み込み、図4に示
す光学系を用い、140MHz、0.5Wの超音波信号
を入力し、100時間通電試験を行なった。この時の通
電時間に対する音響光学媒体の温度を日本アビオニクス
製の赤外線温度計(TVS−200)を用い音響光学素
子を測定したところ、音響光学素子は図6に示すように
超音波を入力してから50時間経過した後に20℃から
55℃に変化した。その結果、図7に示す如く、試験開
始1時間経過後に音響光学変調素子内の温度が図6に示
すように上昇することにより光の屈折率が変化すること
と、音響光学媒体内部の温度分布が不均一になって回折
効率が不安定となり、50時間経過後には回折効率の低
下が起こった。更に、100時間経過時には回折現象は
起こらなくなった。
[Comparative Example] Except that the Peltier device of the example was removed,
An acousto-optic modulator was produced in the same manner as in the example. The acousto-optic device produced above was incorporated into a resonance circuit, and an ultrasonic signal of 140 MHz and 0.5 W was input and an energization test was conducted for 100 hours using the optical system shown in FIG. The temperature of the acousto-optic medium with respect to the energization time at this time was measured by an acousto-optic element using an infrared thermometer (TVS-200) manufactured by Nippon Avionics. The acousto-optic element inputs ultrasonic waves as shown in FIG. After 50 hours, the temperature changed from 20 ° C to 55 ° C. As a result, as shown in FIG. 7, the temperature within the acousto-optic modulator increases 1 hour after the start of the test as shown in FIG. 6 to change the refractive index of light, and the temperature distribution inside the acousto-optic medium. Became non-uniform and the diffraction efficiency became unstable, and the diffraction efficiency decreased after 50 hours. Furthermore, the diffraction phenomenon did not occur after 100 hours.

【0015】尚、本発明の実施例は波長が1.3μm帯
で、圧電振動子の低い駆動パワーで大きな回折効率が得
られ、一方、素子温度の変化によって回折効率が変化し
やすい音響光学媒体であるセレン化砒素についてのみ示
してあるが、他の音響光学媒体として実用化されている
モリブデン酸鉛単結晶、二酸化テルル単結晶にも本発明
の音響光学媒体にペルチェ素子を接合し温度制御を行な
うことにより、回折効率低下のない音響光学変調素子と
し得ることは当然である。
In the embodiment of the present invention, the wavelength is 1.3 μm, and a large diffraction efficiency can be obtained with a low driving power of the piezoelectric vibrator. On the other hand, the acousto-optic medium whose diffraction efficiency is easily changed by the change of the element temperature. Although it is shown only for arsenic selenide which is, a Peltier element is bonded to the acousto-optic medium of the present invention for the lead molybdate single crystal and tellurium dioxide single crystal which are practically used as other acousto-optic media, and the temperature control is performed. It is natural that an acousto-optic modulator with no reduction in diffraction efficiency can be obtained by carrying out.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、高
周波の超音波の駆動によって音響光学媒体中に発生する
熱に起因する屈折率の不均一を除去することが出来、長
時間にわたり駆動しても光ビームの回折角や揺らぎ、回
折効率低下のない高性能音響光学変調素子を提供出来る
ようになった。
As described above, according to the present invention, it is possible to remove the unevenness of the refractive index due to the heat generated in the acousto-optic medium by driving the high frequency ultrasonic wave, and drive for a long time. Even now, it has become possible to provide a high-performance acousto-optic modulator that does not cause the diffraction angle and fluctuation of the light beam and the reduction of diffraction efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】音響光学変調素子の構成の原理を示す正面図。FIG. 1 is a front view showing the principle of the configuration of an acousto-optic modulator.

【図2】本実施例により作製した音響光学変調素子の概
略構成を示す側面図。
FIG. 2 is a side view showing a schematic configuration of an acousto-optic modulator manufactured according to this example.

【図3】ペルチェ素子の構造を示す側面図。FIG. 3 is a side view showing the structure of a Peltier device.

【図4】本実施例及び比較例で用いた通電試験用光学系
の配置図。
FIG. 4 is a layout view of an optical system for an electric current test used in this example and a comparative example.

【図5】本実施例により作製した音響光学変調素子の通
電時間に対する回折効率変化を示す特性図。
FIG. 5 is a characteristic diagram showing changes in diffraction efficiency of an acousto-optic modulator manufactured according to the present example with respect to energization time.

【図6】比較例により作製した音響光学変調素子の通電
時間に対する媒体温度測定結果を示す特性図。
FIG. 6 is a characteristic diagram showing measurement results of medium temperature with respect to energization time of an acousto-optic modulator manufactured according to a comparative example.

【図7】比較例により作製した音響光学変調素子の通電
時間に対する回折効率変化を示す特性図。
FIG. 7 is a characteristic diagram showing changes in diffraction efficiency with respect to energization time of an acousto-optic modulator manufactured according to a comparative example.

【符号の説明】[Explanation of symbols]

1 入射光 2 1次回折光 3 非回折光 4 超音波進行波 5 圧電振動子 6 音響光学媒体 7 高周波電源 8 音響光学媒体 9 光学面 10 斜め研磨部(超音波反射防止用) 11 ペルチェ素子 12 下地電極 13 圧電振動子 14 上部電極 15 リード線 16 光源(1.3μm) 17 音響光学変調器 18 同軸ケーブル 19 高周波電源(140MHz) 20 光パワーメータ 21 光路 22 電子冷却素子 23 銅電極 24 銅板(表面ニッケルメッキ) 25 基板(アルミナセラミックス) 26 半田層 A→A 熱の流れ B→B 電流の流れ 1 Incident Light 2 1st-Order Diffracted Light 3 Non-Diffracted Light 4 Ultrasonic Traveling Wave 5 Piezoelectric Vibrator 6 Acousto-Optical Medium 7 High-Frequency Power Source 8 Acousto-Optical Medium 9 Optical Surface 10 Oblique Polishing Part (for Ultrasonic Reflection Prevention) 11 Peltier Element 12 Base Electrode 13 Piezoelectric vibrator 14 Upper electrode 15 Lead wire 16 Light source (1.3 μm) 17 Acousto-optic modulator 18 Coaxial cable 19 High frequency power source (140 MHz) 20 Optical power meter 21 Optical path 22 Electronic cooling element 23 Copper electrode 24 Copper plate (Surface nickel) Plating) 25 Substrate (alumina ceramics) 26 Solder layer A → A Heat flow B → B Current flow

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 音響光学媒体と圧電振動子を接合してな
る音響光学変調素子に於いて、光学面、圧電振動子接合
面、及び斜め研磨部(超音波反射防止用)を除く相対す
る2面にペルチェ素子を密着させ、音響光学媒体内部温
度を20±2℃に制御させてなることを特徴とする音響
光学変調素子。
1. An acousto-optic modulator including an acousto-optic medium and a piezoelectric vibrator, which are opposed to each other except an optical surface, a piezoelectric vibrator-bonding surface, and an oblique polishing portion (for preventing ultrasonic reflection). An acousto-optic modulator, wherein a Peltier element is brought into close contact with the surface and the internal temperature of the acousto-optic medium is controlled to 20 ± 2 ° C.
JP5088095A 1993-03-22 1993-03-22 Acousto-optic modulating element Pending JPH06273705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5088095A JPH06273705A (en) 1993-03-22 1993-03-22 Acousto-optic modulating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5088095A JPH06273705A (en) 1993-03-22 1993-03-22 Acousto-optic modulating element

Publications (1)

Publication Number Publication Date
JPH06273705A true JPH06273705A (en) 1994-09-30

Family

ID=13933319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5088095A Pending JPH06273705A (en) 1993-03-22 1993-03-22 Acousto-optic modulating element

Country Status (1)

Country Link
JP (1) JPH06273705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100314090B1 (en) * 1996-10-16 2001-12-12 윤종용 Acousto-optical modulator and manufacturing method therefor
JP2006226920A (en) * 2005-02-18 2006-08-31 Olympus Corp Multiphoton excitation type observation device, and light source device for multiphoton excitation type observation
JP2013165143A (en) * 2012-02-10 2013-08-22 Shimadzu Corp Solid-state laser device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100314090B1 (en) * 1996-10-16 2001-12-12 윤종용 Acousto-optical modulator and manufacturing method therefor
JP2006226920A (en) * 2005-02-18 2006-08-31 Olympus Corp Multiphoton excitation type observation device, and light source device for multiphoton excitation type observation
JP2013165143A (en) * 2012-02-10 2013-08-22 Shimadzu Corp Solid-state laser device

Similar Documents

Publication Publication Date Title
US8391651B2 (en) Optical waveguide device
JP2008249790A (en) Optical waveguide element, method of suppressing temperature crosstalk of the same
JP2011081362A (en) Optical waveguide electro-optic device and process of manufacturing the same
US8400703B2 (en) Optical switch
US4762383A (en) Two dimensional light beam deflectors utilizing thermooptical effect and method of using same
JP3570735B2 (en) Optical waveguide device
JP2780400B2 (en) Light modulator
JPH06273705A (en) Acousto-optic modulating element
JP2006309124A (en) Optical modulator
JPH0445431A (en) Tunable optical waveguide
JP2550730B2 (en) Optical waveguide device and manufacturing method thereof
US4299449A (en) Acoustooptic modulator
JPS58125025A (en) Two-dimensional optical deflector
JPH0764127A (en) Acousto-optical modulator
JPH06230331A (en) Acousto-optical element
JP2640069B2 (en) Acousto-optic modulator
JP3368986B2 (en) Optical scanning recording device
JPH0764128A (en) Production of acousto-optical modulation element
JP2004245991A (en) Optical waveguide device and structure combining the same and optical transmission member
JP2005274889A (en) Optical waveguide device
JPS6212487B2 (en)
JPS6035653B2 (en) light modulator
JP3533714B2 (en) Acousto-optic device and method of adjusting polarization characteristics thereof
JPH06138423A (en) Method for measuring thickness of adhesive layer of acoustooptical modulating element
JP2625926B2 (en) Acousto-optic element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A02 Decision of refusal

Effective date: 20060322

Free format text: JAPANESE INTERMEDIATE CODE: A02