JPH06273013A - Air conditioning apparatus - Google Patents

Air conditioning apparatus

Info

Publication number
JPH06273013A
JPH06273013A JP5996093A JP5996093A JPH06273013A JP H06273013 A JPH06273013 A JP H06273013A JP 5996093 A JP5996093 A JP 5996093A JP 5996093 A JP5996093 A JP 5996093A JP H06273013 A JPH06273013 A JP H06273013A
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
degree
expansion valve
rate control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5996093A
Other languages
Japanese (ja)
Inventor
Takayoshi Iwanaga
隆喜 岩永
Tetsuo Sano
哲夫 佐野
Yasuhiro Arai
康弘 新井
Tetsuji Yamashita
哲司 山下
Koichi Goto
功一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5996093A priority Critical patent/JPH06273013A/en
Publication of JPH06273013A publication Critical patent/JPH06273013A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To achieve higher reliability by providing a judging means to deter mine the spillage of a refrigerant in detecting that a flow rate control means so arranged to vary the flow rate of the refrigerant in the refrigeration cycle by a direction from a controller is opened exceeding a fixed opening to detect the spillage of the refrigerant early and accurately. CONSTITUTION:This apparatus is provided with a compressor 1, a four-way valve 2, a room heat exchanger 3 and an electric type expansion valve 4 as flow rate control means. The opening of the electric type expansion valve 4 is controlled with a controller 6. In an airconditioning apparatus which has the electric type expansion valve 4 to vary the flow rate of a refrigerant in a refrigeration cycle by a direction from the controller 6, the opening of the electric type expansion valve 4 is adjusted so that it is controlled within a specified opening range at the development stage of a product. Thus, in the normal operation, the electric type expansion valve 4 operates properly as long as it is controlled within a specified opening range. When it is controlled outside the specified opening range any abnormality is determined to occur in a refrigeration cycle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気調和装置に関し、
特に冷凍サイクルの冷媒漏れ検出に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner,
In particular, it relates to refrigerant leakage detection in the refrigeration cycle.

【0002】[0002]

【従来の技術】冷凍サイクル内に封入されている冷媒の
従来の漏れ検出技術としては、例えば圧縮機ケースの上
部にバイメタルサーモスイッチや温度ヒューズ等の保護
装置を設けたものがある。そして、冷凍サイクル中の冷
媒が不足すると圧縮機の温度が上昇して保護装置が動作
するので、この保護装置の動作回数などから冷媒ガスの
漏れを判断し、空気調和装置の運転の停止や冷媒漏れの
起ったことを表示するなどのことをしていた。従来の漏
れ検出技術は、単一冷媒もしくは共沸混合冷媒のみを用
いていた場合には、多少の冷媒の漏れがあっても、冷房
・暖房運転に際して多少の効率低下はあるものの、特に
これを問題とせず極端な冷媒不足により起る上記保護装
置の動作の有無により冷媒漏れを判断するようにしてい
た。このため、保護装置は、圧縮機の通常運転時に簡単
に動作させないようにするため、圧縮機の使用条件一杯
の範囲で動作するように設定されていることが多かっ
た。
2. Description of the Related Art As a conventional leak detection technique for a refrigerant enclosed in a refrigeration cycle, there is, for example, a device provided with a protective device such as a bimetal thermoswitch or a thermal fuse on the upper part of a compressor case. Then, when the refrigerant in the refrigeration cycle is insufficient, the temperature of the compressor rises and the protective device operates.Thus, the leakage of the refrigerant gas is judged from the number of times of operation of the protective device and the operation of the air conditioner is stopped or the refrigerant is cooled. I was doing things such as displaying that the leak had occurred. In the conventional leak detection technology, when only a single refrigerant or an azeotropic mixed refrigerant is used, even if there is some leakage of the refrigerant, there is some decrease in efficiency during cooling / heating operation, but this is especially important. A refrigerant leak is judged based on the presence or absence of the operation of the protection device caused by an extreme shortage of the refrigerant without causing a problem. For this reason, the protection device is often set to operate within a range where the usage conditions of the compressor are full, in order to prevent the protection device from easily operating during normal operation of the compressor.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の保護装
置は、圧縮機の使用条件一杯の範囲で動作するように設
定されていたため、圧縮機に多くの負担をかけていた。
また、冷媒として非共沸混合冷媒が用いられた場合に
は、冷媒がガス状態で漏れる場合、沸点の低い冷媒成分
側から漏れるので、通常の冷媒漏れの問題以前に、冷媒
の混合割合の変化による問題即ち、著しい性能低下や、
可燃性冷媒を含んでいる場合には、不燃混合比から可燃
混合比への混合比の移行も考えられるので、できるだけ
早い時点での冷媒漏れ検出が必要とされる。
However, since the conventional protection device is set so as to operate within the range where the usage condition of the compressor is full, it puts a heavy load on the compressor.
Further, when a non-azeotropic mixed refrigerant is used as the refrigerant, if the refrigerant leaks in a gas state, it leaks from the refrigerant component side with a low boiling point, so before the problem of normal refrigerant leakage, the change in the mixing ratio of the refrigerant. Due to the problem, i.e.
When a combustible refrigerant is included, the mixture ratio may shift from the non-combustible mixture ratio to the combustible mixture ratio, and therefore refrigerant leakage detection at the earliest possible time is required.

【0004】そこで、本発明は、冷媒漏れを早期かつ確
実に検出して信頼性を高めることのできる空気調和装置
を提供することを目的とする。
Therefore, it is an object of the present invention to provide an air conditioner capable of detecting a refrigerant leak early and surely and improving reliability.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、第1に、冷凍サイクル中の冷媒流量を制
御器からの指示により可変する流量制御手段を有する空
気調和装置において、前記流量制御手段が一定開度以上
に開いた状態を検出したとき冷媒漏れと判定する判定手
段を有することを要旨とする。
In order to solve the above problems, the present invention firstly provides an air conditioner having flow rate control means for varying the flow rate of a refrigerant in a refrigeration cycle according to an instruction from a controller, The gist of the present invention is to have a determining means for determining a refrigerant leak when the flow rate control means detects a state in which the flow rate control means is opened to a certain degree or more.

【0006】第2に、冷凍サイクル中の冷媒流量を可変
する流量制御手段と、前記冷凍サイクル中の冷媒の過冷
却度を検出する過冷却度検出手段と、該過冷却度検出手
段で検出された過冷却度と前記流量制御手段の開度を基
に冷媒漏れを判定する判定手段とを有することを要旨と
する。
Secondly, flow rate control means for varying the refrigerant flow rate in the refrigerating cycle, supercooling degree detecting means for detecting the degree of supercooling of the refrigerant in the refrigerating cycle, and supercooling degree detecting means for detecting the degree of supercooling. The gist of the present invention is to have a determination means for determining refrigerant leakage based on the degree of supercooling and the opening degree of the flow rate control means.

【0007】第3に、冷凍サイクル中の冷媒流量を可変
する流量制御手段と、前記冷凍サイクル中の冷媒の過熱
度を検出する過熱度検出手段と、該過熱度検出手段で検
出された過熱度と前記流量制御手段の開度を基に冷媒漏
れを判定する判定手段とを有することを要旨とする。
Thirdly, flow rate control means for varying the refrigerant flow rate in the refrigeration cycle, superheat degree detection means for detecting the superheat degree of the refrigerant in the refrigeration cycle, and superheat degree detected by the superheat degree detection means. And a determination means for determining a refrigerant leak based on the opening degree of the flow rate control means.

【0008】[0008]

【作用】上記構成において、第1に、冷凍サイクルにお
いて、通常運転では流量制御手段は常にある所定の開度
範囲内で制御され適正な冷媒流量制御が行われる。所定
開度範囲を外れて制御された場合は、冷凍サイクルに何
らかの異常が発生していると判断することができる。こ
の異常発生のうち流量制御手段が一定開度以上に開いた
状態、例えば全開状態では冷媒循環量の不足、即ち冷媒
漏れによる冷媒不足と判定される。したがって、流量制
御手段の開度を監視することで冷媒漏れを早期かつ確実
に検出することが可能となる。そして、この冷媒漏れの
検出法は、通常の冷媒流量制御の延長線上にあるので、
圧縮機に異常な負荷を与えることなく検出することが可
能となる。
In the above structure, firstly, in the refrigerating cycle, the flow rate control means is always controlled within a predetermined opening range in the normal operation to properly control the flow rate of the refrigerant. If the control is performed outside the predetermined opening range, it can be determined that some abnormality has occurred in the refrigeration cycle. When the flow rate control means is opened to a certain degree or more of the occurrence of this abnormality, for example, in the fully opened state, it is determined that the refrigerant circulation amount is insufficient, that is, the refrigerant is insufficient due to refrigerant leakage. Therefore, by monitoring the opening degree of the flow rate control means, it becomes possible to detect the refrigerant leakage early and surely. And this method of detecting refrigerant leakage is on an extension of normal refrigerant flow control,
It is possible to detect without giving an abnormal load to the compressor.

【0009】第2に、冷凍サイクルにおいて、通常運転
では適正な過冷却度がとれている状態が理想である。こ
の過冷却度がとれにくく、そのため流量制御手段が絞り
過ぎの状態を示したときは、冷媒循環量の不足、即ち冷
媒漏れと判定することが可能となる。
Second, in the refrigeration cycle, it is ideal that a proper degree of subcooling is obtained in normal operation. This degree of subcooling is difficult to obtain, and therefore, when the flow rate control means indicates a state of excessive throttle, it is possible to determine that the refrigerant circulation amount is insufficient, that is, refrigerant leakage.

【0010】第3に、冷凍サイクルにおいて、通常運転
では適正な過熱度がとれている状態が理想である。この
過熱度がとれにくく、そのため流量制御手段が開き過ぎ
の状態を示したときは、冷媒循環量の不足、即ち冷媒漏
れと判定することが可能となる。
Third, in the refrigeration cycle, it is ideal that the proper degree of superheat is obtained in normal operation. When the degree of superheat is hard to be obtained, and therefore the flow rate control means is in an excessively opened state, it is possible to determine that the refrigerant circulation amount is insufficient, that is, refrigerant leakage.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1乃至図5は、本発明の第1実施例を示
す図である。図1の冷凍サイクルにおいて、1は圧縮
機、2は四方弁、3は室内熱交換器、4は流量制御手段
としての電動式膨張弁であり、その開度が制御器6によ
り制御されるようになっている。5は室外熱交換器、7
は室外熱交換器中間温度を検出する第1の温度検出器、
8は圧縮機1のサクションラインの温度を検出する第2
の温度検出器である。四方弁2を正逆に切替えることに
より、冷、暖房の切替えが行われ、暖房時には、室内熱
交換器3は凝縮器として機能し、室外熱交換器5は蒸発
器として機能する。またこのとき、第1の温度検出器7
の検出温度と第2の温度検出器8の検出温度との温度差
により、圧縮機1に入る冷媒の過熱度が検出される。即
ち、第1、第2の両温度検出器7,8で過熱度検出手段
が構成されている。
1 to 5 are views showing a first embodiment of the present invention. In the refrigeration cycle of FIG. 1, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is an electric expansion valve as a flow rate control means, and its opening is controlled by a controller 6. It has become. 5 is an outdoor heat exchanger, 7
Is a first temperature detector for detecting an intermediate temperature of the outdoor heat exchanger,
8 is the second for detecting the temperature of the suction line of the compressor 1.
It is a temperature detector of. By switching the four-way valve 2 between forward and reverse, switching between cooling and heating is performed, and during heating, the indoor heat exchanger 3 functions as a condenser and the outdoor heat exchanger 5 functions as an evaporator. At this time, the first temperature detector 7
The degree of superheat of the refrigerant entering the compressor 1 is detected based on the temperature difference between the temperature detected by and the temperature detected by the second temperature detector 8. That is, the first and second temperature detectors 7 and 8 constitute superheat degree detecting means.

【0013】次に、上述のような構成の冷凍サイクルを
有する空気調和装置において、冷媒漏れを判定する第1
の判定方法を説明する。冷凍サイクル中の冷媒流量を制
御器6からの指示により可変する電動式膨張弁4を有す
る空気調和装置においては、電動式膨張弁4の開度は、
その製品の開発段階において所定の開度範囲内で制御さ
れるように調整されている。このような冷凍サイクルに
おいて、常に適正な冷媒流量制御を行うためには、電動
式膨張弁4が全開又は全閉という状態にあってはならな
い。冷媒封入量が適正であるのに電動式膨張弁が全開に
なるような制御では空調負荷変動時や、サイクルが不安
定である時などに圧縮機に過大な負荷をかけることにな
るからである。したがって、通常運転では、電動式膨張
弁4は常に所定の開度範囲内で制御されているのが適正
運転であり、所定開度範囲を外れて制御された場合は、
冷凍サイクルに何らかの異常が発生していると判断する
ことができる。この異常発生のうち電動式膨張弁4が一
定開度以上に開いた場合、例えば全開状態では冷媒循環
量の不足、即ち冷媒漏れによる冷媒不足と判定すること
ができる。蒸発器側の熱源温度(周囲空気温度)が高い
場合には、冷媒は液として溜りにくい条件、即ち過熱度
が大きくとれる状態にある。逆に、蒸発器の熱源温度が
低い場合には、過熱度は確保しにくい状態にある。この
周囲温度環境を考慮に入れても、冷媒漏れによる冷媒不
足は、電動式膨張弁4の開度を見ることにより判定でき
る。したがって、図3に示すようなパラメータテーブル
を制御器6が判断基準として持ち、電動式膨張弁4の指
示開度を監視することで冷媒漏れを早期かつ確実に検出
することが可能となる。即ち、この場合は、制御器6が
判定手段として機能する。また、電動式膨張弁4が一定
開度以上に開いた状態が任意の設定時間以上続いたか否
かを判定基準に加えることにより、より一層確実に冷媒
漏れを検出することが可能となる。そして、この冷媒漏
れの検出法は、通常の冷媒流量制御の延長線上にあるの
で、圧縮機1に異常な負荷を与えることなく検出するこ
とが可能であり、圧縮機1の信頼性を高めることができ
る。
Next, in the air conditioner having the refrigeration cycle configured as described above, the first method for judging refrigerant leakage is described.
The determination method of will be described. In the air conditioner having the electric expansion valve 4 that changes the flow rate of the refrigerant in the refrigeration cycle according to an instruction from the controller 6, the opening degree of the electric expansion valve 4 is
It is adjusted so as to be controlled within a predetermined opening range in the development stage of the product. In such a refrigeration cycle, the electric expansion valve 4 must not be in a fully open or fully closed state in order to always perform proper refrigerant flow rate control. This is because the control in which the electric expansion valve is fully opened even though the refrigerant charge amount is appropriate causes an excessive load on the compressor when the air conditioning load fluctuates or when the cycle is unstable. . Therefore, in normal operation, it is proper operation that the electric expansion valve 4 is always controlled within the predetermined opening range, and when it is controlled outside the predetermined opening range,
It can be determined that some abnormality has occurred in the refrigeration cycle. When the electrically driven expansion valve 4 is opened to a certain degree or more during this abnormality occurrence, it can be determined that the refrigerant circulation amount is insufficient, that is, the refrigerant is insufficient due to refrigerant leakage, for example, in the fully open state. When the heat source temperature (ambient air temperature) on the evaporator side is high, the refrigerant is in a condition in which it does not easily accumulate as a liquid, that is, the superheat degree is large. On the contrary, when the heat source temperature of the evaporator is low, it is difficult to secure the degree of superheat. Even if the ambient temperature environment is taken into consideration, the shortage of the refrigerant due to the refrigerant leakage can be determined by looking at the opening degree of the electrically driven expansion valve 4. Therefore, the controller 6 has a parameter table as shown in FIG. 3 as a judgment reference, and by monitoring the indicated opening degree of the electric expansion valve 4, it becomes possible to detect the refrigerant leakage early and reliably. That is, in this case, the controller 6 functions as the determination means. Further, by adding to the determination criterion whether or not the state in which the electrically operated expansion valve 4 is opened to a certain degree or more continues for an arbitrary set time or longer, it is possible to detect the refrigerant leakage more reliably. Since this method of detecting refrigerant leakage is an extension of normal refrigerant flow rate control, it is possible to detect it without giving an abnormal load to the compressor 1 and improve the reliability of the compressor 1. You can

【0014】次いで、第2の判定方法を説明する。冷凍
サイクルにおいて、通常運転では図2の領域SCで示す
ように凝縮器3での適正な過冷却度がとれている状態が
理想である。この過冷却度がとれにくく(図2で領域S
Cが飽和液線に近づいた状態)、そのため電動式膨張弁
4が絞り過ぎの状態を示したときは、冷媒循環量の不
足、即ち冷媒漏れと判定される。凝縮器3での過冷却度
は、図示省略の過冷却度検出手段である室内熱交換器中
間温度検出器と室内熱交換器入口温度検出器の両検出温
度の温度差により検出される。なお、図2において、実
線のサイクル特性は冷媒量適正の場合のサイクル特性を
示し、仮想線のサイクル特性は冷媒量不足の場合のサイ
クル特性を示している。
Next, the second determination method will be described. In the normal operation of the refrigeration cycle, it is ideal that the condenser 3 has an appropriate degree of supercooling as shown by the area SC in FIG. It is difficult to obtain this degree of supercooling (region S in FIG. 2).
When C is close to the saturated liquid line), and therefore the electric expansion valve 4 is in an excessively throttled state, it is determined that the refrigerant circulation amount is insufficient, that is, refrigerant leakage. The degree of supercooling in the condenser 3 is detected by the temperature difference between the temperatures detected by the indoor heat exchanger intermediate temperature detector and the indoor heat exchanger inlet temperature detector, which are unillustrated supercooling degree detecting means. In FIG. 2, the solid line cycle characteristics show the cycle characteristics when the refrigerant amount is appropriate, and the phantom line cycle characteristics show the cycle characteristics when the refrigerant amount is insufficient.

【0015】次に、第3の判定方法を説明する。冷凍サ
イクルにおいて、通常運転では適正な過熱度がとれてい
る状態が理想である。この過熱度がとれにくく、そのた
め電動式膨張弁4が開き過ぎの状態を示したときは、冷
媒循環量の不足、即ち冷媒漏れと判定することができ
る。これを図4のフローチャート及び図5のパラメータ
テーブルを用いて、さらに説明する。第1、第2の両温
度検出器7,8で蒸発器側の室外熱交換器中間温度T1
と圧縮機吸い込み温度T2 をそれぞれ検出し、その温度
差から圧縮機1に入る冷媒の過熱度SHを検出する(ス
テップ11)。ステップ12で検出された過熱度SHと
目標過熱度SHOを比較する。SH>SHOであれば電
動式膨張弁4の開度を1ステップ絞ってステップ11を
繰り返す。SH=SHOであれば電動式膨張弁4の開度
はそのままにしてステップ11を繰り返す。SH<SH
Oであれば、電動式膨張弁4の開度を1ステップ開き
(ステップ14)、制御器6に予め準備された図5に示
すパラメータテーブルを用いて電動式膨張弁4の開度N
が正常な範囲内か否かを検査する(ステップ15)。図
5のパラメータテーブルは、過熱度SH−膨張弁開度N
の条件を示し、膨張弁開度Nが大きくなることと過熱度
が大きくとれること(図5中の×印の領域)は、何れも
冷媒不足を表す指標である。そして電動式膨張弁4の開
度Nが開き過ぎで冷媒不足と判定されたときは、圧縮
機、送風機等の運転を停止し、空気調和機本体の運転表
示灯などで冷媒漏れを使用者に伝える(ステップ16,
17)。なお、図3は、図5のパラメータテーブルを特
性線で示したものである。
Next, the third determination method will be described. In the refrigeration cycle, it is ideal that the proper degree of superheat is obtained in normal operation. When the degree of superheat is difficult to be obtained and therefore the electric expansion valve 4 is in a state where it is opened too much, it can be determined that the refrigerant circulation amount is insufficient, that is, the refrigerant is leaked. This will be further described with reference to the flowchart of FIG. 4 and the parameter table of FIG. The outdoor heat exchanger intermediate temperature T 1 on the evaporator side in the first and second temperature detectors 7 and 8
And the compressor suction temperature T 2 are respectively detected, and the superheat degree SH of the refrigerant entering the compressor 1 is detected from the temperature difference (step 11). The superheat degree SH detected in step 12 is compared with the target superheat degree SHO. If SH> SHO, the opening degree of the electric expansion valve 4 is reduced by one step and step 11 is repeated. If SH = SHO, step 11 is repeated with the opening degree of the electric expansion valve 4 unchanged. SH <SH
If it is O, the opening degree of the electric expansion valve 4 is opened by one step (step 14), and the opening degree N of the electric expansion valve 4 is set by using the parameter table shown in FIG.
Is checked within a normal range (step 15). The parameter table of FIG. 5 shows the superheat degree SH-expansion valve opening N
In the above condition, the expansion valve opening N is large and the superheat degree is large (the area marked with X in FIG. 5) is an index indicating the refrigerant shortage. When it is determined that the opening degree N of the electric expansion valve 4 is too wide and it is determined that the refrigerant is insufficient, the compressor, the blower, and the like are stopped, and the user is informed of the refrigerant leakage by the operation indicator light of the air conditioner body. Tell (step 16,
17). Note that FIG. 3 shows the parameter table of FIG. 5 with characteristic lines.

【0016】図6乃至図9には、本発明の第2実施例を
示す。本実施例は、冷媒漏れを判定する第4の判定方法
を実行する例に相当し、圧縮機1に入る冷媒の過熱度
を、蒸発器入り口空気温度で検出するようにしたもので
ある。即ち、蒸発器入り口空気温度が高い場合、冷媒の
過熱度は大きくなる。図6中の第3の温度検出器9は蒸
発器となる室外熱交換器5の入り口空気温度検出用のも
のであり、図7は冷媒不足の判断基準となる蒸発器入り
口温度と膨張弁開度の条件を示している。蒸発器入り口
温度と膨張弁開度から、運転中の冷凍サイクルが適正に
制御されているかどうかを判断し、冷媒循環量の不足、
即ち冷媒漏れを判定するようになっている。これを図8
のフローチャート及び図9のパラメータテーブルを用い
て、さらに説明する。第3の温度検出器9で蒸発器吸い
込み空気温度TA を検出し、その検出値から冷媒の過熱
度SHを検知する(ステップ21)。検出された過熱度
SHと目標過熱度SHOを比較し(ステップ22)、S
H≧SHOであれば電動式膨張弁4の開度を1ステップ
絞る(ステップ23)等の処置を行ってステップ21を
繰り返す。SH<SHOであれば電動式膨張弁4の開度
を1ステップ開き(ステップ24)、制御器6に予め準
備された図9に示すパラメータテーブルを用いて電動式
膨張弁4の開度Nが正常な範囲内か否かを検査する(ス
テップ25)。図9のパラメータテーブルは、蒸発器吸
い込み空気温度TA −膨張弁開度Nの条件を示してお
り、蒸発器吸い込み空気温度TA が低く過熱度がとれに
くく、電動式膨張弁4が開き過ぎの状態を示したとき
は、冷媒不足と判断される。このとき、前記と同様に圧
縮機、送風機の運転停止等が行われる(ステップ26,
27)。図7は、図9のパラメータテーブルを特性線で
示したものである。
6 to 9 show a second embodiment of the present invention. The present embodiment corresponds to an example in which the fourth determination method for determining refrigerant leakage is executed, and the degree of superheat of the refrigerant entering the compressor 1 is detected by the evaporator inlet air temperature. That is, when the evaporator inlet air temperature is high, the degree of superheat of the refrigerant is high. The third temperature detector 9 in FIG. 6 is for detecting the inlet air temperature of the outdoor heat exchanger 5 which serves as an evaporator, and FIG. 7 shows the evaporator inlet temperature and expansion valve opening which serve as criteria for determination of refrigerant shortage. The condition of degree is shown. From the evaporator inlet temperature and the expansion valve opening, it is judged whether the refrigeration cycle during operation is properly controlled, and the refrigerant circulation amount is insufficient.
That is, the refrigerant leakage is determined. This is shown in FIG.
Further description will be made with reference to the flowchart of FIG. Detecting the air temperature T A suction evaporator at a third temperature detector 9 detects the superheat degree SH of the refrigerant from the detected value (step 21). The detected superheat degree SH and the target superheat degree SHO are compared (step 22), and S
If H ≧ SHO, the opening degree of the electric expansion valve 4 is reduced by one step (step 23) and the like, and then step 21 is repeated. If SH <SHO, the opening degree of the electric expansion valve 4 is opened by one step (step 24), and the opening degree N of the electric expansion valve 4 is set using the parameter table prepared in advance in the controller 6 shown in FIG. It is checked whether it is within the normal range (step 25). The parameter table of FIG. 9 shows conditions of evaporator intake air temperature T A -expansion valve opening N, and the evaporator intake air temperature T A is low and it is difficult to obtain superheat, and the electric expansion valve 4 opens too much. When the state is shown, it is determined that the refrigerant is insufficient. At this time, operation of the compressor and the blower is stopped in the same manner as described above (step 26,
27). FIG. 7 shows the parameter table of FIG. 9 with characteristic lines.

【0017】なお、上述の冷媒漏れを判定する各判定方
法において、制御器6が判定手段として機能するように
説明したが、電動式膨張弁4の開度を検出する方法とし
ては、この他に、電動式膨張弁4自身に開度検出器を設
けて検出する方法、電動式膨張弁4の制御前後を見て冷
凍サイクル温度の変化がないことを確認し全開を判断す
る方法等がある。
Although the controller 6 has been described as functioning as a determination means in each of the determination methods for determining refrigerant leakage described above, other methods for detecting the opening degree of the electrically driven expansion valve 4 are also available. The electric expansion valve 4 itself may be provided with an opening detector to detect the opening degree, and the opening and closing of the electric expansion valve 4 may be checked before and after it is confirmed that the refrigeration cycle temperature has not changed.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
第1に、流量制御手段が一定開度以上に開いた異常制御
状態により、冷媒漏れを判定するようにしたため、冷媒
漏れを早期かつ確実に検出することができ、また圧縮機
に異常な負荷を与えることなく検出することができるの
で信頼性を高めることができる。
As described above, according to the present invention,
Firstly, since the refrigerant leakage is judged by the abnormal control state in which the flow rate control means is opened to a certain degree or more, the refrigerant leakage can be detected early and surely, and the abnormal load on the compressor is prevented. Since it can be detected without giving it, reliability can be improved.

【0019】第2に、過冷却度検出手段で検出された過
冷却度と流量制御手段の開度を基に、過冷却度がとれに
くく、そのため流量制御手段が絞り過ぎの状態を示した
ときに冷媒漏れを判定するようにしたため、上記とほぼ
同様の効果が得られる。
Secondly, when it is difficult to obtain the degree of supercooling based on the degree of supercooling detected by the degree of supercooling detection means and the opening degree of the flow rate control means, when the flow rate control means indicates an excessive throttle condition. Since the refrigerant leakage is determined in the above, substantially the same effect as the above can be obtained.

【0020】第3に、過熱度検出手段で検出された過熱
度と流量制御手段の開度を基に、過熱度がとれにくく、
そのため流量制御手段が開き過ぎの状態を示したときに
冷媒漏れを判定するようにしたため、上記とほぼ同様の
効果が得られる。
Thirdly, based on the degree of superheat detected by the degree of superheat detection means and the opening of the flow control means, it is difficult to obtain the degree of superheat,
Therefore, the refrigerant leakage is determined when the flow rate control means is in an excessively opened state, so that the same effect as described above can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る空気調和装置の第1実施例におけ
る冷凍サイクルを示す図である。
FIG. 1 is a diagram showing a refrigeration cycle in a first embodiment of an air conditioner according to the present invention.

【図2】上記第1実施例において、圧縮機吸い込み冷媒
の過熱度一定制御の場合の冷媒量適正、不足の場合の冷
凍サイクル特性の変化を示す図である。
FIG. 2 is a diagram showing changes in the refrigeration cycle characteristics when the amount of refrigerant is appropriate and when there is a shortage in the case of constant superheat control of the compressor suction refrigerant in the first embodiment.

【図3】上記第1実施例において冷媒不足の判断基準と
なる膨張弁開度条件を示す図である。
FIG. 3 is a diagram showing an expansion valve opening condition that serves as a criterion for determining a refrigerant shortage in the first embodiment.

【図4】上記第1実施例において過熱度と膨張弁開度を
基に冷媒漏れを判定する方法を説明するためのフローチ
ャートである。
FIG. 4 is a flow chart for explaining a method for determining a refrigerant leak based on a superheat degree and an expansion valve opening degree in the first embodiment.

【図5】図4の冷媒漏れ判定方法における過熱度−膨張
弁開度の条件を示すパラメータテーブルである。
5 is a parameter table showing conditions of superheat degree-expansion valve opening degree in the refrigerant leakage determination method of FIG.

【図6】本発明の第2実施例における冷凍サイクルを示
す図である。
FIG. 6 is a diagram showing a refrigeration cycle in a second embodiment of the present invention.

【図7】上記第2実施例において冷媒不足の判断基準と
なる膨張弁開度条件を示す図である。
FIG. 7 is a diagram showing an expansion valve opening condition that serves as a criterion for determining a refrigerant shortage in the second embodiment.

【図8】上記第2実施例において蒸発器吸い込み空気温
度と膨張弁開度を基に冷媒漏れを判定する方法を説明す
るためのフローチャートである。
FIG. 8 is a flow chart for explaining a method for determining a refrigerant leak based on an evaporator intake air temperature and an expansion valve opening degree in the second embodiment.

【図9】図8の冷媒漏れ判定方法における蒸発器吸い込
み空気温度−膨張弁開度の条件を示すパラメータテーブ
ルである。
9 is a parameter table showing conditions of evaporator intake air temperature-expansion valve opening degree in the refrigerant leakage determination method of FIG.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室内熱交換器 4 電動式膨張弁(流量制御手段) 5 室外熱交換器 6 判定手段としての機能を有する制御器 7 第1の温度検出器 8 第1の温度検出器とともに過熱度検出手段となる第
2の温度検出器 9 蒸発器吸い込み空気温度を検出する第3の温度検出
DESCRIPTION OF SYMBOLS 1 Compressor 3 Indoor heat exchanger 4 Electric expansion valve (flow rate control means) 5 Outdoor heat exchanger 6 Controller having a function as a determination means 7 First temperature detector 8 Together with first temperature detector Superheat degree Second temperature detector as detection means 9 Third temperature detector for detecting air temperature of evaporator intake air

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山下 哲司 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 (72)発明者 後藤 功一 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝住空間システム技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsuji Yamashita 8 Shinsitata-cho, Isogo-ku, Yokohama-shi, Kanagawa, Ltd. Inside the Toshiba Housing and Space Systems Research Institute (72) Inventor Koichi Goto Shinsugita-cho, Isogo-ku, Yokohama, Kanagawa No. 8 Incorporated company Toshiba Living Space Systems Engineering Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷凍サイクル中の冷媒流量を制御器から
の指示により可変する流量制御手段を有する空気調和装
置において、前記流量制御手段が一定開度以上の開いた
状態を検出したとき冷媒漏れと判定する判定手段を有す
ることを特徴とする空気調和装置。
1. An air conditioner having a flow rate control means for varying the flow rate of a refrigerant in a refrigeration cycle according to an instruction from a controller, and when the flow rate control means detects an open state of a certain opening or more, a refrigerant leak occurs. An air conditioner having a determination means for determining.
【請求項2】 冷凍サイクル中の冷媒流量を可変する流
量制御手段と、前記冷凍サイクル中の冷媒の過冷却度を
検出する過冷却度検出手段と、該過冷却度検出手段で検
出された過冷却度と前記流量制御手段の開度を基に冷媒
漏れを判定する判定手段とを有することを特徴とする空
気調和装置。
2. A flow rate control means for varying a refrigerant flow rate in a refrigeration cycle, a supercooling degree detecting means for detecting a supercooling degree of the refrigerant in the refrigerating cycle, and a supercooling degree detected by the supercooling degree detecting means. An air conditioner comprising: a determination unit that determines a refrigerant leak based on a cooling degree and an opening degree of the flow rate control unit.
【請求項3】 冷凍サイクル中の冷媒流量を可変する流
量制御手段と、前記冷凍サイクル中の冷媒の過熱度を検
出する過熱度検出手段と、該過熱度検出手段で検出され
た過熱度と前記流量制御手段の開度を基に冷媒漏れを判
定する判定手段とを有することを特徴とする空気調和装
置。
3. A flow rate control means for varying a refrigerant flow rate in a refrigerating cycle, a superheat degree detecting means for detecting a superheat degree of a refrigerant in the refrigerating cycle, and a superheat degree detected by the superheat degree detecting means and the superheat degree. An air conditioner comprising: a determination unit that determines a refrigerant leak based on the opening degree of the flow rate control unit.
JP5996093A 1993-03-19 1993-03-19 Air conditioning apparatus Pending JPH06273013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5996093A JPH06273013A (en) 1993-03-19 1993-03-19 Air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5996093A JPH06273013A (en) 1993-03-19 1993-03-19 Air conditioning apparatus

Publications (1)

Publication Number Publication Date
JPH06273013A true JPH06273013A (en) 1994-09-30

Family

ID=13128241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5996093A Pending JPH06273013A (en) 1993-03-19 1993-03-19 Air conditioning apparatus

Country Status (1)

Country Link
JP (1) JPH06273013A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096051A (en) * 2006-10-13 2008-04-24 Mitsubishi Heavy Ind Ltd Coolant charged amount determining method and coolant leakage detecting method for multiple type air conditioning system
JP2009222272A (en) * 2008-03-14 2009-10-01 Mitsubishi Electric Corp Refrigerating device
JP2009250554A (en) * 2008-04-09 2009-10-29 Daikin Ind Ltd Refrigerating device
JP2010198362A (en) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd Remote maintenance management system for air conditioning equipment and remote maintenance management server
JP2011220624A (en) * 2010-04-12 2011-11-04 Mitsubishi Electric Corp Air conditioning device
WO2015046066A1 (en) * 2013-09-27 2015-04-02 東芝キヤリア株式会社 Freeze cycling device
JP2015140961A (en) * 2014-01-28 2015-08-03 株式会社デンソー Refrigeration cycle device
JP2016027296A (en) * 2014-07-02 2016-02-18 旭硝子株式会社 Heat cycle system
WO2020208714A1 (en) 2019-04-09 2020-10-15 三菱電機株式会社 Refrigeration device
WO2024062948A1 (en) * 2022-09-20 2024-03-28 ダイキン工業株式会社 Heat source unit and freezing device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096051A (en) * 2006-10-13 2008-04-24 Mitsubishi Heavy Ind Ltd Coolant charged amount determining method and coolant leakage detecting method for multiple type air conditioning system
JP2009222272A (en) * 2008-03-14 2009-10-01 Mitsubishi Electric Corp Refrigerating device
JP2009250554A (en) * 2008-04-09 2009-10-29 Daikin Ind Ltd Refrigerating device
JP2010198362A (en) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd Remote maintenance management system for air conditioning equipment and remote maintenance management server
JP2011220624A (en) * 2010-04-12 2011-11-04 Mitsubishi Electric Corp Air conditioning device
JPWO2015046066A1 (en) * 2013-09-27 2017-03-09 東芝キヤリア株式会社 Refrigeration cycle equipment
WO2015046066A1 (en) * 2013-09-27 2015-04-02 東芝キヤリア株式会社 Freeze cycling device
JP2015140961A (en) * 2014-01-28 2015-08-03 株式会社デンソー Refrigeration cycle device
JP2016027296A (en) * 2014-07-02 2016-02-18 旭硝子株式会社 Heat cycle system
WO2020208714A1 (en) 2019-04-09 2020-10-15 三菱電機株式会社 Refrigeration device
JPWO2020208714A1 (en) * 2019-04-09 2021-11-25 三菱電機株式会社 Refrigeration equipment
US11959677B2 (en) 2019-04-09 2024-04-16 Mitsubishi Electric Corporation Refrigeration apparatus having input operation modes
WO2024062948A1 (en) * 2022-09-20 2024-03-28 ダイキン工業株式会社 Heat source unit and freezing device

Similar Documents

Publication Publication Date Title
US5528908A (en) Blocked fan detection system for heat pump
US5050396A (en) Multi-system air conditioning machine
US11378316B2 (en) Diagnostic mode of operation to detect refrigerant leaks in a refrigeration circuit
EP2228612B1 (en) Refrigeration system
KR920010230A (en) Air conditioner
US20210207831A1 (en) Refrigerant leak detection and mitigation
EP3553426B1 (en) Data processing method for refrigerant leakage detection
JPH06180166A (en) Air-conditioner
JP2008249239A (en) Control method of cooling device, cooling device and refrigerating storage
JPH06273013A (en) Air conditioning apparatus
JP3054564B2 (en) Air conditioner
JPH0455671A (en) Refrigerating cycle device
CN114729768A (en) Air conditioning system
JP3833497B2 (en) Air conditioner
JPH10318587A (en) Controller for air conditioner
KR960041927A (en) Air conditioner
JPS6127665B2 (en)
JP4176677B2 (en) Air conditioner
JP3213433B2 (en) Refrigeration cycle equipment
KR100233015B1 (en) Apparatus for refrigerant shortage detection of air conditioner
JPH0875326A (en) Frost detecting method
JPH0942792A (en) Heat pump multi-system
JPH06265246A (en) Refrigerant leakage detection apparatus
JPS62158955A (en) Air conditioner
JP3864742B2 (en) Multi-room air conditioner