JPH0627343B2 - Forced convection type plasma reactor - Google Patents

Forced convection type plasma reactor

Info

Publication number
JPH0627343B2
JPH0627343B2 JP63068857A JP6885788A JPH0627343B2 JP H0627343 B2 JPH0627343 B2 JP H0627343B2 JP 63068857 A JP63068857 A JP 63068857A JP 6885788 A JP6885788 A JP 6885788A JP H0627343 B2 JPH0627343 B2 JP H0627343B2
Authority
JP
Japan
Prior art keywords
plasma
gas
reaction
substrate
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63068857A
Other languages
Japanese (ja)
Other versions
JPH01244279A (en
Inventor
正二郎 小松
佑介 守吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP63068857A priority Critical patent/JPH0627343B2/en
Publication of JPH01244279A publication Critical patent/JPH01244279A/en
Publication of JPH0627343B2 publication Critical patent/JPH0627343B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプラズマ利用による合成法に用いられる強制対
流型プラズマ反応炉に関する。
TECHNICAL FIELD The present invention relates to a forced convection type plasma reactor used in a synthesis method utilizing plasma.

従来技術 従来のプラズマ反応炉としては、第2図に示すような反
応室2を水平にし、反応室2内に垂直に基板8を設け、
反応室内に誘導加熱6によりプラズマを発生させ、反応
ガスを導入管11より基板に向って導入するようにしたも
の。また、第3図に示すような反応室2を垂直にし、反
応室2内に水平に基板(または粉体捕集器)8を設け、
反応室2内に誘導加熱6によりプラズマを発生させ、反
応ガスを上部導入管11より導入するようにしたものが用
いられている。
2. Description of the Related Art As a conventional plasma reactor, a reaction chamber 2 as shown in FIG. 2 is made horizontal, and a substrate 8 is vertically provided in the reaction chamber 2.
A plasma is generated by induction heating 6 in the reaction chamber, and the reaction gas is introduced from the introduction pipe 11 toward the substrate. In addition, the reaction chamber 2 as shown in FIG. 3 is made vertical, and the substrate (or powder collector) 8 is provided horizontally in the reaction chamber 2.
A reactor in which plasma is generated by induction heating 6 in the reaction chamber 2 and a reaction gas is introduced through an upper introduction pipe 11 is used.

しかしながら、これらの反応炉は、プラズマの加熱によ
って生ずる対流の方向と導入されたガスの流れの方向が
一致しないために、ガスの流れに攪乱を引き起こし、効
率的な原料反応ガスの利用を妨げ、また実験上の再現性
を低下させる原因となっている。
However, in these reactors, since the direction of the convection generated by heating the plasma and the direction of the flow of the introduced gas do not match, the flow of the gas is disturbed, which hinders the efficient use of the raw material reaction gas, It also causes a decrease in reproducibility in experiments.

発明の目的 本発明は前記従来法のプラズマ反応炉の欠点を解消すべ
くなされたもので、その目的はプラズマ流の方向と反応
ガス流の方向を一致させ、プラズマ対流に影響されるこ
とのないようにしてガスの流れの攪乱を少なくし、また
実験上の再現性を向上させて原料ガスの利用効率を高め
得られ、かつガスの流速をプラズマへの入力を変えるこ
とによっても制御できるプラズマ反応炉を提供するにあ
る。
OBJECT OF THE INVENTION The present invention has been made to solve the drawbacks of the conventional plasma reactor, and its purpose is to make the plasma flow direction and the reaction gas flow direction coincide with each other and not be affected by plasma convection. In this way, it is possible to reduce the disturbance of the gas flow, improve the reproducibility in experiments, and improve the utilization efficiency of the raw material gas, and control the gas flow velocity by changing the input to the plasma. To provide a furnace.

発明の構成 本発明の強制対流型プラズマ反応炉は、第1図に示すよ
うに、プラズマを上方に噴出するプラズマ噴出口4を有
するプラズマ発生装置3の上部に反応室2を、該反応室
2の頂部に冷却器1を設け、反応室2内にプラズマ噴出
口4に対向して基板または粉体捕集器8を設置し、プラ
ズマ噴出口4と基板または粉体捕集器8との間に、反応
ガスをプラズマ噴出方向と同方向に導入する反応ガス導
入管11を設けることによって、前記目的を達成し得られ
た。
Structure of the Invention In the forced convection type plasma reactor of the present invention, as shown in FIG. 1, a reaction chamber 2 is provided above a plasma generator 3 having a plasma jet port 4 for jetting plasma upward. A cooler 1 is provided on the top of the chamber, a substrate or a powder collector 8 is installed in the reaction chamber 2 so as to face the plasma jet port 4, and a space is provided between the plasma jet port 4 and the substrate or the powder collector 8. The above object was achieved by providing the reaction gas introduction pipe 11 for introducing the reaction gas in the same direction as the plasma jet direction.

プラズマ発生装置3は周囲を冷却(例えば水冷)ジャケ
ット5で囲み、その外周から高周波入力6することによ
りプラズマを発生させる。プラズマ用ガス(例えばHe+
H2)は導入管7よりプラズマ発生部に導入し、発生した
プラズマをプラズマ噴出口4より情報へ向って噴出させ
る。反応室2内には基板8が基板支持具9により保持さ
れ、基板8はヒーター10により適当温度に加熱される。
11には反応ガス導入管で反応ガスをプラズマ流と同方向
に導入する。12は排出口である。図面では基板を設置し
た場合を示したが、反応生成物を粉体として捕集する場
合はこれに代え粉体捕集器を用いる。
The plasma generator 3 is surrounded by a cooling (for example, water cooling) jacket 5, and a plasma is generated by inputting a high frequency wave 6 from the outer periphery thereof. Gas for plasma (eg He +
H 2 ) is introduced into the plasma generation part through the introduction pipe 7, and the generated plasma is ejected from the plasma ejection port 4 toward the information. A substrate 8 is held in the reaction chamber 2 by a substrate support 9, and the substrate 8 is heated by a heater 10 to an appropriate temperature.
In 11, a reaction gas is introduced through a reaction gas introduction pipe in the same direction as the plasma flow. 12 is an outlet. Although the drawing shows the case where the substrate is installed, when collecting the reaction product as a powder, a powder collector is used instead.

このプラズマ反応炉の操作は、通常はプラズマ用ガス及
び反応ガスを定常的に流しながら、同時に排気口から排
気を用い開放系として用いる。その際、排気速度と反応
ガス流量の制御により所望のガス圧とする。プラズマ発
生部内にプラズマ用ガスを導入し、プラズマ化させて、
プラズマをプラズマ噴出口より噴出させる。一方反応ガ
スはプラズマにより分解反応を起こし、基板上に析出す
る。残ガスは反応室上部に設けられた冷却器により冷却
され、反応室下部に下降し、プラズマ発生部に入り、プ
ラズマ化を繰り返す一方、これらの一部は排気される。
In the operation of this plasma reactor, a plasma gas and a reaction gas are usually steadily flowed, and at the same time, exhaust gas is used from an exhaust port to be used as an open system. At that time, a desired gas pressure is obtained by controlling the exhaust rate and the reaction gas flow rate. Introduce a gas for plasma into the plasma generation part to turn it into plasma,
Plasma is ejected from the plasma ejection port. On the other hand, the reaction gas undergoes a decomposition reaction due to plasma and is deposited on the substrate. The residual gas is cooled by a cooler provided in the upper part of the reaction chamber, descends to the lower part of the reaction chamber, enters the plasma generation part, and is repeatedly turned into plasma, while part of them is exhausted.

発明の効果 本発明のプラズマ反応炉によると、反応室内において、
プラズマの流れ方向と反応ガス流の方向が一致し、プラ
ズマ加熱による対流に影響されることがないので、反応
室内のガス流による攪乱が少なく、実験上の再現性を向
上させると共に反応ガスの利用効率を高め得られる。
Effects of the Invention According to the plasma reactor of the present invention, in the reaction chamber,
Since the plasma flow direction and the reaction gas flow direction are the same and are not affected by convection due to plasma heating, there is little disturbance by the gas flow in the reaction chamber, improving the reproducibility in experiments and utilizing the reaction gas. You can increase efficiency.

また、反応室内での反応ガスの流速は、従来のプラズマ
反応炉においては反応ガスの導入圧のみによって制御す
るが、本発明のプラズマ反応炉では、プラズマ噴射力に
よっても反応ガスの流速を制御し得られるので、プラズ
マの入力を変えることにより制御し得られ、反応ガス流
速の調整が容易である。
Further, the flow rate of the reaction gas in the reaction chamber is controlled only by the introduction pressure of the reaction gas in the conventional plasma reactor, but in the plasma reactor of the present invention, the flow rate of the reaction gas is also controlled by the plasma injection force. Since it can be obtained, it can be controlled by changing the input of plasma, and the flow rate of the reaction gas can be easily adjusted.

実施例1. 第1図に示す反応炉を用い、原料ガスとしてジボラン、
プラズマ用ガスとして水素及びヘリウム混合ガスを用
い、全圧2Torr、基板温度870 ℃、プラズマ入力800 W
、シリコン基板、ヘリウム希釈5%ジボンの流量30SCC
Mの条件下で硬質ほう素薄膜を製造した。膜の成長速度
は15μm/h に達した。膜はメタリック且つ均質で、基
板への付着性は良好で、反応ガスの蒸着効率は60%以上
であった。
Example 1. Using the reaction furnace shown in FIG. 1, diborane as a source gas,
Using hydrogen and helium mixed gas as plasma gas, total pressure 2 Torr, substrate temperature 870 ℃, plasma input 800 W
, Silicon substrate, Helium diluted 5% dibon flow rate 30SCC
Hard boron thin films were prepared under the condition of M. The growth rate of the film reached 15 μm / h. The film was metallic and homogeneous, the adhesion to the substrate was good, and the deposition efficiency of the reaction gas was 60% or more.

これに対し、第2図のプラズマ反応炉を用い、前記と同
一条件で行った場合における反応ガスの蒸着効率は、こ
の1/10以下であった。
On the other hand, the vapor deposition efficiency of the reaction gas when using the plasma reactor shown in FIG. 2 under the same conditions as described above was 1/10 or less.

実施例2. 第1図に示す反応炉を用い、原料ガスとしてジボラン、
プラズマ用ガスとして水素及びヘリウムを用い、全圧2
Torr、全流量100 SCCM、基板温度880 ℃、プラズマ入力
2kWにて、基板としてシリコン・ウエハーを用い、ヘリ
ウム希釈5%ジボンの流量20 SCCの下でほう素針状結晶
が得られた。
Example 2. Using the reaction furnace shown in FIG. 1, diborane as a source gas,
Using hydrogen and helium as plasma gas, total pressure 2
Boron needle-like crystals were obtained at a total flow rate of 100 SCCM, a substrate temperature of 880 ° C., a plasma input of 2 kW, a silicon wafer as a substrate, and a helium-diluted 5% dibon flow rate of 20 SCC.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の強制対流型プラズマ反応炉の実施態様
図で、第2図及び第3図は従来のプラズマ反応炉であ
る。 1:冷却器、2:反応室、 3:プラズマ発生装置、4:プラズマ噴出口、 5:冷却ジャケット、6:高周波入力、 7:プラズマ用ガス導入管、 8:基板、9:基板支持具、 10:加熱器、11:反応ガス導入管、 12:排気口。
FIG. 1 is an embodiment diagram of a forced convection plasma reactor of the present invention, and FIGS. 2 and 3 are conventional plasma reactors. 1: Cooler, 2: Reaction chamber, 3: Plasma generator, 4: Plasma ejection port, 5: Cooling jacket, 6: High frequency input, 7: Plasma gas introduction pipe, 8: Substrate, 9: Substrate support, 10: heater, 11: reaction gas introduction pipe, 12: exhaust port.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】プラズマを上方に噴出するプラズマ噴出口
を有するプラズマ発生装置の上部に反応室を、該反応室
の頂部に冷却器を設け、反応室内にプラズマ噴出口に対
向して基板または粉体捕集器を設置し、プラズマ噴出口
と基板または粉体捕集器との間に、反応ガスをプラズマ
噴出方向と同方向に導入する反応ガス導入管を設けたこ
とを特徴とする強制対流型プラズマ反応炉。
1. A reaction chamber is provided above a plasma generator having a plasma ejection port for ejecting plasma upward, and a cooler is provided at the top of the reaction chamber, and a substrate or powder is provided in the reaction chamber so as to face the plasma ejection port. Forced convection characterized in that a body collector is installed and a reaction gas introduction pipe for introducing the reaction gas in the same direction as the plasma ejection direction is provided between the plasma ejection port and the substrate or powder collector. Type plasma reactor.
JP63068857A 1988-03-23 1988-03-23 Forced convection type plasma reactor Expired - Lifetime JPH0627343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63068857A JPH0627343B2 (en) 1988-03-23 1988-03-23 Forced convection type plasma reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63068857A JPH0627343B2 (en) 1988-03-23 1988-03-23 Forced convection type plasma reactor

Publications (2)

Publication Number Publication Date
JPH01244279A JPH01244279A (en) 1989-09-28
JPH0627343B2 true JPH0627343B2 (en) 1994-04-13

Family

ID=13385760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63068857A Expired - Lifetime JPH0627343B2 (en) 1988-03-23 1988-03-23 Forced convection type plasma reactor

Country Status (1)

Country Link
JP (1) JPH0627343B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481398B1 (en) * 2001-04-11 2005-04-07 (주)케이.씨.텍 Method of Treating Perfluoro-Carbon Compound Gas And Apparatus For Treating Thereof

Also Published As

Publication number Publication date
JPH01244279A (en) 1989-09-28

Similar Documents

Publication Publication Date Title
US4634605A (en) Method for the indirect deposition of amorphous silicon and polycrystalline silicone and alloys thereof
KR950012910B1 (en) Vapor phase growth apparatus
US5560779A (en) Apparatus for synthesizing diamond films utilizing an arc plasma
GB1346938A (en) Reactors and method of manufacture of semiconductor devices using such a reactor
US4102767A (en) Arc heater method for the production of single crystal silicon
JPH0424284B2 (en)
JPH0627343B2 (en) Forced convection type plasma reactor
CN201598181U (en) Device for producing polycrystalline silicon by plasma auxiliary fluidized bed process
JP5917359B2 (en) Method for supplying raw material gas for producing polycrystalline silicon and polycrystalline silicon
JPS6251919B2 (en)
JPS6012728A (en) Electrode structure for film forming
JPS63143813A (en) Method and apparatus for manufacturing high purity silicon as semiconductor material
JPH04154117A (en) Low pressure cvd system
US4609424A (en) Plasma enhanced deposition of semiconductors
CN107973300A (en) Liquid silicon manufacturing apparatus and method
JPH06127926A (en) Production of granular polycrystalline silicon
JP2003100642A (en) Vapor phase thin film epitaxial growth system and vapor phase thin film epitaxial growth method
JPS6234416B2 (en)
JPS6077116A (en) Production of silicon granule
JPS6225411A (en) Formation of plasma cvd film
JPS5727914A (en) Manufacture of thin silicon carbide film
JPH0897154A (en) Vacuum film formation system
JPS5468161A (en) Gas phase growth unit
JPH0786178A (en) Chemical vapor deposition system
JPS59163820A (en) Chemical vapor phase growth device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term