JP2008096051A - Coolant charged amount determining method and coolant leakage detecting method for multiple type air conditioning system - Google Patents

Coolant charged amount determining method and coolant leakage detecting method for multiple type air conditioning system Download PDF

Info

Publication number
JP2008096051A
JP2008096051A JP2006280012A JP2006280012A JP2008096051A JP 2008096051 A JP2008096051 A JP 2008096051A JP 2006280012 A JP2006280012 A JP 2006280012A JP 2006280012 A JP2006280012 A JP 2006280012A JP 2008096051 A JP2008096051 A JP 2008096051A
Authority
JP
Japan
Prior art keywords
refrigerant
indoor
heat exchanger
outdoor
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006280012A
Other languages
Japanese (ja)
Other versions
JP5210510B2 (en
Inventor
Shinichi Isozumi
晋一 五十住
Keisuke Mitoma
恵介 三苫
Atsushi Shiotani
篤 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006280012A priority Critical patent/JP5210510B2/en
Publication of JP2008096051A publication Critical patent/JP2008096051A/en
Application granted granted Critical
Publication of JP5210510B2 publication Critical patent/JP5210510B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coolant charged amount determining method and a coolant leakage detecting method for a multiple type air conditioning system providing charging of coolant of a proper amount matching respective multiple type air conditioning systems by accurately judging a gas low and/or overcharging of a coolant charged amount. <P>SOLUTION: The coolant charged amount determining method is for the multiple type air conditioning system 1 composed of an outdoor unit 2, and a plurality of indoor units 7A, 7B connected in parallel with each other to the outdoor unit 2. A four-way selector valve 23 is switched to a cooling cycle, a low pressure and a high pressure in the cycle are fixed, a coolant overheating degree of an indoor heat exchanger 71 outlet is fixed to carry out cooling operation in all of the indoor units 7A, 7B, and when an opening of an indoor expansion valve 71 and/or a supercooling expansion valve 28 is a predetermined value or more in this state, it is determined that the coolant charged amount is a gas low state. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マルチタイプの空調システムに適正量の冷媒が封入されているか否かを判定するマルチ空調システムの冷媒封入量判定方法および該システムからの冷媒漏洩の有無を検知する冷媒漏洩検知方法に関するものである。   The present invention relates to a refrigerant filling amount determination method for a multi-air conditioning system that determines whether or not an appropriate amount of refrigerant is sealed in a multi-type air conditioning system, and a refrigerant leakage detection method that detects the presence or absence of refrigerant leakage from the system. Is.

1台の室外機に対して、複数台の室内機を並列に接続して構成されるマルチタイプの空調システムの場合、室外機に一定量の冷媒を封入した状態で工場出荷し、現地において室内機と室外機間を冷媒配管により接続して据え付け施工される。この場合、室内機を接続する冷媒配管長は、個々のマルチ空調システム毎に様々であり、また、接続される室内機の機種、容量等も様々である。このため、現地で据え付け後に冷媒配管長、接続される室内機の機種、容量等に見合った量の冷媒を追加封入している。   In the case of a multi-type air conditioning system configured by connecting multiple indoor units in parallel to one outdoor unit, the unit is shipped from the factory with a certain amount of refrigerant sealed in the outdoor unit, and indoors Installation is performed by connecting the unit and the outdoor unit with refrigerant piping. In this case, the length of the refrigerant pipe connecting the indoor unit varies for each multi-air conditioning system, and the model, capacity, and the like of the indoor unit to be connected also vary. For this reason, after installation at the site, the refrigerant pipe length, the type of indoor unit to be connected, the amount of refrigerant commensurate with the capacity, etc. are additionally enclosed.

この結果、マルチ空調システム内の総冷媒量は、工場出荷時の封入量に現地で追加封入された冷媒量を加えたものとなるが、これが適正な冷媒量となっているか否かを判定する技術は、未だ十分に確立されていないのが実情である。このため、規定通りに空調性能が発揮されなかったり、圧力の異常上昇等の異常運転の要因となったりする等、冷媒量の過不足によるトラブルが多々に発生している。特に、現地で追加封入される冷媒は、室内機と室外機間の冷媒配管長および配管サイズ等より計算で封入量を求め、計量チャージする手順とされているが、これが守られなかったり、あるいは配管仕様が不明確で正確な計算ができなかったりすることから、それがトラブルの主な原因となっている。   As a result, the total amount of refrigerant in the multi-air conditioning system is the amount of refrigerant added at the factory plus the amount of refrigerant additionally enclosed locally, and it is determined whether this is the appropriate amount of refrigerant. The fact is that the technology is not yet well established. For this reason, there are many troubles due to excess or deficiency in the amount of refrigerant, such as failure of air conditioning performance as prescribed, or abnormal operation such as abnormal increase in pressure. In particular, the refrigerant that is additionally encapsulated in the field is a procedure for obtaining the charged amount by calculation based on the refrigerant pipe length between the indoor unit and the outdoor unit and the pipe size, etc., and charging the meter, but this is not protected, or Piping specifications are unclear and accurate calculations cannot be made, which is the main cause of trouble.

そこで、冷房運転時における必要冷媒量が暖房運転時における必要冷媒量よりも大きいことを前提として、全ての利用ユニットを冷房運転するとともに、利用側膨張弁による過熱度制御および圧縮機による蒸発圧力制御を行う冷媒量判定運転モードにより、熱源側熱交換器の出口における冷媒の過冷却度を検出し、これにより冷媒回路内に充填される冷媒量の適否を判定するようにしたものが提案されている(例えば、特許文献1参照)。   Therefore, on the assumption that the required refrigerant amount during cooling operation is larger than the required refrigerant amount during heating operation, all the usage units are cooled, and the superheat degree control by the usage side expansion valve and the evaporation pressure control by the compressor are performed. A refrigerant amount determination operation mode for detecting the degree of supercooling of the refrigerant at the outlet of the heat source side heat exchanger and determining whether or not the amount of refrigerant charged in the refrigerant circuit is appropriate is proposed. (For example, refer to Patent Document 1).

特開2006−23072号公報JP 2006-23072 A

しかしながら、特許文献1に記載されたものは、熱交換器のボリュームが必要冷媒量に及ぼす影響が考慮されていない。マルチ空調システムでは、上記したように冷媒配管長だけではなく、接続される室内機の機種、容量等も様々であるため、冷房または暖房の何れの場合が必要とする冷媒量が大となるかは、冷媒配管長/室内外機の組み合わせ如何によって異なる。従って、上記の判定方法の結果だけでは、必ずしも冷媒が適正量封入されているとは断定できない面がある。   However, what is described in Patent Document 1 does not consider the influence of the volume of the heat exchanger on the required refrigerant amount. In the multi-air conditioning system, as described above, not only the refrigerant pipe length but also the types and capacities of the connected indoor units vary, so whether the amount of refrigerant required for either cooling or heating is large Depends on the refrigerant pipe length / indoor / outdoor combination. Therefore, there is a face that cannot be determined from the above determination method alone that the refrigerant is always contained in an appropriate amount.

本発明は、このような事情に鑑みてなされたものであって、冷媒封入量のガスローおよび/またはオーバーチャージを的確に判断し、個々のマルチ空調システムにマッチした適正量の冷媒を封入できるようにするマルチ空調システムの冷媒封入量判定方法および冷媒漏洩検知方法を提供することを目的とする。   The present invention has been made in view of such circumstances, so that it is possible to accurately determine a gas low and / or overcharge of the refrigerant filling amount and to enclose an appropriate amount of refrigerant that matches each multi-air conditioning system. An object of the present invention is to provide a refrigerant filling amount determination method and a refrigerant leakage detection method for a multi-air conditioning system.

上記課題を解決するために、本発明のマルチ空調システムの冷媒封入量判定方法および冷媒漏洩検知方法は、以下の手段を採用する。
すなわち、本発明にかかるマルチ空調システムの冷媒封入量判定方法は、冷媒を圧縮する圧縮機と、冷媒循環方向を切り換える四方切換弁と、冷媒と外気とを熱交換する室外熱交換器と、冷媒を膨張させる暖房用の室外膨張弁と、冷媒を貯留するレシーバと、冷媒に過冷却を付与する過冷却熱交換器と、過冷却熱交換器に導かれるバイパス冷媒を膨張させる過冷却用膨張弁と、を順次冷媒配管により接続して構成される室外側冷媒回路を備え、該室外側冷媒回路からガス側配管および液側配管が導出される室外機と、冷媒と室内空気とを熱交換する室内熱交換器と、冷媒を膨張させる冷房用の室内膨張弁と、を備え、前記ガス側配管および液側配管より分岐される複数組の室内側分岐ガス配管および室内側分岐液配管間に、互いに並列に接続される複数台の室内機と、から構成されるマルチ空調システムの冷媒封入量判定方法であって、前記四方切換弁を冷房サイクルに切り換え、該サイクル内の低圧圧力および高圧圧力を一定とするとともに、前記室内熱交換器出口の冷媒過熱度を一定として前記室内機を全台冷房運転し、この状態で前記室内膨張弁および/または前記過冷却用膨張弁の開度が所定値以上のときに、冷媒封入量がガスロー状態と判定することを特徴とする。
In order to solve the above-described problems, the refrigerant filling amount determination method and refrigerant leakage detection method of the multi-air conditioning system of the present invention employ the following means.
That is, the refrigerant enclosing amount determination method for a multi-air conditioning system according to the present invention includes a compressor that compresses a refrigerant, a four-way switching valve that switches a refrigerant circulation direction, an outdoor heat exchanger that exchanges heat between the refrigerant and outside air, and a refrigerant An outdoor expansion valve for heating, a receiver for storing the refrigerant, a supercooling heat exchanger for imparting supercooling to the refrigerant, and a supercooling expansion valve for expanding the bypass refrigerant led to the supercooling heat exchanger And an outdoor unit in which a gas side pipe and a liquid side pipe are led out from the outdoor side refrigerant circuit and heat exchange between the refrigerant and the room air. An indoor heat exchanger and a cooling indoor expansion valve for expanding the refrigerant, between a plurality of sets of indoor side branch gas pipes and indoor side branch liquid pipes branched from the gas side pipe and liquid side pipe, Connect to each other in parallel A plurality of indoor units, and a method for determining the amount of refrigerant enclosed in a multi-air conditioning system, wherein the four-way switching valve is switched to a cooling cycle, and the low pressure and high pressure in the cycle are made constant, All the indoor units are cooled by cooling with the refrigerant superheat degree at the outlet of the indoor heat exchanger being constant, and when the opening degree of the indoor expansion valve and / or the supercooling expansion valve is a predetermined value or more in this state, It is characterized by determining that the refrigerant filling amount is in a gas low state.

マルチ空調システムにおいて、四方切換弁を冷房サイクルに切り換えて室内機を全台運転すると、全室内機に一定量の冷媒がホールドされるため、該サイクルの必要冷媒量が最も多い状態とされる。本発明では、マルチ空調システム据え付け後の試運転時、この状態でサイクル内の低圧圧力および高圧圧力を一定とするとともに、室内熱交換器出口の冷媒過熱度を一定として冷房運転を行い、室内膨張弁および/または過冷却用膨張弁の開度が所定値以上のときに、冷媒封入量がガスロー状態と判定するようにしている。つまり、この運転により、サイクル内に適正量の冷媒が封入されている場合は、各室内熱交換器に適正量の冷媒がホールドされ、各室内膨張弁は、開度が所定範囲内で制御されて室内熱交換器出口の冷媒過熱度を一定に制御することができる。しかし、冷媒封入量がガスロー状態の場合は、室内熱交換器内の冷媒ホールド量が減少して行き、それに伴い室内膨張弁の開度が徐々に大きくなり、やがて全開となって室内熱交換器出口の冷媒過熱度を一定に制御することができなくなる。この場合、室内熱交換器出口の冷媒過熱度が大きくなり、冷房能力が低下する。従って、全室内機のうち、1台でも室内膨張弁の開度が所定値以上のときは、冷媒封入量が不足するガスロー状態であると判断することができ、冷媒を追加充填して冷媒封入量を是正する。これにより、個々のマルチ空調システムにマッチした適正量の冷媒を封入することができ、冷媒量の過不足によるトラブルを未然に防止することができる。なお、この場合、室内膨張弁の開度から直接ガスロー状態を判断できるが、室内機と室外機間の通信が必要なため、ガスローの認識に若干の時間遅れが生じることとなる。
同様に、過冷却用膨張弁は、適正量の冷媒が封入されている場合は、開度が所定範囲内で制御され、過冷却熱交換器出口の液側配管内における液冷媒の過冷却度を所定値に制御することができる。しかし、冷媒封入量がガスロー状態の場合は、液側配管内の冷媒にガス相が混ざるようになり、それに伴い過冷却用膨張弁の開度が徐々に大きくなって行き、やがて全開となって液側配管内における液冷媒の過冷却度を所定値に維持することができなくなる。この場合も、室内膨張弁を通過する冷媒量が減少することとなるので、冷房能力が低下する。従って、過冷却用膨張弁の開度が所定値以上のときも、ガスロー状態であると判断することができ、冷媒を追加充填して冷媒封入量を是正する。これによって、個々のマルチ空調システムにマッチした適正量の冷媒を封入することができ、冷媒量の過不足によるトラブルを未然に防止することができる。なお、過冷却用膨張弁は、室外機に設けられているため、室外機コントローラで直ちにガスロー状態を認識することができる。
In the multi-air conditioning system, when the four-way switching valve is switched to the cooling cycle and all the indoor units are operated, a certain amount of refrigerant is held in all the indoor units, so that the required amount of refrigerant in the cycle is maximized. In the present invention, during the trial operation after the installation of the multi-air conditioning system, the low pressure and high pressure in the cycle are kept constant in this state, and the cooling operation is performed with the refrigerant superheat degree at the outlet of the indoor heat exchanger being constant. And / or when the opening degree of the supercooling expansion valve is equal to or larger than a predetermined value, the refrigerant filling amount is determined to be in the gas low state. That is, by this operation, when an appropriate amount of refrigerant is sealed in the cycle, an appropriate amount of refrigerant is held in each indoor heat exchanger, and the opening degree of each indoor expansion valve is controlled within a predetermined range. Thus, the refrigerant superheat degree at the outlet of the indoor heat exchanger can be controlled to be constant. However, when the refrigerant charging amount is in the gas low state, the refrigerant hold amount in the indoor heat exchanger decreases, and accordingly the opening of the indoor expansion valve gradually increases, eventually becoming fully open and the indoor heat exchanger The refrigerant superheat degree at the outlet cannot be controlled to be constant. In this case, the degree of refrigerant superheat at the outlet of the indoor heat exchanger increases, and the cooling capacity decreases. Accordingly, when even one of the indoor units has an opening of the indoor expansion valve equal to or larger than a predetermined value, it can be determined that the refrigerant is in a gas low state where the amount of refrigerant filled is insufficient, and additional refrigerant is charged to fill the refrigerant. Correct the amount. As a result, it is possible to enclose an appropriate amount of refrigerant that matches each multi-air conditioning system, and to prevent troubles caused by excessive or insufficient refrigerant amounts. In this case, the gas low state can be determined directly from the opening of the indoor expansion valve, but since communication between the indoor unit and the outdoor unit is required, there is a slight time delay in recognizing the gas low.
Similarly, when an appropriate amount of refrigerant is sealed in the supercooling expansion valve, the opening degree is controlled within a predetermined range, and the degree of supercooling of the liquid refrigerant in the liquid side pipe at the outlet of the supercooling heat exchanger Can be controlled to a predetermined value. However, when the refrigerant charging amount is in a gas low state, the gas phase is mixed with the refrigerant in the liquid side pipe, and accordingly the opening degree of the expansion valve for supercooling gradually increases and eventually becomes fully open. It becomes impossible to maintain the degree of supercooling of the liquid refrigerant in the liquid side pipe at a predetermined value. Also in this case, since the amount of refrigerant passing through the indoor expansion valve is reduced, the cooling capacity is lowered. Therefore, even when the opening degree of the supercooling expansion valve is equal to or larger than a predetermined value, it can be determined that the gas low state is established, and the refrigerant filling amount is corrected by additionally filling the refrigerant. As a result, an appropriate amount of refrigerant matching the individual multi-air conditioning system can be sealed, and troubles caused by excessive or insufficient refrigerant amounts can be prevented. In addition, since the expansion valve for supercooling is provided in the outdoor unit, the outdoor unit controller can immediately recognize the gas low state.

さらに、本発明にかかるマルチ空調システムの冷媒封入量判定方法は、冷媒を圧縮する圧縮機と、冷媒循環方向を切り換える四方切換弁と、冷媒と外気とを熱交換する室外熱交換器と、冷媒を膨張させる暖房用の室外膨張弁と、冷媒を貯留するレシーバと、冷媒に過冷却を付与する過冷却熱交換器と、過冷却熱交換器に導かれるバイパス冷媒を膨張させる過冷却用膨張弁と、を順次冷媒配管により接続して構成される室外側冷媒回路を備え、該室外側冷媒回路からガス側配管および液側配管が導出される室外機と、冷媒と室内空気とを熱交換する室内熱交換器と、冷媒を膨張させる冷房用の室内膨張弁と、を備え、前記ガス側配管および液側配管より分岐される複数組の室内側分岐ガス配管および室内側分岐液配管間に、互いに並列に接続される複数台の室内機と、から構成されるマルチ空調システムの冷媒封入量判定方法であって、前記四方切換弁を冷房サイクルに切り換え、該サイクル内の低圧圧力および高圧圧力を一定とするとともに、前記室内熱交換器出口の冷媒過熱度を一定として前記室内機を1台冷房運転し、この状態で前記室外熱交換器出口の冷媒過冷却度が所定値以上のときに、冷媒封入量がオーバーチャージ状態と判定することを特徴とする。   Furthermore, the refrigerant filling amount determination method for the multi-air conditioning system according to the present invention includes a compressor that compresses the refrigerant, a four-way switching valve that switches a refrigerant circulation direction, an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, and a refrigerant An outdoor expansion valve for heating, a receiver for storing the refrigerant, a supercooling heat exchanger for imparting supercooling to the refrigerant, and a supercooling expansion valve for expanding the bypass refrigerant led to the supercooling heat exchanger And an outdoor unit in which a gas side pipe and a liquid side pipe are led out from the outdoor side refrigerant circuit and heat exchange between the refrigerant and the room air. An indoor heat exchanger and a cooling indoor expansion valve for expanding the refrigerant, between a plurality of sets of indoor side branch gas pipes and indoor side branch liquid pipes branched from the gas side pipe and liquid side pipe, Connected in parallel to each other A plurality of indoor units, and a method for determining the amount of refrigerant enclosed in a multi-air conditioning system, wherein the four-way switching valve is switched to a cooling cycle, and the low pressure and high pressure in the cycle are made constant, One indoor unit is cooled with the refrigerant superheat degree at the outlet of the indoor heat exchanger being constant, and when the refrigerant supercooling degree at the outlet of the outdoor heat exchanger is equal to or higher than a predetermined value in this state, the refrigerant filling amount is over. The charging state is determined.

マルチ空調システムにおいて、四方切換弁を冷房サイクルに切り換えて室内機を1台運転すると、他の室内機には冷媒がホールドされないため、該サイクルの必要冷媒量が最も少ない状態とされる。本発明では、マルチ空調システム据え付け後の試運転時、この状態でサイクル内の低圧圧力および高圧圧力を一定とするとともに、室内熱交換器出口の冷媒過熱度を一定として冷房運転を行い、室外熱交換器出口の冷媒過冷却度が所定値以上のときに、冷媒封入量がオーバーチャージ状態と判定するようにしている。つまり、この運転により、適正量の冷媒が封入されている場合は、室外熱交換器から室内膨張弁に至る液配管が液冷媒で満たされるうえに、室外熱交換器内に適正量の冷媒がホールドされることになるため、室外熱交換器出口の冷媒過冷却度は所定過冷却度に維持される。しかし、冷媒封入量がオーバーチャージ状態の場合は、室外熱交換器内に余剰の冷媒が溜まり込んで行き、室外熱交換器出口の冷媒過冷却度が徐々に大きくなり、やがて室外膨張弁の開度が全開となってしまうため、室外熱交換器出口の冷媒過冷却度を所定過冷却度に維持することができなくなる。従って、室外熱交換器出口の冷媒過冷却度が所定値以上となる場合は、冷媒封入量が過剰のオーバーチャージ状態であると判断でき、冷媒を回収して冷媒封入量を是正する。これによって、個々のマルチ空調システムにマッチした適正量の冷媒を封入することができ、冷媒量の過不足によるトラブルを未然に防止することができる。   In the multi-air conditioning system, when the four-way switching valve is switched to the cooling cycle and one indoor unit is operated, the refrigerant is not held in the other indoor units, so that the required amount of refrigerant in the cycle is minimized. In the present invention, during the trial operation after installing the multi air conditioning system, the low pressure and high pressure in the cycle are kept constant in this state, the cooling operation is performed with the refrigerant superheat degree at the outlet of the indoor heat exchanger being constant, When the refrigerant supercooling degree at the outlet of the container is equal to or greater than a predetermined value, the refrigerant charging amount is determined to be in an overcharged state. That is, in this operation, when an appropriate amount of refrigerant is sealed, the liquid piping from the outdoor heat exchanger to the indoor expansion valve is filled with liquid refrigerant, and an appropriate amount of refrigerant is placed in the outdoor heat exchanger. Since it is held, the refrigerant supercooling degree at the outlet of the outdoor heat exchanger is maintained at a predetermined supercooling degree. However, when the amount of refrigerant charged is overcharged, excess refrigerant accumulates in the outdoor heat exchanger, the degree of refrigerant supercooling at the outlet of the outdoor heat exchanger gradually increases, and eventually the outdoor expansion valve opens. Therefore, the refrigerant supercooling degree at the outlet of the outdoor heat exchanger cannot be maintained at the predetermined supercooling degree. Therefore, when the degree of refrigerant supercooling at the outlet of the outdoor heat exchanger is equal to or greater than a predetermined value, it can be determined that the refrigerant charging amount is in an overcharged state, and the refrigerant is recovered to correct the refrigerant charging amount. As a result, an appropriate amount of refrigerant matching the individual multi-air conditioning system can be sealed, and troubles caused by excessive or insufficient refrigerant amounts can be prevented.

さらに、本発明にかかるマルチ空調システムの冷媒封入量判定方法は、冷媒を圧縮する圧縮機と、冷媒循環方向を切り換える四方切換弁と、冷媒と外気とを熱交換する室外熱交換器と、冷媒を膨張させる暖房用の室外膨張弁と、冷媒を貯留するレシーバと、冷媒に過冷却を付与する過冷却熱交換器と、過冷却熱交換器に導かれるバイパス冷媒を膨張させる過冷却用膨張弁と、を順次冷媒配管により接続して構成される室外側冷媒回路を備え、該室外側冷媒回路からガス側配管および液側配管が導出される室外機と、冷媒と室内空気とを熱交換する室内熱交換器と、冷媒を膨張させる冷房用の室内膨張弁と、を備え、前記ガス側配管および液側配管より分岐される複数組の室内側分岐ガス配管および室内側分岐液配管間に、互いに並列に接続される複数台の室内機と、から構成されるマルチ空調システムの冷媒封入量判定方法であって、前記四方切換弁を暖房サイクルに切り換え、該サイクル内の低圧圧力および高圧圧力を一定とするとともに、前記室外熱交換器出口の冷媒過熱度を一定として前記室内機を1台暖房運転し、この状態で前記室外膨張弁の開度が所定値以上または前記室内膨張弁の開度が所定値以下のときに、冷媒封入量がガスロー状態と判定することを特徴とする。   Furthermore, the refrigerant filling amount determination method for the multi-air conditioning system according to the present invention includes a compressor that compresses the refrigerant, a four-way switching valve that switches a refrigerant circulation direction, an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, and a refrigerant An outdoor expansion valve for heating, a receiver for storing the refrigerant, a supercooling heat exchanger for imparting supercooling to the refrigerant, and a supercooling expansion valve for expanding the bypass refrigerant led to the supercooling heat exchanger And an outdoor unit in which a gas side pipe and a liquid side pipe are led out from the outdoor side refrigerant circuit and heat exchange between the refrigerant and the room air. An indoor heat exchanger and a cooling indoor expansion valve for expanding the refrigerant, between a plurality of sets of indoor side branch gas pipes and indoor side branch liquid pipes branched from the gas side pipe and liquid side pipe, Connected in parallel to each other A plurality of indoor units, and a method for determining the amount of refrigerant enclosed in a multi-air conditioning system, wherein the four-way switching valve is switched to a heating cycle, and the low pressure and high pressure in the cycle are made constant, One of the indoor units is heated and operated with the refrigerant superheat degree at the outlet of the outdoor heat exchanger being constant, and in this state, the opening degree of the outdoor expansion valve is not less than a predetermined value or the opening degree of the indoor expansion valve is not more than a predetermined value. Sometimes, it is determined that the refrigerant filling amount is in a gas low state.

マルチ空調システムにおいて、四方切換弁を暖房サイクルに切り換えて室内機を1台運転すると、他の室内機は全て冷媒で液封されるため、該サイクルの必要冷媒量が最も多い状態とされる。本発明では、マルチ空調システム据え付け後の試運転時、この状態でサイクル内の低圧圧力および高圧圧力を一定とするとともに、室外熱交換器出口の冷媒過熱度を一定として暖房運転を行い、室外膨張弁の開度が所定値以上または室内膨張弁の開度が所定値以下のときに、冷媒封入量がガスロー状態と判定するようにしている。つまり、この運転により、適正量の冷媒が封入されている場合は、室外熱交換器内に適正量の冷媒がホールドされ、室外膨張弁は、開度が所定範囲内で制御されて室外熱交換器出口の冷媒過熱度を一定に制御することができる。しかし、冷媒封入量がガスロー状態の場合は、室外熱交換器内の冷媒ホールド量が減少して行き、室外熱交換器出口の冷媒過熱度が大きくなり、それに伴って室外膨張弁の開度が徐々に大きくなり、やがて全開となって室外熱交換器出口の冷媒過熱度を一定に制御することができなくなる。従って、室外膨張弁の開度が所定値以上のときは、冷媒封入量が不足するガスロー状態であると判断でき、冷媒を追加充填して冷媒封入量を是正する。これにより、個々のマルチ空調システムにマッチした適正量の冷媒を封入することができ、冷媒量の過不足によるトラブルを未然に防止することができる。
同様に、室内膨張弁は、適正量の冷媒が封入されている場合は、室内熱交換器内に所定量の冷媒がホールドされるため、室内熱交換器出口の冷媒過冷却度が所定過冷却度に保持される。しかし、冷媒封入量がガスロー状態の場合は、室内熱交換器内の冷媒ホールド量が減少して行き、室内熱交換器出口の冷媒過冷却度が小さくなり、それに伴って室内膨張弁の開度が徐々小さくなり、やがて全閉となって室内熱交換器出口の冷媒過冷却度を所定過冷却度に制御することができなくなる。従って、室内膨張弁の開度が所定値以下となる場合は、冷媒封入量が不足するガスロー状態であると判断でき、冷媒を追加充填して冷媒封入量を是正する。これによって、個々のマルチ空調システムにマッチした適正量の冷媒を封入することができ、冷媒量の過不足によるトラブルを未然に防止することができる。
In the multi-air conditioning system, when the four-way switching valve is switched to the heating cycle and one indoor unit is operated, all the other indoor units are liquid-sealed with the refrigerant. In the present invention, during the trial operation after the installation of the multi-air conditioning system, the low pressure and high pressure in the cycle are kept constant in this state, the heating operation is performed with the refrigerant superheat degree at the outlet of the outdoor heat exchanger being constant, and the outdoor expansion valve When the opening degree is equal to or larger than a predetermined value or the opening degree of the indoor expansion valve is equal to or smaller than the predetermined value, the refrigerant filling amount is determined to be in the gas low state. That is, in this operation, when an appropriate amount of refrigerant is sealed, the appropriate amount of refrigerant is held in the outdoor heat exchanger, and the outdoor expansion valve is controlled within an open range so that the outdoor heat exchange is performed. The degree of refrigerant superheat at the outlet of the vessel can be controlled to be constant. However, when the refrigerant charging amount is in a gas low state, the refrigerant hold amount in the outdoor heat exchanger decreases, the degree of refrigerant superheating at the outlet of the outdoor heat exchanger increases, and accordingly the opening of the outdoor expansion valve increases. It gradually increases and eventually becomes fully open, and the degree of refrigerant superheat at the outlet of the outdoor heat exchanger cannot be controlled to be constant. Therefore, when the degree of opening of the outdoor expansion valve is equal to or greater than a predetermined value, it can be determined that the refrigerant is in a gas low state in which the refrigerant filling amount is insufficient, and the refrigerant filling amount is corrected by additionally charging the refrigerant. As a result, an appropriate amount of refrigerant that matches the individual multi-air conditioning system can be sealed, and troubles due to excessive or insufficient refrigerant amounts can be prevented.
Similarly, when an appropriate amount of refrigerant is sealed, the indoor expansion valve holds a predetermined amount of refrigerant in the indoor heat exchanger, so that the refrigerant subcooling degree at the outlet of the indoor heat exchanger has a predetermined subcooling. Held every time. However, when the refrigerant charging amount is in a gas low state, the refrigerant hold amount in the indoor heat exchanger decreases, the refrigerant subcooling degree at the outlet of the indoor heat exchanger decreases, and accordingly the opening of the indoor expansion valve Gradually becomes smaller and eventually becomes fully closed, and the refrigerant supercooling degree at the outlet of the indoor heat exchanger cannot be controlled to a predetermined supercooling degree. Therefore, when the opening degree of the indoor expansion valve is equal to or less than the predetermined value, it can be determined that the gas low state is insufficient in the refrigerant filling amount, and the refrigerant filling amount is corrected by additionally charging the refrigerant. As a result, an appropriate amount of refrigerant matching the individual multi-air conditioning system can be sealed, and troubles caused by excessive or insufficient refrigerant amounts can be prevented.

さらに、本発明にかかるマルチ空調システムの冷媒封入量判定方法は、冷媒を圧縮する圧縮機と、冷媒循環方向を切り換える四方切換弁と、冷媒と外気とを熱交換する室外熱交換器と、冷媒を膨張させる暖房用の室外膨張弁と、冷媒を貯留するレシーバと、冷媒に過冷却を付与する過冷却熱交換器と、過冷却熱交換器に導かれるバイパス冷媒を膨張させる過冷却用膨張弁と、を順次冷媒配管により接続して構成される室外側冷媒回路を備え、該室外側冷媒回路からガス側配管および液側配管が導出される室外機と、冷媒と室内空気とを熱交換する室内熱交換器と、冷媒を膨張させる冷房用の室内膨張弁と、を備え、前記ガス側配管および液側配管より分岐される複数組の室内側分岐ガス配管および室内側分岐液配管間に、互いに並列に接続される複数台の室内機と、から構成されるマルチ空調システムの冷媒封入量判定方法であって、前記四方切換弁を暖房サイクルに切り換え、該サイクル内の低圧圧力および高圧圧力を一定とするとともに、前記室外熱交換器出口の冷媒過熱度を一定として前記室内機を全台暖房運転し、この状態で前記室内熱交換器出口の冷媒過冷却度が所定値以上のときに、冷媒封入量がオーバーチャージ状態と判定することを特徴とする。   Furthermore, the refrigerant filling amount determination method for the multi-air conditioning system according to the present invention includes a compressor that compresses the refrigerant, a four-way switching valve that switches a refrigerant circulation direction, an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, and a refrigerant An outdoor expansion valve for heating, a receiver for storing the refrigerant, a supercooling heat exchanger for imparting supercooling to the refrigerant, and a supercooling expansion valve for expanding the bypass refrigerant led to the supercooling heat exchanger And an outdoor unit in which a gas side pipe and a liquid side pipe are led out from the outdoor side refrigerant circuit and heat exchange between the refrigerant and the room air. An indoor heat exchanger and a cooling indoor expansion valve for expanding the refrigerant, between a plurality of sets of indoor side branch gas pipes and indoor side branch liquid pipes branched from the gas side pipe and liquid side pipe, Connected in parallel to each other A plurality of indoor units, and a method for determining the amount of refrigerant enclosed in a multi-air conditioning system, wherein the four-way switching valve is switched to a heating cycle, and the low pressure and high pressure in the cycle are made constant, All the indoor units are heated with the refrigerant superheat degree at the outlet of the outdoor heat exchanger being constant, and when the refrigerant supercooling degree at the outlet of the indoor heat exchanger is equal to or higher than a predetermined value in this state, the refrigerant filling amount is over. The charging state is determined.

マルチ空調システムにおいて、四方切換弁を暖房サイクルに切り換えて室内機を全台運転すると、全ての室内機に一定量の冷媒がホールドされるため、サイクルの必要冷媒量が最も少ない状態とされる。本発明では、マルチ空調システム据え付け後の試運転時、この状態でサイクル内の低圧圧力および高圧圧力を一定とするとともに、室外熱交換器出口の冷媒過熱度を一定として暖房運転を行い、室内熱交換器出口の冷媒過冷却度が所定値以上のときに、冷媒封入量がオーバーチャージ状態と判定するようにしている。つまり、この運転により、適正量の冷媒が封入されている場合は、室内熱交換器内に適正量の冷媒がホールドされるため、室内熱交換器出口の冷媒過冷却度は所定過冷却度に維持される。しかし、冷媒封入量がオーバーチャージ状態の場合は、室内熱交換器内に余剰冷媒が溜まり込んで行き、室内熱交換器出口の冷媒過冷却度が徐々に大きくなり、やがて室内膨張弁の開度が全開となってしまうため、室内熱交換器出口の冷媒過冷却度は所定過冷却度に維持することができなくなる。従って、室内熱交換器出口の冷媒過冷却度が所定値以上となる場合は、冷媒封入量が過剰のオーバーチャージ状態であると判断でき、冷媒を回収して冷媒封入量を是正する。これにより、個々のマルチ空調システムにマッチした適正量の冷媒を封入することができ、冷媒量の過不足によるトラブルを未然に防止することができる。   In the multi-air conditioning system, when the four-way switching valve is switched to the heating cycle and all the indoor units are operated, a certain amount of refrigerant is held in all the indoor units, so that the required refrigerant amount for the cycle is minimized. In the present invention, during the trial operation after installing the multi air conditioning system, in this state, the low pressure and high pressure in the cycle are kept constant, the heating operation is performed with the refrigerant superheat degree at the outlet of the outdoor heat exchanger being constant, and the indoor heat exchange When the refrigerant supercooling degree at the outlet of the vessel is greater than or equal to a predetermined value, the refrigerant charging amount is determined to be in an overcharged state. That is, when an appropriate amount of refrigerant is sealed by this operation, the appropriate amount of refrigerant is held in the indoor heat exchanger, so the refrigerant subcooling degree at the outlet of the indoor heat exchanger is set to a predetermined degree of subcooling. Maintained. However, when the refrigerant charge amount is overcharged, excess refrigerant accumulates in the indoor heat exchanger, the degree of refrigerant supercooling at the outlet of the indoor heat exchanger gradually increases, and eventually the opening of the indoor expansion valve Becomes fully open, the refrigerant supercooling degree at the outlet of the indoor heat exchanger cannot be maintained at the predetermined supercooling degree. Accordingly, when the degree of refrigerant supercooling at the outlet of the indoor heat exchanger is equal to or greater than a predetermined value, it can be determined that the refrigerant charging amount is in an overcharged state, and the refrigerant is recovered to correct the refrigerant charging amount. As a result, it is possible to enclose an appropriate amount of refrigerant that matches each multi-air conditioning system, and to prevent troubles caused by excessive or insufficient refrigerant amounts.

さらに、本発明にかかるマルチ空調システムの冷媒封入量判定方法は、冷媒を圧縮する圧縮機と、冷媒循環方向を切り換える四方切換弁と、冷媒と外気とを熱交換する室外熱交換器と、冷媒を膨張させる暖房用の室外膨張弁と、冷媒を貯留するレシーバと、冷媒に過冷却を付与する過冷却熱交換器と、過冷却熱交換器に導かれるバイパス冷媒を膨張させる過冷却用膨張弁と、を順次冷媒配管により接続して構成される室外側冷媒回路を備え、該室外側冷媒回路からガス側配管および液側配管が導出される室外機と、冷媒と室内空気とを熱交換する室内熱交換器と、冷媒を膨張させる冷房用の室内膨張弁と、を備え、前記ガス側配管および液側配管より分岐される複数組の室内側分岐ガス配管および室内側分岐液配管間に、互いに並列に接続される複数台の室内機と、から構成されるマルチ空調システムの冷媒封入量判定方法であって、上述のマルチ空調システムの冷媒封入量判定方法における冷房サイクルでのガスロー判定と、冷房サイクルでのオーバーチャージ判定と、暖房サイクルでのガスロー判定と、暖房サイクルでのオーバーチャージ判定と、を一括して適宜の順序で行うことを特徴とする。   Furthermore, the refrigerant filling amount determination method for the multi-air conditioning system according to the present invention includes a compressor that compresses the refrigerant, a four-way switching valve that switches a refrigerant circulation direction, an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, and a refrigerant An outdoor expansion valve for heating, a receiver for storing the refrigerant, a supercooling heat exchanger for imparting supercooling to the refrigerant, and a supercooling expansion valve for expanding the bypass refrigerant led to the supercooling heat exchanger And an outdoor unit in which a gas side pipe and a liquid side pipe are led out from the outdoor side refrigerant circuit and heat exchange between the refrigerant and the room air. An indoor heat exchanger and a cooling indoor expansion valve for expanding the refrigerant, between a plurality of sets of indoor side branch gas pipes and indoor side branch liquid pipes branched from the gas side pipe and liquid side pipe, Connected in parallel to each other A refrigerant entrapment amount determination method for a multi-air conditioning system comprising a plurality of indoor units, wherein the gas low determination in the cooling cycle and the overrun in the cooling cycle in the multi-air conditioning system refrigerant entrapment amount determination method described above The charge determination, the gas low determination in the heating cycle, and the overcharge determination in the heating cycle are collectively performed in an appropriate order.

マルチ空調システムでは、冷媒配管長、接続される室内機の機種、容量等が様々であるため、冷房または暖房の何れの場合が必要とする冷媒量が大となるかは、冷媒配管長/室内外機の組み合わせ如何により異なる。本発明では、冷房、暖房の両方で運転し、それぞれにおいてガスロー判定およびオーバーチャージ判定を行うことによって、冷媒封入量の確認および是正をすることができるため、個々のマルチ空調システムに対して各々過不足なく冷媒を封入することができる。従って、室外機に接続される室内機の冷媒配管長、機種、容量、台数等を加味して適正量の冷媒を封入することが可能となる。その結果、冷媒量の過不足によるトラブルを解消し、製品の信頼性を向上させることができる。   In a multi-air conditioning system, the refrigerant pipe length, the types of indoor units to be connected, the capacity, etc. vary, so whether the amount of refrigerant required for cooling or heating is large depends on the refrigerant pipe length / room It depends on the combination of external units. In the present invention, the refrigerant filling amount can be checked and corrected by operating in both cooling and heating, and performing gas low determination and overcharge determination in each of them. Refrigerant can be sealed without shortage. Therefore, it is possible to enclose an appropriate amount of refrigerant in consideration of the refrigerant pipe length, model, capacity, number, etc. of the indoor unit connected to the outdoor unit. As a result, troubles caused by excess or deficiency of the refrigerant amount can be solved and the reliability of the product can be improved.

さらに、本発明のマルチ空調システムの冷媒封入量判定方法は、上記のマルチ空調システムの冷媒封入量判定方法において、夏季には、冷房サイクルでのガスロー判定およびオーバーチャージ判定を、暖房サイクルでのガスロー判定およびオーバーチャージ判定に優先して行い、冬季には、暖房サイクルでのガスロー判定およびオーバーチャージ判定を、冷房サイクルでのガスロー判定およびオーバーチャージ判定に優先して行うことを特徴とする。   Furthermore, the refrigerant enclosing amount determination method for a multi-air conditioning system according to the present invention is the same as the refrigerant enclosing amount determination method for the multi-air conditioning system described above, wherein in summer the gas low determination and the overcharge determination are performed in the cooling cycle. In the winter, the gas low determination and the overcharge determination in the heating cycle are performed in preference to the gas low determination and the overcharge determination in the cooling cycle.

本発明によれば、夏季には、冷房サイクルでのガスロー判定およびオーバーチャージ判定を優先的に行い、冬季には、暖房サイクルでのガスロー判定およびオーバーチャージ判定を優先的に行うようにしているので、冷媒封入量判定のための冷房サイクルでの運転および暖房サイクルでの運転をそれぞれ高負荷運転により行うことができる。このため、圧縮機を高Hz運転とし、迅速に冷媒封入量判定を行うことができる。特に、冷媒回路がアキュームレータを有する場合は、アキュームレータに溜まっている冷媒を追い出す必要があるが、圧縮機の高Hz運転によりアキュームレータから速やかに冷媒を追い出すことができるため、冷媒封入量の判定を可及的速やかに実施することができる。   According to the present invention, the gas low determination and overcharge determination in the cooling cycle are preferentially performed in summer, and the gas low determination and overcharge determination in the heating cycle are preferentially performed in winter. The operation in the cooling cycle and the operation in the heating cycle for determining the refrigerant charging amount can be performed by high load operation. For this reason, the compressor can be operated at high Hz, and the refrigerant filling amount can be determined quickly. In particular, when the refrigerant circuit has an accumulator, it is necessary to expel the refrigerant accumulated in the accumulator. However, since the refrigerant can be expelled quickly from the accumulator by the high Hz operation of the compressor, it is possible to determine the amount of refrigerant enclosed. It can be implemented as quickly as possible.

さらに、本発明にかかるマルチ空調システムの冷媒漏洩検知方法は、マルチ空調システム据え付け後の試運転時に、上記の冷媒封入量判定方法により冷媒封入量の判定を行い、その結果を初期運転データとして記憶し、その後の適宜時期に同様の冷媒封入量判定を行って、その運転データを前記初期運転データと比較することにより、冷媒漏洩の有無を検知することを特徴とする。   Furthermore, the refrigerant leakage detection method for a multi-air conditioning system according to the present invention determines the refrigerant charging amount by the above-described refrigerant charging amount determination method during trial operation after installation of the multi-air conditioning system, and stores the result as initial operation data. Then, it is characterized by detecting the presence or absence of refrigerant leakage by performing the same refrigerant filling amount determination at an appropriate time thereafter and comparing the operation data with the initial operation data.

本発明によれば、マルチ空調システム据え付け後の試運転時に、冷媒封入量の判定を行い、その結果を初期運転データとして記憶し、その後の適宜時期に同様の冷媒封入量判定を行って、その運転データを前記初期運転データと比較することにより、冷媒漏洩の有無を簡便に検知することができる。従って、冷媒が漏洩しておれば、速やかに必要な措置を講ずることができ、ガスローによるトラブル防止や環境保護に繋げることができる。   According to the present invention, during the trial operation after installation of the multi-air conditioning system, the refrigerant filling amount is determined, the result is stored as initial operation data, and the same refrigerant filling amount determination is performed at an appropriate time thereafter, and the operation is performed. By comparing the data with the initial operation data, it is possible to easily detect the presence or absence of refrigerant leakage. Therefore, if the refrigerant is leaked, necessary measures can be taken promptly, which can lead to trouble prevention and environmental protection due to gas low.

本発明にかかるマルチ空調システムの冷媒封入量判定方法によると、個々のマルチ空調システムにマッチした方法で、簡便にかつ適正に冷媒封入量を判定することができ、冷媒量の過不足によるトラブルを未然に防止することが可能となる。特に、熱交換器のボリューム、冷媒配管長、接続される室内機の機種、容量等を加味して冷媒封入量を判定することができるので、その結果、適正量の冷媒を封入することができる。
また、本発明にかかるマルチ空調システムの冷媒漏洩検知方法によると、試運転時に取得した冷媒封入量判定の初期運転データと、その後の適宜時期に同様の冷媒封入量判定を行って取得した運転データとを比較することによって、冷媒漏洩の有無を簡便に検知することができるため、ガスローによるトラブル防止や環境保護に繋げることができる。
According to the method for determining the amount of refrigerant enclosed in the multi-air conditioning system according to the present invention, the amount of refrigerant enclosed can be easily and appropriately determined by a method that matches the individual multi-air conditioning system. This can be prevented beforehand. In particular, the amount of refrigerant can be determined in consideration of the volume of the heat exchanger, the length of the refrigerant pipe, the model of the connected indoor unit, the capacity, etc., and as a result, an appropriate amount of refrigerant can be sealed. .
Further, according to the refrigerant leakage detection method of the multi-air conditioning system according to the present invention, the initial operation data of the refrigerant charging amount determination acquired during the trial operation, and the operation data acquired by performing the similar refrigerant charging amount determination at an appropriate time thereafter, By comparing the above, it is possible to easily detect the presence or absence of refrigerant leakage, which can lead to trouble prevention and environmental protection due to gas low.

以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
以下、本発明の第1実施形態について、図1ないし図6を用いて説明する。
(マルチ空調システムの構成)
図1には、本実施形態に係るマルチ空調システム1の冷房サイクル図が示されている。
マルチ空調システム1は、1台の室外機2と、室外機2から導出されるガス側配管4および液側配管5と、このガス側配管4および液側配管5間に分岐器6を介して並列に接続される複数台の室内機7A,7Bと、から構成される。
Embodiments according to the present invention will be described below with reference to the drawings.
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
(Configuration of multi air conditioning system)
FIG. 1 shows a cooling cycle diagram of the multi-air conditioning system 1 according to the present embodiment.
The multi air conditioning system 1 includes one outdoor unit 2, a gas side pipe 4 and a liquid side pipe 5 led out from the outdoor unit 2, and a branching device 6 between the gas side pipe 4 and the liquid side pipe 5. And a plurality of indoor units 7A and 7B connected in parallel.

室外機2は、冷媒を圧縮するインバータ駆動の圧縮機21と、冷媒ガス中から潤滑油を分離するオイルセパレータ22と、冷媒の循環方向を切り換える四方切換弁23と、冷媒と外気とを熱交換させる室外熱交換器24と、暖房用の室外電子膨張弁(EEVH)25と、液冷媒を貯留するレシーバ26と、冷房時に液冷媒に過冷却を付与する過冷却熱交換器27と、過冷却熱交換器27に分流される冷媒量を制御する過冷却用電子膨張弁(EEVSC)28と、圧縮機21に吸入される冷媒ガス中から液分を分離するアキュームレータ29と、ガス側操作弁30と、液側操作弁31と、を備え、これらが公知の如く吐出配管32A、ガス配管32B、液配管32C、ガス配管32D、吸入配管32E、および過冷却用パイバス配管32F等の冷媒配管を介して接続され、室外側冷媒回路33を構成している。また、室外機2には、室外熱交換器24に外気を送風する室外ファン34が設けられる。なお、室外機2の冷媒回路33内には、所定量の冷媒が封入され、その状態で工場出荷されるのが通常である。   The outdoor unit 2 exchanges heat between the inverter-driven compressor 21 that compresses the refrigerant, the oil separator 22 that separates the lubricating oil from the refrigerant gas, the four-way switching valve 23 that switches the circulation direction of the refrigerant, and the refrigerant and the outside air. An outdoor heat exchanger 24 for heating, an outdoor electronic expansion valve (EEVH) 25 for heating, a receiver 26 for storing liquid refrigerant, a supercooling heat exchanger 27 for imparting supercooling to the liquid refrigerant during cooling, and supercooling A supercooling electronic expansion valve (EEVSC) 28 that controls the amount of refrigerant that is diverted to the heat exchanger 27, an accumulator 29 that separates liquid from refrigerant gas sucked into the compressor 21, and a gas side operation valve 30. And a liquid side operation valve 31, as known in the art, such as a discharge pipe 32A, a gas pipe 32B, a liquid pipe 32C, a gas pipe 32D, a suction pipe 32E, and a supercooling Pibus pipe 32F. Are connected via a medium pipe, constitute the outdoor refrigerant circuit 33. The outdoor unit 2 is provided with an outdoor fan 34 that blows outside air to the outdoor heat exchanger 24. Note that a predetermined amount of refrigerant is normally enclosed in the refrigerant circuit 33 of the outdoor unit 2 and is shipped from the factory in that state.

ガス側配管4および液側配管5は、室外機2のガス側操作弁30および液側操作弁31に接続される冷媒配管であり、現場での据え付け施工時に、室外機2とそれに接続される室内機7A,7Bとの間の距離によりその長さが適宜決定される。ガス側配管4および液側配管5の途中には、適宜数の分岐器6が設けられ、この分岐器6を介してそれぞれ適宜台数の室内機7A,7Bが接続される。   The gas side pipe 4 and the liquid side pipe 5 are refrigerant pipes connected to the gas side operation valve 30 and the liquid side operation valve 31 of the outdoor unit 2, and are connected to the outdoor unit 2 and to it during installation on site. The length is appropriately determined depending on the distance between the indoor units 7A and 7B. An appropriate number of branching devices 6 are provided in the middle of the gas side piping 4 and the liquid side piping 5, and an appropriate number of indoor units 7 </ b> A and 7 </ b> B are connected via the branching devices 6.

室内機7A,7Bは、冷媒と室内空気とを熱交換させて室内空調に供する室内熱交換器71と、冷房用の室内電子膨張弁(EEVC)72と、室内熱交換器71を通して室内空気を循環させる室内ファン73と、を備えており、室内側分岐ガス配管4Aおよび室内側分岐液配管5Aを介して分岐器6に接続される。なお、本実施形態では、室内機7A,7Bが2台接続された例が図示されているが、接続される室内機の数は、3台以上であってもよいことはもちろんである。   The indoor units 7A and 7B exchange indoor air through an indoor heat exchanger 71 that exchanges heat between the refrigerant and room air for indoor air conditioning, an indoor electronic expansion valve (EEVC) 72 for cooling, and the indoor heat exchanger 71. An indoor fan 73 to be circulated, and is connected to the branching device 6 through the indoor branch gas pipe 4A and the indoor branch liquid pipe 5A. In the present embodiment, an example in which two indoor units 7A and 7B are connected is shown, but the number of connected indoor units may be three or more.

上記のマルチ空調システム1は、室外機2と、室内機7A,7Bと、ガス側配管4、液側配管5、分岐ガス配管4A,4B、分岐液配管5A,5B、分岐器6等の配管類と、が別個に据え付け現場に搬入され、当該現場において室外機2と室内機7A,7Bとが冷媒配管を介して接続施工される。一般に、室外機2は屋上や建屋周辺の室外に設置され、室内機7A,7Bは、各空調ゾーンあるいは各室に各々配設される。このため、室外機2と室内機7A,7B間を接続するガス側配管4、液側配管5、分岐ガス配管4A,4B、分岐液配管5A,5B等の配管長は、据え付け環境によって大きく異なる。また、室内機7A,7Bに関しても、形式(機種)や容量の異なる室内機が混在して接続されることが往々にしてある。こうした事情から、マルチ空調システム1では、据え付け後に、冷媒配管長や室内機の形式(機種)、容量の違いに見合った量の冷媒を現地で追加チャージし、システム内に適正量の冷媒が封入されるようにしている。   The multi air conditioning system 1 includes an outdoor unit 2, indoor units 7A and 7B, a gas side pipe 4, a liquid side pipe 5, branch gas pipes 4A and 4B, branch liquid pipes 5A and 5B, branch pipes 6 and the like. Are separately carried into the installation site, and the outdoor unit 2 and the indoor units 7A and 7B are connected and constructed through the refrigerant pipe at the site. In general, the outdoor unit 2 is installed on the rooftop or outside the building, and the indoor units 7A and 7B are arranged in each air conditioning zone or each room. For this reason, the pipe lengths of the gas side pipe 4, the liquid side pipe 5, the branch gas pipes 4A and 4B, the branch liquid pipes 5A and 5B, etc., connecting the outdoor unit 2 and the indoor units 7A and 7B vary greatly depending on the installation environment. . Also, indoor units 7A and 7B are often connected in a mixture of indoor units of different types (models) and capacities. For these reasons, after installing the multi-air conditioning system 1, the refrigerant pipe length, the indoor unit type (model), and the amount of refrigerant corresponding to the difference in capacity are additionally charged locally, and an appropriate amount of refrigerant is enclosed in the system. To be.

(冷房サイクル運転)
上記のマルチ空調システム1において、冷房サイクル運転は、以下により行われる。
なお、冷房サイクル運転時、冷媒は、図1に示す実線矢印方向に循環される。また、図3に、冷房サイクル運転時のモリエル線図が示されており、モリエル線図上のAないしF点は、図1に示す冷媒回路上のAないしF位置に相当する。
圧縮機21により圧縮された高温高圧の冷媒ガスは、吐出配管32Aに吐出され、オイルセパレータ22で冷媒中に含まれる潤滑油が分離された後、四方切換弁23によりガス配管32B側に循環され、室外熱交換器24で室外ファン34により送風される外気と熱交換されて凝縮液化される。この液冷媒は、液配管32Cを介して室外電子膨張弁25を通過し、レシーバ26にいったん貯留され、循環量が調整される。レシーバ26を経た液冷媒は、過冷却熱交換器27を通過する過程で、バイパス配管32Fに一部分流され、過冷却用電子膨張弁28で断熱膨張された冷媒と熱交換されて冷却され、所定の過冷却度が付与(図3に示すモリエル線図上のB点からC点に、例えば20degの過冷却が付与される)された後、液側操作弁31を経て室外機2から液側配管5へと導出される。液側配管5に導出された液冷媒は、分岐器6により各室内機7A,7Bの分岐液配管5A,5Bへと分流される。
(Cooling cycle operation)
In the multi air conditioning system 1 described above, the cooling cycle operation is performed as follows.
In the cooling cycle operation, the refrigerant is circulated in the direction of the solid line arrow shown in FIG. Further, FIG. 3 shows a Mollier diagram during the cooling cycle operation, and points A to F on the Mollier diagram correspond to positions A to F on the refrigerant circuit shown in FIG.
The high-temperature and high-pressure refrigerant gas compressed by the compressor 21 is discharged to the discharge pipe 32A, and after the lubricating oil contained in the refrigerant is separated by the oil separator 22, it is circulated to the gas pipe 32B side by the four-way switching valve 23. The outdoor heat exchanger 24 exchanges heat with the outside air blown by the outdoor fan 34 to be condensed and liquefied. This liquid refrigerant passes through the outdoor electronic expansion valve 25 via the liquid pipe 32C, is temporarily stored in the receiver 26, and the circulation amount is adjusted. The liquid refrigerant that has passed through the receiver 26 is partially passed through the bypass pipe 32F in the process of passing through the supercooling heat exchanger 27, is heat-exchanged with the refrigerant adiabatically expanded by the supercooling electronic expansion valve 28, is cooled, and is cooled. After the subcooling degree is given (from the point B to the point C on the Mollier diagram shown in FIG. It is led out to the pipe 5. The liquid refrigerant led out to the liquid side pipe 5 is diverted to the branch liquid pipes 5A and 5B of the indoor units 7A and 7B by the branching unit 6.

分岐液配管5A,5Bに分流された液冷媒は、各室内機7A,7Bに流入し、冷房用の室内電子膨張弁72により断熱膨張され、気液二相流となって室内熱交換器71に流入される。室内熱交換器71では、室内ファン73により循環される室内空気と冷媒とが熱交換され、室内空気は冷却されて室内の冷房に供される。一方、冷媒は蒸発ガス化され、分岐ガス配管4A,4Bを経て分岐器6に至り、他の室内機からの冷媒ガスとガス側配管4で合流される。ガス側配管4で合流された冷媒ガスは、再び室外機2に戻り、ガス側操作弁30、ガス配管32D、四方切換弁23を経て吸入配管32Eに至り、バイパス配管32Fからの冷媒ガスと合流された後、アキュームレータ29に導入される。アキュームレータ29では、冷媒ガス中に含まれている液分を分離し、ガス分のみを圧縮機21へと吸入させ、この冷媒が圧縮機21において再び圧縮される。以上のサイクルを繰り返すことによって、冷房運転が行われる。   The liquid refrigerant divided into the branch liquid pipes 5A and 5B flows into the indoor units 7A and 7B, is adiabatically expanded by the indoor electronic expansion valve 72 for cooling, and becomes a gas-liquid two-phase flow. Is flowed into. In the indoor heat exchanger 71, the indoor air circulated by the indoor fan 73 and the refrigerant are heat-exchanged, and the indoor air is cooled and provided for indoor cooling. On the other hand, the refrigerant is vaporized and reaches the branching device 6 through the branch gas pipes 4A and 4B, and is merged with the refrigerant gas from the other indoor units in the gas side pipe 4. The refrigerant gas merged in the gas side pipe 4 returns to the outdoor unit 2 again, reaches the suction pipe 32E through the gas side operation valve 30, the gas pipe 32D, and the four-way switching valve 23, and merges with the refrigerant gas from the bypass pipe 32F. Is introduced into the accumulator 29. The accumulator 29 separates the liquid component contained in the refrigerant gas, sucks only the gas component into the compressor 21, and the refrigerant is compressed again in the compressor 21. The cooling operation is performed by repeating the above cycle.

(冷房サイクルでのガスロー判定)
冷房サイクルでのガスロー判定は、マルチ空調システム1が据え付けられた後に、マルチ空調システム1の冷凍サイクル内に適正量の冷媒が封入されているか否かを判断するために行われる。
ガスローの判定を行うため、四方切換弁23を冷房サイクルに切り換え、冷房サイクルで室内機7A,7Bを全台運転する。これは、室内機7A,7Bを全台運転すると、図1に示されるように、各室内機7A,7Bにそれぞれ一定量の冷媒がホールドされた状態となる。これが冷房サイクルで必要冷媒量が最も多い状態であり、この状態でガスロー判定を行うためである。
(Gas low judgment in the cooling cycle)
The gas low determination in the cooling cycle is performed in order to determine whether or not an appropriate amount of refrigerant is sealed in the refrigeration cycle of the multi air conditioning system 1 after the multi air conditioning system 1 is installed.
In order to determine the gas low, the four-way switching valve 23 is switched to the cooling cycle, and all the indoor units 7A and 7B are operated in the cooling cycle. When all the indoor units 7A and 7B are operated, as shown in FIG. 1, a certain amount of refrigerant is held in the indoor units 7A and 7B. This is because the required amount of refrigerant is the largest in the cooling cycle, and the gas low determination is performed in this state.

この室内機7A,7Bの全台運転状態において、冷房サイクル内の低圧圧力および高圧圧力を一定に制御するとともに、室内熱交換器71出口の冷媒過熱度(SH)を一定に制御して運転を安定化させる。なお、低圧圧力の一定化制御は、例えば圧縮機21の能力制御(回転数制御)により、また、高圧圧力の一定化制御は、例えば室外ファン34の回転数制御により、さらに、室内熱交換器71出口の冷媒過熱度一定化制御は、室内電子膨張弁(EEVC)72の開度制御により制御することができる。
そして、この運伝状態で室内電子膨張弁(EEVC)72および/または過冷却用電子膨張弁(EEVSC)28の開度が所定値以上(全開)のときに、冷媒封入量がガスロー状態である判定する。
In the operation state of all the indoor units 7A and 7B, the low pressure and high pressure in the cooling cycle are controlled to be constant, and the refrigerant superheat degree (SH) at the outlet of the indoor heat exchanger 71 is controlled to be constant. Stabilize. The low pressure pressure stabilization control is performed by, for example, the capacity control (rotational speed control) of the compressor 21, and the high pressure pressure constant control is performed by, for example, the rotational speed control of the outdoor fan 34. The control of the refrigerant superheat degree at the outlet 71 can be controlled by the opening degree control of the indoor electronic expansion valve (EEVC) 72.
When the opening degree of the indoor electronic expansion valve (EEVC) 72 and / or the supercooling electronic expansion valve (EEVSC) 28 is equal to or greater than a predetermined value (fully opened) in this state of transfer, the refrigerant filling amount is in the gas low state. judge.

つまり、上記の運転により、マルチ空調システム1内に適正量の冷媒が封入されている場合は、図1に示すように、各室内熱交換器71に適正量の冷媒がホールドされ、各室内電子膨張弁72は、開度が所定範囲内で制御され、室内熱交換器71の出口、すなわち図1に示す冷媒回路上のF位置(図3のモリエル線図上のF点)の冷媒過熱度(SH)を一定に制御することができる。しかし、冷媒封入量がガスロー状態の場合は、室内熱交換器71内の冷媒ホールド量が減少して行き、それに伴い室内電子膨張弁72の開度が上記の冷媒過熱度(SH)を一定とするために徐々に大きくなり、やがて全開となって室内熱交換器71出口の冷媒過熱度を一定に制御することができなくなる。この場合、室内熱交換器71出口の冷媒過熱度(SH)が大きくなり、冷房能力が低下することとなる。   That is, when an appropriate amount of refrigerant is sealed in the multi-air conditioning system 1 by the above operation, an appropriate amount of refrigerant is held in each indoor heat exchanger 71 as shown in FIG. The opening degree of the expansion valve 72 is controlled within a predetermined range, and the degree of refrigerant superheat at the outlet of the indoor heat exchanger 71, that is, the F position on the refrigerant circuit shown in FIG. 1 (the F point on the Mollier diagram of FIG. 3). (SH) can be controlled to be constant. However, when the refrigerant charging amount is in the gas low state, the refrigerant hold amount in the indoor heat exchanger 71 decreases, and accordingly, the opening degree of the indoor electronic expansion valve 72 keeps the above refrigerant superheat degree (SH) constant. Therefore, it gradually increases and eventually becomes fully open, and the refrigerant superheat degree at the outlet of the indoor heat exchanger 71 cannot be controlled to be constant. In this case, the refrigerant superheat degree (SH) at the outlet of the indoor heat exchanger 71 is increased, and the cooling capacity is reduced.

このように、全室内機7A,7Bのうち、1台でも室内電子膨張弁72の開度が所定値以上になるのは、冷媒封入量が不足している場合であり、ガスロー状態であると判断することができる。従って、この場合には、冷媒を追加充填して冷媒封入量を是正することができる。これにより、個々のマルチ空調システム1にマッチした適正量の冷媒を封入することができ、冷媒量の過不足によるトラブルを未然に防止することができる。
なお、この場合は、室内電子膨張弁72の開度から直接ガスロー状態を判断することができるが、室内機7A,7Bと室外機2間の通信により、それを室外機2側で確認する必要があるため、ガスローの認識に若干の時間遅れが生じることとなる。
As described above, the opening degree of the indoor electronic expansion valve 72 of all the indoor units 7A and 7B is equal to or greater than the predetermined value when the refrigerant filling amount is insufficient and the gas low state is established. Judgment can be made. Therefore, in this case, the refrigerant filling amount can be corrected by additionally filling the refrigerant. As a result, an appropriate amount of refrigerant matching the individual multi-air conditioning system 1 can be sealed, and troubles due to excessive or insufficient refrigerant amounts can be prevented in advance.
In this case, the gas low state can be determined directly from the opening degree of the indoor electronic expansion valve 72, but it is necessary to confirm it on the outdoor unit 2 side by communication between the indoor units 7A and 7B and the outdoor unit 2. Therefore, there will be a slight time delay in the recognition of gas low.

また、上記と同様に、過冷却用電子膨張弁28は、マルチ空調システム1内に適正量の冷媒が封入されている場合は、その開度が所定範囲内で制御され、過冷却熱交換器27出口の液側配管32C、すなわち、図1に示す冷媒回路上のC位置(図3のモリエル線図上のC点)における液冷媒の過冷却度を所定値に制御することができる。しかし、冷媒封入量がガスロー状態の場合は、液側配管32C内の冷媒にガス相が混ざるようになり、それに伴って過冷却度を所定値に制御するため、過冷却用電子膨張弁28の開度が徐々に大きくなって行き、やがて全開となって液側配管32C、すなわち、図1に示す冷媒回路上のC位置における液冷媒の過冷却度を所定値に維持することができなくなる。なお、この場合も、室内電子膨張弁72を通過する冷媒量が減少することとなるので、冷房能力が低下する。   Similarly to the above, when an appropriate amount of refrigerant is sealed in the multi-air conditioning system 1, the degree of opening of the supercooling electronic expansion valve 28 is controlled within a predetermined range, and the supercooling heat exchanger The supercooling degree of the liquid refrigerant at the liquid outlet pipe 32C at the 27 outlet, that is, the C position on the refrigerant circuit shown in FIG. 1 (C point on the Mollier diagram of FIG. 3) can be controlled to a predetermined value. However, when the refrigerant charging amount is in the gas low state, the gas phase is mixed with the refrigerant in the liquid side pipe 32C, and the supercooling degree is controlled to a predetermined value accordingly. The opening gradually increases and eventually becomes fully open, and it becomes impossible to maintain the subcooling degree of the liquid refrigerant at the liquid side pipe 32C, that is, the position C on the refrigerant circuit shown in FIG. In this case as well, the amount of refrigerant passing through the indoor electronic expansion valve 72 is reduced, so that the cooling capacity is reduced.

従って、上記のように、過冷却用電子膨張弁28の開度が所定値以上のときも、ガスロー状態であると判断することができ、冷媒を追加充填して冷媒封入量を是正することができる。これにより、個々のマルチ空調システム1にマッチした適正量の冷媒を封入することができ、冷媒量の過不足によるトラブルを未然に防止することができる。
なお、過冷却用電子膨張弁28は、室外機2に設けられているため、室外機2側のコントローラで直ちにガスロー状態を認識することができる。
Therefore, as described above, even when the opening degree of the supercooling electronic expansion valve 28 is equal to or larger than the predetermined value, it can be determined that the gas low state is established, and the refrigerant charging amount can be corrected by additionally charging the refrigerant. it can. As a result, an appropriate amount of refrigerant matching the individual multi-air conditioning system 1 can be sealed, and troubles due to excessive or insufficient refrigerant amounts can be prevented in advance.
In addition, since the electronic expansion valve 28 for supercooling is provided in the outdoor unit 2, the gas low state can be immediately recognized by the controller on the outdoor unit 2 side.

(冷房サイクルでのオーバーチャージ判定)
冷房サイクルでのオーバーチャージ判定は、上述のガスロー判定と同様、マルチ空調システム1が据え付けられた後に、マルチ空調システム1の冷凍サイクル内に適正量の冷媒が封入されているか否かを判断するために行われる。
オーバーチャージの判定を行うため、四方切換弁23を冷房サイクルに切り換え、冷房サイクルで室内機7A,7Bを1台だけ冷房運転する。これは、室内機7A,7Bを1台だけ冷房運転すると、図2に示すように、運転される室内機7Aには、一定量の冷媒がホールドされる。しかし、他の室内機7Bは、室内電子膨張弁72が全閉とされるために冷媒が供給されなくなり空状態となる。これが冷房サイクルで必要冷媒量が最も少ない状態であり、この状態でオーバーチャージ判定を行うためである。
(Overcharge judgment in cooling cycle)
Overcharge determination in the cooling cycle is performed in order to determine whether or not an appropriate amount of refrigerant is sealed in the refrigeration cycle of the multi air conditioning system 1 after the multi air conditioning system 1 is installed, as in the above-described gas low determination. To be done.
In order to determine overcharge, the four-way switching valve 23 is switched to the cooling cycle, and only one indoor unit 7A, 7B is cooled in the cooling cycle. This is because when only one indoor unit 7A, 7B is cooled, as shown in FIG. 2, a certain amount of refrigerant is held in the operated indoor unit 7A. However, since the indoor electronic expansion valve 72 is fully closed, the other indoor units 7B are not supplied with refrigerant and are in an empty state. This is because the required refrigerant amount is the smallest in the cooling cycle, and the overcharge determination is performed in this state.

この室内機7Aの1台運転状態において、冷房サイクル内の低圧圧力および高圧圧力を一定に制御するとともに、室内熱交換器71出口の冷媒過熱度(SH)を一定に制御して運転を安定化させる。この低圧圧力および高圧圧力ならびに冷媒過熱度(SH)の一定化制御は、上述のガスロー判定の場合と同様、圧縮機21の能力制御(回転数制御)、室外ファン34の回転数制御、および室内電子膨張弁(EEVC)72の開度制御により制御することができる。
そして、この運転状態において、室外熱交換器71出口の冷媒過冷却度(SC)が所定値以上のときに、冷媒封入量がオーバーチャージ状態であると判定する。
In the single unit operating state of this indoor unit 7A, the low pressure and high pressure in the cooling cycle are controlled to be constant, and the refrigerant superheat degree (SH) at the outlet of the indoor heat exchanger 71 is controlled to be stable. Let The low pressure pressure, the high pressure pressure, and the refrigerant superheat degree (SH) are controlled in the same manner as in the case of the gas low determination described above, the capacity control (rotational speed control) of the compressor 21, the rotational speed control of the outdoor fan 34, It can be controlled by opening degree control of the electronic expansion valve (EEVC) 72.
In this operation state, when the refrigerant supercooling degree (SC) at the outlet of the outdoor heat exchanger 71 is equal to or greater than a predetermined value, it is determined that the refrigerant charging amount is in the overcharge state.

つまり、上記の運転により、適正量の冷媒が封入されている場合は、室外熱交換器24から室内電子膨張弁(EEVC)72に至るまでの間の液配管32C、液側配管5、および室内側分岐液配管5Aが液冷媒で満たされるうえに、室外熱交換器24内に適正量の冷媒がホールドされることになるため、室外熱交換器24の出口、すなわち、図2に示す冷媒回路上のB位置(図3のモリエル線図上のB点)における冷媒過冷却度(SC)は所定過冷却度に維持される。しかし、冷媒封入量がオーバーチャージ状態の場合は、室外熱交換器24内に余剰の冷媒が溜まり込んで行き、室外熱交換器24出口の冷媒過冷却度が徐々に大きくなり、やがて室外電子膨張弁(EEVH)25の開度が全開となってしまうため、室外熱交換器24出口の冷媒過冷却度(SC)を所定過冷却度に維持することができなくなる。   That is, when an appropriate amount of refrigerant is sealed by the above operation, the liquid pipe 32C, the liquid side pipe 5, and the chamber from the outdoor heat exchanger 24 to the indoor electronic expansion valve (EEVC) 72 Since the inner branch liquid pipe 5A is filled with liquid refrigerant and an appropriate amount of refrigerant is held in the outdoor heat exchanger 24, the outlet of the outdoor heat exchanger 24, that is, the refrigerant circuit shown in FIG. The refrigerant supercooling degree (SC) at the upper B position (point B on the Mollier diagram of FIG. 3) is maintained at a predetermined supercooling degree. However, when the amount of refrigerant enclosed is overcharged, excess refrigerant accumulates in the outdoor heat exchanger 24, and the degree of refrigerant supercooling at the outlet of the outdoor heat exchanger 24 gradually increases, and eventually the outdoor electronic expansion occurs. Since the opening degree of the valve (EEVH) 25 is fully opened, the refrigerant supercooling degree (SC) at the outlet of the outdoor heat exchanger 24 cannot be maintained at a predetermined supercooling degree.

このように、室外熱交換器24出口の冷媒過冷却度が所定値以上となるのは、冷媒封入量が過剰の場合であり、オーバーチャージ状態であると判断することができる。この場合は、冷媒を回収して冷媒封入量を是正することができる。これによって、個々のマルチ空調システムにマッチした適正量の冷媒を封入することができ、冷媒量の過不足によるトラブルを未然に防止することができる。   As described above, the refrigerant supercooling degree at the outlet of the outdoor heat exchanger 24 becomes equal to or greater than a predetermined value when the refrigerant charging amount is excessive and it can be determined that the refrigerant is in an overcharged state. In this case, the refrigerant can be recovered to correct the refrigerant filling amount. As a result, an appropriate amount of refrigerant matching the individual multi-air conditioning system can be sealed, and troubles due to excessive or insufficient refrigerant amounts can be prevented.

(暖房サイクル運転)
上記のマルチ空調システム1において、暖房サイクル運転は、以下により行われる。
なお、暖房サイクル運転時、冷媒は、図4に示す実線矢印方向に循環される。また、図6に、暖房サイクル運転時のモリエル線図が示されており、モリエル線図上のaないしeは、図1に示す冷媒回路上のaないしe位置に相当する。
圧縮機21により圧縮された高温高圧の冷媒ガスは、吐出配管32Aに吐出され、オイルセパレータ22で冷媒中に含まれる潤滑油が分離された後、四方切換弁23によりガス配管32D側に循環される。この冷媒は、ガス側操作弁30、ガス側配管4を経て室外機2から導出され、更に、分岐器6、室内側分岐ガス配管4A,4Bを経て室内機7A,7Bに導入される。室内機7A,7Bに導入された高温高圧の冷媒ガスは、室内熱交換器71で室内ファン73により循環される室内空気と熱交換され、室内空気は加熱されて室内の暖房に供される。一方、凝縮液化された液冷媒は、室内電子膨張弁(EEVC)72を通過し、室内側分岐液配管5A,5Bを経て分岐器6に至り、ここで合流された後、液側配管5を経て室外機2に戻る。
(Heating cycle operation)
In the multi air conditioning system 1 described above, the heating cycle operation is performed as follows.
During the heating cycle operation, the refrigerant is circulated in the direction of the solid line arrow shown in FIG. FIG. 6 shows a Mollier diagram at the time of heating cycle operation, and a to e on the Mollier diagram correspond to positions a to e on the refrigerant circuit shown in FIG.
The high-temperature and high-pressure refrigerant gas compressed by the compressor 21 is discharged to the discharge pipe 32A, and after the lubricating oil contained in the refrigerant is separated by the oil separator 22, it is circulated to the gas pipe 32D side by the four-way switching valve 23. The This refrigerant is led out from the outdoor unit 2 through the gas side operation valve 30 and the gas side pipe 4, and is further introduced into the indoor units 7A and 7B through the branch unit 6 and the indoor side branch gas pipes 4A and 4B. The high-temperature and high-pressure refrigerant gas introduced into the indoor units 7A and 7B is heat-exchanged with the indoor air circulated by the indoor fan 73 in the indoor heat exchanger 71, and the indoor air is heated and used for indoor heating. On the other hand, the condensed and liquefied liquid refrigerant passes through the indoor electronic expansion valve (EEVC) 72, reaches the branching device 6 through the indoor side branch liquid pipes 5A and 5B, and is joined here. After that, it returns to the outdoor unit 2.

室外機2に戻った冷媒は、液側操作弁31、過冷却熱交換器27を通過してレシーバ26に至り、レシーバ26でいったん貯留され、循環量が調整される。この液冷媒は、液配管32Cを経て暖房用の室外電子膨張弁(EEVH)25で断熱膨張され、気液二相冷媒となって室外熱交換器24に流入される。室外熱交換器24では、室外ファン34により送風される外気と冷媒とが熱交換され、冷媒は外気から吸熱して蒸発ガス化される。この冷媒は、室外熱交換器24からガス配管32B、四方切換弁23、吸入配管32Eを経てアキュームレータ29に導入される。アキュームレータ29では、冷媒ガス中に含まれる液分が分離されてガス分のみが圧縮機21へと吸入され、この冷媒は圧縮機21で再び圧縮される。以上のサイクルを繰り返すことによって、暖房運転が行われる。   The refrigerant that has returned to the outdoor unit 2 passes through the liquid side operation valve 31 and the supercooling heat exchanger 27, reaches the receiver 26, is temporarily stored in the receiver 26, and the circulation amount is adjusted. This liquid refrigerant is adiabatically expanded by the outdoor electronic expansion valve (EEVH) 25 for heating through the liquid pipe 32C, and flows into the outdoor heat exchanger 24 as a gas-liquid two-phase refrigerant. In the outdoor heat exchanger 24, heat is exchanged between the outside air blown by the outdoor fan 34 and the refrigerant, and the refrigerant absorbs heat from the outside air and is evaporated and gasified. This refrigerant is introduced from the outdoor heat exchanger 24 into the accumulator 29 through the gas pipe 32B, the four-way switching valve 23, and the suction pipe 32E. In the accumulator 29, the liquid component contained in the refrigerant gas is separated and only the gas component is sucked into the compressor 21, and the refrigerant is compressed again by the compressor 21. A heating operation is performed by repeating the above cycle.

(暖房サイクルでのガスロー判定)
暖房サイクルでのガスロー判定は、上述の冷房サイクルでのガスローおよびオーバーチャージ判定と同様、マルチ空調システム1が据え付けられた後に、マルチ空調システム1の冷凍サイクル内に適正量の冷媒が封入されているか否かを判断するために行われる。
ガスローの判定を行うため、四方切換弁23を暖房サイクルに切り換え、暖房サイクルで室内機7A,7Bを1台だけ運転する。こうすると、図4に示すように、運転される室内機7Aには、一定量の冷媒がホールドされ、他の室内機7Bは、全て室内膨張弁72が全閉(微開)とされるために液冷媒で液封された状態となる。これが暖房サイクルで必要冷媒量が最も多い状態であり、この状態でガスロー判定を行うためである。
(Gas low judgment in heating cycle)
As for the gas low determination in the heating cycle, is the appropriate amount of refrigerant sealed in the refrigeration cycle of the multi air conditioning system 1 after the multi air conditioning system 1 is installed, as in the gas low and overcharge determination in the cooling cycle described above? This is done to determine whether or not.
In order to determine the gas low, the four-way switching valve 23 is switched to the heating cycle, and only one indoor unit 7A, 7B is operated in the heating cycle. As a result, as shown in FIG. 4, a certain amount of refrigerant is held in the indoor unit 7A to be operated, and in all the other indoor units 7B, the indoor expansion valve 72 is fully closed (slightly opened). It will be in the state sealed with the liquid refrigerant. This is because the required amount of refrigerant is the largest in the heating cycle, and the gas low determination is performed in this state.

この室内機7Aの1台運転状態において、暖房サイクル内の低圧圧力および高圧圧力を一定に制御するとともに、室外熱交換器24出口の冷媒過熱度(SH)を一定に制御して運転を安定化させる。なお、低圧圧力の一定化制御は、例えば室外ファン35の回転数制御により、また、高圧圧力の一定化制御は、例えば圧縮機21の能力制御(回転数制御)により、さらに、室外熱交換器24出口の冷媒過熱度一定化制御は、例えば室外電子膨張弁(EEVH)25の開度制御により制御することができる。
そして、この運転状態で室外電子膨張弁(EEVH)25の開度が所定値以上または室内電子膨張弁72の開度が所定値以下のときに、冷媒封入量がガスロー状態と判定することができる。
In the single unit operation state of the indoor unit 7A, the low pressure and high pressure in the heating cycle are controlled to be constant, and the refrigerant superheat degree (SH) at the outlet of the outdoor heat exchanger 24 is controlled to be stable. Let The low pressure pressure stabilization control is performed by, for example, the rotational speed control of the outdoor fan 35, and the high pressure pressure stabilization control is performed by, for example, the capacity control (rotational speed control) of the compressor 21. The refrigerant superheat degree control of the 24 outlets can be controlled by, for example, opening degree control of the outdoor electronic expansion valve (EEVH) 25.
And in this driving | running state, when the opening degree of the outdoor electronic expansion valve (EEVH) 25 is more than a predetermined value, or the opening degree of the indoor electronic expansion valve 72 is less than a predetermined value, it can determine with refrigerant | coolant enclosure amount being a gas low state. .

つまり、上記の運転により、適正量の冷媒が封入されている場合は、室外熱交換器24内に適正量の冷媒がホールドされ、室外電子膨張弁(EEVH)25は、開度が所定範囲内で制御されて室外熱交換器24の出口、すなわち、図4に示す冷媒回路上のe位置(図6に示すモリエル線図上のe点)の冷媒過熱度(SH)を一定に制御することができる。しかし、冷媒封入量がガスロー状態の場合は、室外熱交換器24内の冷媒ホールド量が減少して行き、室外熱交換器24出口の冷媒過熱度(SH)が大きくなり、それに伴って室外電子膨張弁(EEVH)25の開度が徐々に大きくなり、やがて全開となって室外熱交換器24出口(上記e位置およびe点)の冷媒過熱度(SH)を一定に制御することができなくなる。   That is, when an appropriate amount of refrigerant is sealed by the above operation, an appropriate amount of refrigerant is held in the outdoor heat exchanger 24, and the outdoor electronic expansion valve (EEVH) 25 has an opening within a predetermined range. The refrigerant superheat degree (SH) at the outlet of the outdoor heat exchanger 24, that is, the e position on the refrigerant circuit shown in FIG. 4 (point e on the Mollier diagram shown in FIG. 6) is controlled to be constant. Can do. However, when the refrigerant charging amount is in a gas low state, the refrigerant hold amount in the outdoor heat exchanger 24 decreases, and the refrigerant superheat degree (SH) at the outlet of the outdoor heat exchanger 24 increases, and accordingly, the outdoor electron The opening degree of the expansion valve (EEVH) 25 gradually increases, eventually becomes fully open, and the refrigerant superheat degree (SH) at the outlet of the outdoor heat exchanger 24 (the above-mentioned e position and e point) cannot be controlled to be constant. .

このように、室外電子膨張弁25の開度が所定値以上となるのは、冷媒封入量が不足している場合であり、ガスロー状態であると判断することができる。この場合は、冷媒を追加充填して冷媒封入量を是正することができる。これによって、個々のマルチ空調システムにマッチした適正量の冷媒を封入することができ、冷媒量の過不足によるトラブルを未然に防止することができる。   As described above, the opening degree of the outdoor electronic expansion valve 25 is equal to or larger than a predetermined value when the refrigerant filling amount is insufficient and it can be determined that the gas low state is set. In this case, it is possible to correct the amount of refrigerant filled by additionally filling the refrigerant. As a result, an appropriate amount of refrigerant matching the individual multi-air conditioning system can be sealed, and troubles due to excessive or insufficient refrigerant amounts can be prevented.

また、上記と同様に、室内電子膨張弁(EEVC)72は、適正量の冷媒が封入されている場合、室内熱交換器71内に所定量の冷媒がホールドされるため、室内熱交換器71の出口、すなわち、図4に示す冷媒回路上のb位置(図6に示すモリエル線図上のb点)の冷媒過冷却度(SC)が所定過冷却度に保持される。しかし、冷媒封入量がガスロー状態の場合は、室内熱交換器71内の冷媒ホールド量が減少して行き、室内熱交換器71出口(上記のb位置およびb点)の冷媒過冷却度(SC)が小さくなり、それに伴って室内電子膨張弁(EEVC)72の開度が徐々小さくなり、やがて全閉となって室内熱交換器71出口(上記のb位置およびb点)の冷媒過冷却度(SC)を所定過冷却度に制御することができなくなる。従って、室内電子膨張弁(EEVC)72の開度が所定値以下となる場合も、冷媒封入量が不足するガスロー状態であると判断することができる。この場合は、冷媒を追加充填して冷媒封入量を是正することができる。これにより、個々のマルチ空調システムにマッチした適正量の冷媒を封入することができ、冷媒量の過不足によるトラブルを未然に防止することができる。   Similarly to the above, since the indoor electronic expansion valve (EEVC) 72 holds a predetermined amount of refrigerant in the indoor heat exchanger 71 when an appropriate amount of refrigerant is sealed, the indoor heat exchanger 71. 4, that is, the refrigerant supercooling degree (SC) at the position b on the refrigerant circuit shown in FIG. 4 (point b on the Mollier diagram shown in FIG. 6) is maintained at a predetermined supercooling degree. However, when the refrigerant charging amount is in a gas low state, the refrigerant hold amount in the indoor heat exchanger 71 decreases, and the refrigerant subcooling degree (SC) at the outlet of the indoor heat exchanger 71 (b position and b point above). ) Becomes smaller, and accordingly, the opening degree of the indoor electronic expansion valve (EEVC) 72 gradually becomes smaller, eventually becomes fully closed, and the degree of refrigerant supercooling at the outlet of the indoor heat exchanger 71 (the above b position and b point) (SC) cannot be controlled to a predetermined degree of supercooling. Therefore, even when the opening degree of the indoor electronic expansion valve (EEVC) 72 is equal to or smaller than the predetermined value, it can be determined that the gas low state is insufficient in the refrigerant filling amount. In this case, it is possible to correct the amount of refrigerant filled by additionally filling the refrigerant. As a result, it is possible to enclose an appropriate amount of refrigerant that matches each multi-air conditioning system, and to prevent troubles caused by excessive or insufficient refrigerant amounts.

(暖房サイクルでのオーバーチャージ判定)
暖房サイクルでのオーバーチャージ判定は、上述の暖房サイクルでのガスロー判定と同様、マルチ空調システム1が据え付けられた後に、マルチ空調システム1の冷凍サイクル内に適正量の冷媒が封入されているか否かを判断するために行われる。
オーバーチャージの判定を行うため、四方切換弁23を暖房サイクルに切り換え、暖房サイクルで室内機7A,7Bを全台運転する。こうすると、図5に示すように、室内機7A,7Bには、それぞれ一定量の冷媒がホールドされることになる。これが暖房サイクルで必要冷媒量が最も少ない状態であり、この状態でガスロー判定を行うためである。
(Overcharge judgment in heating cycle)
Whether the overcharge determination in the heating cycle is the same as the gas low determination in the heating cycle described above, whether or not an appropriate amount of refrigerant is sealed in the refrigeration cycle of the multi air conditioning system 1 after the multi air conditioning system 1 is installed. Done to judge.
In order to determine overcharge, the four-way switching valve 23 is switched to the heating cycle, and all the indoor units 7A and 7B are operated in the heating cycle. If it carries out like this, as shown in FIG. 5, a fixed quantity of refrigerant | coolant will be hold | maintained at indoor unit 7A, 7B, respectively. This is because the required refrigerant amount is the smallest in the heating cycle, and the gas low determination is performed in this state.

この室内機7A,7Bの全台運転状態において、暖房サイクル内の低圧圧力および高圧圧力を一定に制御するとともに、室外熱交換器24出口の冷媒過熱度(SH)を一定に制御して運転を安定化させる。この低圧圧力および高圧圧力ならびに冷媒過熱度の一定化制御は、上述のガスロー判定の場合と同様、室外ファン34の回転数制御、圧縮機21の能力制御(回転数制御)、および室外電子膨張弁(EEVH)25の開度制御により制御することができる。
そして、この運転状態において、室内熱交換器71出口の冷媒過冷却度(SC)が所定値以上のときに、冷媒封入量がオーバーチャージ状態と判定することができる。
In the operation state of all the indoor units 7A and 7B, the low pressure and high pressure in the heating cycle are controlled to be constant, and the refrigerant superheat degree (SH) at the outlet of the outdoor heat exchanger 24 is controlled to be constant. Stabilize. The constant control of the low pressure, the high pressure, and the superheat degree of the refrigerant is performed in the same manner as in the above-described gas-low determination. It can be controlled by opening degree control of (EEVH) 25.
In this operating state, when the refrigerant supercooling degree (SC) at the outlet of the indoor heat exchanger 71 is equal to or greater than a predetermined value, the refrigerant charging amount can be determined to be an overcharged state.

つまり、この運転により、適正量の冷媒が封入されている場合は、室内熱交換器71内に適正量の冷媒がホールドされるため、室内熱交換器71の出口、すなわち、図5に示す冷媒回路上のb位置(図6に示すモリエル線図上のb点)の冷媒過冷却度(SC)は所定過冷却度に維持される。しかし、冷媒封入量がオーバーチャージ状態の場合は、室内熱交換器71内に余剰冷媒が溜まり込んで行き、室内熱交換器71出口((上記のb位置およびb点)の冷媒過冷却度(SC)が徐々に大きくなり、やがて室内電子膨張弁(EEVC)72の開度が全開となってしまい、室内熱交換器71出口(上記のb位置およびb点)の冷媒過冷却度(SC)は所定過冷却度に維持することができなくなる。   That is, when an appropriate amount of refrigerant is sealed by this operation, the appropriate amount of refrigerant is held in the indoor heat exchanger 71, so the outlet of the indoor heat exchanger 71, that is, the refrigerant shown in FIG. The refrigerant supercooling degree (SC) at the position b on the circuit (point b on the Mollier diagram shown in FIG. 6) is maintained at a predetermined degree of supercooling. However, when the refrigerant charging amount is in an overcharged state, excess refrigerant accumulates in the indoor heat exchanger 71, and the refrigerant supercooling degree at the outlet of the indoor heat exchanger 71 (the above b position and b point) ( SC) gradually increases, and eventually, the opening degree of the indoor electronic expansion valve (EEVC) 72 is fully opened, and the refrigerant supercooling degree (SC) at the outlet of the indoor heat exchanger 71 (the above b position and b point) Cannot be maintained at a predetermined degree of supercooling.

このように、室内熱交換器71出口の冷媒過冷却度(SC)が所定値以上となるのは、冷媒封入量が過剰の場合であり、オーバーチャージ状態であると判断することができる。この場合は、冷媒を回収して冷媒封入量を是正することができる。これによって、個々のマルチ空調システム1にマッチした適正量の冷媒を封入することができ、冷媒量の過不足によるトラブルを未然に防止することができる。   As described above, the refrigerant supercooling degree (SC) at the outlet of the indoor heat exchanger 71 is equal to or higher than a predetermined value when the refrigerant charging amount is excessive and it can be determined that the refrigerant is in an overcharged state. In this case, the refrigerant can be recovered to correct the refrigerant filling amount. As a result, an appropriate amount of refrigerant matching the individual multi-air conditioning system 1 can be sealed, and troubles due to excessive or insufficient refrigerant amounts can be prevented.

以上に説明の通り、本実施形態によると、冷房サイクル運転および暖房サイクル運転のそれぞれにおいて、各々ガスローか否か、オーバーチャージか否かを的確に判定することができる。そして、この判定を基に、冷媒配管長、接続される室内機の機種、容量等が様々異なるマルチ空調システム1において、それぞれ適正量の冷媒を封入することが可能となる。従って、冷媒量の過不足によるトラブルを未然に防止することができ、製品の信頼性を向上させることができる。   As described above, according to the present embodiment, it is possible to accurately determine whether the gas is low or overcharge in each of the cooling cycle operation and the heating cycle operation. Based on this determination, it is possible to enclose an appropriate amount of refrigerant in each of the multi-air conditioning systems 1 having different refrigerant pipe lengths, connected indoor unit models, capacities, and the like. Therefore, it is possible to prevent troubles caused by excess or deficiency of the refrigerant amount and improve the reliability of the product.

[第2実施形態]
次に、本発明の第2実施形態について、説明する。
上記第1実施形態では、冷房サイクルでのガスロー判定、冷房サイクルでのオーバーチャージ判定、暖房サイクルでのガスロー判定、および暖房サイクルでのオーバーチャージ判定をそれぞれ個別に行う場合について説明した。これに対して、本実施形態は、これら4つの判定を一括して適宜の順序で、あるいは特定の順序で実行するものである。
[Second Embodiment]
Next, a second embodiment of the present invention will be described.
In the first embodiment, the case where the gas low determination in the cooling cycle, the overcharge determination in the cooling cycle, the gas low determination in the heating cycle, and the overcharge determination in the heating cycle are individually performed has been described. On the other hand, in the present embodiment, these four determinations are collectively executed in an appropriate order or in a specific order.

第1の方法は、上述した4つの判定、すなわち、冷房サイクルでのガスロー判定、冷房サイクルでのオーバーチャージ判定、暖房サイクルでのガスロー判定、および暖房サイクルでのオーバーチャージ判定を、上述した方法と同様の方法により、適宜の順序で一括して実行し、その結果によって、冷媒封入量がガスローか否か、オーバーチャージか否かを判定するものである。マルチ空調システム1では、冷媒配管長、接続される室内機7A,7Bの機種、容量等が様々であることは既述の通りであり、冷房または暖房の何れの場合が必要とする冷媒量が大となるかは、冷媒配管長/室内外機の組み合わせ如何により異なる。本実施形態においては、冷房サイクルおよび暖房サイクルの両方で運転し、それぞれにおいてガスロー判定およびオーバーチャージ判定を行い、ガスローか否か、オーバーチャージか否かを判定するよいにしている。   The first method includes the above-described four determinations, that is, the gas low determination in the cooling cycle, the overcharge determination in the cooling cycle, the gas low determination in the heating cycle, and the overcharge determination in the heating cycle. By a similar method, the processes are executed collectively in an appropriate order, and whether or not the refrigerant charging amount is gas low or overcharge is determined based on the result. In the multi-air-conditioning system 1, the refrigerant pipe length, the types of indoor units 7A and 7B to be connected, the capacity, and the like are as described above. The amount of refrigerant required for either cooling or heating is as described above. Whether it becomes large or not depends on the combination of refrigerant pipe length / indoor / outdoor unit. In the present embodiment, the operation is performed in both the cooling cycle and the heating cycle, and the gas low determination and the overcharge determination are performed in each of them to determine whether or not the gas is low or overcharged.

以上のように、4つの判定で冷媒封入量の適否を確認することにより、必要冷媒量が冷房、暖房の何れが大の場合でも的確に冷媒封入量の適否を判定することができ、ガスローまたはオーバーチャージの場合には、それを是正をすることができる。このため、個々のマルチ空調システム1に対して各々過不足なく冷媒を封入することができる。
従って、室外機2に接続される室内機7A,7Bの冷媒配管長、機種、容量、台数等を加味して適正量の冷媒を封入することが可能となる。その結果、冷媒量の過不足によるトラブルを解消することができ、製品の信頼性を向上させることができる。
なお、上記4つの判定を、特に、順序を決めずに適宜一括して行う方法は、春、秋等の中間期において有効である。
As described above, by checking the suitability of the refrigerant filling amount by four determinations, it is possible to accurately determine the suitability of the refrigerant filling amount regardless of whether the required refrigerant amount is large for cooling or heating. In case of overcharge, it can be corrected. For this reason, a refrigerant | coolant can be enclosed with respect to each multi air-conditioning system 1 without each excess and deficiency.
Therefore, it is possible to enclose an appropriate amount of refrigerant in consideration of the refrigerant pipe length, model, capacity, number, etc. of the indoor units 7A and 7B connected to the outdoor unit 2. As a result, troubles caused by excessive or insufficient refrigerant amounts can be solved, and the reliability of the product can be improved.
In addition, the method of performing the above four determinations in a batch as appropriate without deciding the order is effective in intermediate periods such as spring and autumn.

第2の方法は、上記4つの判定を特定の順序で実行するものである。すなわち、夏季には、上述した冷房サイクルでのガスロー判定およびオーバーチャージ判定を、上述した暖房サイクルでのガスロー判定およびオーバーチャージ判定に優先して行い、冬季には、上述した暖房サイクルでのガスロー判定およびオーバーチャージ判定を、上述した冷房サイクルでのガスロー判定およびオーバーチャージ判定に優先して行うものである。   In the second method, the above four determinations are executed in a specific order. That is, in summer, the gas low determination and overcharge determination in the cooling cycle are performed in preference to the gas low determination and overcharge determination in the heating cycle described above, and in the winter, the gas low determination in the heating cycle described above are performed. In addition, the overcharge determination is performed in preference to the gas low determination and the overcharge determination in the above-described cooling cycle.

このように、夏季には、冷房サイクルでのガスロー判定およびオーバーチャージ判定を優先的に行い、冬季には、暖房サイクルでのガスロー判定およびオーバーチャージ判定を優先的に行うことによって、冷媒封入量判定のための冷房サイクルでの運転および暖房サイクルでの運転をそれぞれ高負荷運転とすることができる。この高負荷運転により圧縮機21が高Hz運転となり、冷媒循環量が増大されるため、迅速に冷媒封入量判定を行うことができる。特に、冷媒回路がアキュームレータ29を有する場合、アキュームレータ29に溜まっている冷媒を追い出す必要があるが、圧縮機21の高Hz運転によりアキュームレータ29から速やかに冷媒を追い出すことができ、冷媒封入量の判定を迅速に実施することが可能となる。
従って、冷媒封入量判定に要する時間を可及的に短くすることができ、作業効率を高めることができる。
In this way, in the summer season, priority is given to the gas low determination and overcharge determination in the cooling cycle, and in the winter season, priority is given to the gas low determination and overcharge determination in the heating cycle, thereby determining the refrigerant filling amount. The operation in the cooling cycle and the operation in the heating cycle can be respectively performed at a high load. This high load operation causes the compressor 21 to operate at a high Hz and the refrigerant circulation amount is increased, so that the refrigerant filling amount can be quickly determined. In particular, when the refrigerant circuit has the accumulator 29, it is necessary to expel the refrigerant accumulated in the accumulator 29. However, the refrigerant can be quickly expelled from the accumulator 29 by the high-frequency operation of the compressor 21, and the amount of refrigerant enclosed can be determined. Can be carried out quickly.
Therefore, the time required for determining the refrigerant charging amount can be shortened as much as possible, and the working efficiency can be improved.

[第3実施形態]
次に、本発明の第3実施形態について、説明する。
上記第1実施形態および第2実施形態は、マルチ空調システム1の冷媒封入量がガスローか否か、オーバーチャージか否かを判定する冷媒封入量判定方法に係るものであるのに対して、本実施形態は、その冷媒封入量判定方法を利用して冷媒の漏洩を検知するものである点が異なっている。
マルチ空調システム1の冷凍サイクル内に封入されている冷媒は、使用中に何らかの理由により漏洩する場合がある。この場合、規定通りの空調性能が得られなくなるのみならず、環境にも影響を及ぼすこととなる。従って、冷凍サイクル内に封入されている冷媒の漏洩を簡便に検知できることは非常に有益なことである。
[Third Embodiment]
Next, a third embodiment of the present invention will be described.
While the first embodiment and the second embodiment relate to the refrigerant filling amount determination method for determining whether the refrigerant filling amount of the multi-air conditioning system 1 is gas low or overcharge, The embodiment is different in that the leakage of the refrigerant is detected using the refrigerant filling amount determination method.
The refrigerant sealed in the refrigeration cycle of the multi-air conditioning system 1 may leak for some reason during use. In this case, not only the specified air conditioning performance cannot be obtained, but also the environment is affected. Therefore, it is very useful to be able to easily detect the leakage of the refrigerant sealed in the refrigeration cycle.

上述したマルチ空調システムの冷媒封入量判定方法は、マルチ空調システム1の据え付け後の試運転時に実行し、冷媒封入量の適否を判定するものである。本実施形態は、この冷媒封入量の判定結果を利用して冷媒漏洩を検知するものである。つまり、マルチ空調システム1の据え付け後の試運転時における冷媒封入量の適否判定結果を初期運転データとして、コントローラの記憶部に記憶する。そして、その後の適宜時期、例えば定期点検時等に同様の冷媒封入量判定を行って、同様の運転データを取得し、上記記憶部に記憶されている試運転時に取得した初期運転データと比較することによって、冷媒漏洩の有無を検知することができる。   The above-described refrigerant filling amount determination method of the multi-air conditioning system is executed during a trial operation after installation of the multi-air conditioning system 1 to determine whether the refrigerant filling amount is appropriate. In the present embodiment, refrigerant leakage is detected by using the determination result of the refrigerant filling amount. That is, the suitability determination result of the refrigerant filling amount at the time of trial operation after installation of the multi air conditioning system 1 is stored in the storage unit of the controller as initial operation data. Then, the same refrigerant filling amount determination is performed at an appropriate time thereafter, for example, at the time of periodic inspection, etc., and similar operation data is acquired and compared with the initial operation data acquired during the trial operation stored in the storage unit. Thus, it is possible to detect the presence or absence of refrigerant leakage.

このように、マルチ空調システム据え付け後の試運転時に、冷媒封入量の適否判定を行い、その結果を初期運転データとして記憶し、その後の適宜時期に同様の冷媒封入量判定を行い、その運転データを前記初期運転データと比較することによって、冷媒漏洩の有無を簡便に検知することができる。このため、冷媒漏洩が検知されれば、速やかに必要な措置を講ずることができ、ガスローによるトラブル防止や環境保護に繋げることができる。   In this way, during the trial operation after installing the multi air conditioning system, the suitability of the refrigerant filling amount is determined, the result is stored as initial operation data, the similar refrigerant filling amount determination is performed at an appropriate time thereafter, and the operation data is stored. By comparing with the initial operation data, it is possible to easily detect the presence or absence of refrigerant leakage. For this reason, if a refrigerant leak is detected, it is possible to take necessary measures promptly, leading to trouble prevention and environmental protection due to gas low.

なお、上記した実施形態においては、冷房サイクルでのオーバーチャージ判定を、室内機7A,7Bを1台だけ運転することによって実施しているが、室内機7A,7Bを全台運転して行ってもよい。この場合、オーバーチャージか否かを判定するための室外熱交換器71出口における冷媒過冷却度の閾値を、1台運転の場合と異なる値に設定する必要がある。   In the above-described embodiment, the overcharge determination in the cooling cycle is performed by operating only one indoor unit 7A, 7B, but is performed by operating all the indoor units 7A, 7B. Also good. In this case, it is necessary to set the threshold value of the refrigerant supercooling degree at the outlet of the outdoor heat exchanger 71 for determining whether or not it is overcharged to a value different from that in the case of single-unit operation.

本発明の第1実施形態に係るマルチ空調システムの冷媒封入量判定方法の冷房サイクルでのガスロー判定時の運転状態図である。It is a driving | running state figure at the time of the gas low determination in the cooling cycle of the refrigerant | coolant enclosure amount determination method of the multi air conditioning system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るマルチ空調システムの冷媒封入量判定方法の冷房サイクルでのオーバーチャージ判定時の運転状態図である。It is a driving | running state figure at the time of the overcharge determination in the cooling cycle of the refrigerant | coolant enclosure amount determination method of the multi air conditioning system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るマルチ空調システムの冷媒封入量判定方法の冷房サイクルにおけるモリエル線図である。It is a Mollier diagram in a cooling cycle of a refrigerant enclosure amount judging method of a multi air-conditioning system concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係るマルチ空調システムの冷媒封入量判定方法の暖房サイクルでのガスロー判定時の運転状態図である。It is a driving | running state figure at the time of the gas low determination in the heating cycle of the refrigerant | coolant enclosure amount determination method of the multi air conditioning system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るマルチ空調システムの冷媒封入量判定方法の暖房サイクルでのオーバーチャージ判定時の運転状態図である。It is a driving | running state figure at the time of the overcharge determination in the heating cycle of the refrigerant | coolant enclosure amount determination method of the multi air conditioning system which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るマルチ空調システムの冷媒封入量判定方法の暖房サイクルにおけるモリエル線図である。It is a Mollier diagram in the heating cycle of the refrigerant | coolant enclosure amount determination method of the multi air conditioning system which concerns on 1st Embodiment of this invention.

符号の説明Explanation of symbols

1 マルチ空調システム
2 室外機
4 ガス側配管
4A,4B 室内側分岐ガス配管
5 液側配管
5A,5B 室内側分岐液配管
7A,7B 室内機
21 圧縮機
23 四方切換弁
24 室外熱交換器
25 室外電子膨張弁(EEVH)
26 レシーバ
27 過冷却熱交換器
28 過冷却用電子膨張弁(EEVSC)
32A,32B,32C,32D,32E,32F 冷媒配管
33 室外側冷媒回路
71 室内熱交換器
72 室内電子膨張弁(EEVC)

DESCRIPTION OF SYMBOLS 1 Multi air-conditioning system 2 Outdoor unit 4 Gas side piping 4A, 4B Indoor side branch gas piping 5 Liquid side piping 5A, 5B Indoor side branch liquid piping 7A, 7B Indoor unit 21 Compressor 23 Four-way switching valve 24 Outdoor heat exchanger 25 Outdoor Electronic expansion valve (EEVH)
26 Receiver 27 Supercooling heat exchanger 28 Supercooling electronic expansion valve (EEVSC)
32A, 32B, 32C, 32D, 32E, 32F Refrigerant piping 33 Outdoor refrigerant circuit 71 Indoor heat exchanger 72 Indoor electronic expansion valve (EEVC)

Claims (7)

冷媒を圧縮する圧縮機と、冷媒循環方向を切り換える四方切換弁と、冷媒と外気とを熱交換する室外熱交換器と、冷媒を膨張させる暖房用の室外膨張弁と、冷媒を貯留するレシーバと、冷媒に過冷却を付与する過冷却熱交換器と、過冷却熱交換器に導かれるバイパス冷媒を膨張させる過冷却用膨張弁と、を順次冷媒配管により接続して構成される室外側冷媒回路を備え、該室外側冷媒回路からガス側配管および液側配管が導出される室外機と、
冷媒と室内空気とを熱交換する室内熱交換器と、冷媒を膨張させる冷房用の室内膨張弁と、を備え、前記ガス側配管および液側配管より分岐される複数組の室内側分岐ガス配管および室内側分岐液配管間に、互いに並列に接続される複数台の室内機と、から構成されるマルチ空調システムの冷媒封入量判定方法であって、
前記四方切換弁を冷房サイクルに切り換え、該サイクル内の低圧圧力および高圧圧力を一定とするとともに、前記室内熱交換器出口の冷媒過熱度を一定として前記室内機を全台冷房運転し、
この状態で前記室内膨張弁および/または前記過冷却用膨張弁の開度が所定値以上のときに、冷媒封入量がガスロー状態と判定することを特徴とするマルチ空調システムの冷媒封入量判定方法。
A compressor that compresses the refrigerant, a four-way switching valve that switches a refrigerant circulation direction, an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, an outdoor expansion valve for heating that expands the refrigerant, and a receiver that stores the refrigerant An outdoor refrigerant circuit configured by sequentially connecting a supercooling heat exchanger for imparting supercooling to the refrigerant and a supercooling expansion valve for expanding the bypass refrigerant led to the supercooling heat exchanger by refrigerant piping An outdoor unit from which the gas side pipe and the liquid side pipe are led out from the outdoor refrigerant circuit,
A plurality of sets of indoor side branch gas pipes that are provided with an indoor heat exchanger that exchanges heat between the refrigerant and room air and an indoor expansion valve for cooling that expands the refrigerant, and are branched from the gas side pipe and the liquid side pipe And a plurality of indoor units connected in parallel with each other between the indoor branch liquid pipes, and a refrigerant sealing amount determination method for a multi air conditioning system,
The four-way switching valve is switched to a cooling cycle, the low pressure and high pressure in the cycle are made constant, and the indoor units are all cooled with the refrigerant superheat degree at the outlet of the indoor heat exchanger being made constant,
In this state, when the opening degree of the indoor expansion valve and / or the subcooling expansion valve is equal to or greater than a predetermined value, the refrigerant filling amount is determined to be in the gas low state, and the refrigerant filling amount determining method for the multi-air conditioning system is characterized. .
冷媒を圧縮する圧縮機と、冷媒循環方向を切り換える四方切換弁と、冷媒と外気とを熱交換する室外熱交換器と、冷媒を膨張させる暖房用の室外膨張弁と、冷媒を貯留するレシーバと、冷媒に過冷却を付与する過冷却熱交換器と、過冷却熱交換器に導かれるバイパス冷媒を膨張させる過冷却用膨張弁と、を順次冷媒配管により接続して構成される室外側冷媒回路を備え、該室外側冷媒回路からガス側配管および液側配管が導出される室外機と、
冷媒と室内空気とを熱交換する室内熱交換器と、冷媒を膨張させる冷房用の室内膨張弁と、を備え、前記ガス側配管および液側配管より分岐される複数組の室内側分岐ガス配管および室内側分岐液配管間に、互いに並列に接続される複数台の室内機と、から構成されるマルチ空調システムの冷媒封入量判定方法であって、
前記四方切換弁を冷房サイクルに切り換え、該サイクル内の低圧圧力および高圧圧力を一定とするとともに、前記室内熱交換器出口の冷媒過熱度を一定として前記室内機を1台冷房運転し、
この状態で前記室外熱交換器出口の冷媒過冷却度が所定値以上のときに、冷媒封入量がオーバーチャージ状態と判定することを特徴とするマルチ空調システムの冷媒封入量判定方法。
A compressor that compresses the refrigerant, a four-way switching valve that switches a refrigerant circulation direction, an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, an outdoor expansion valve for heating that expands the refrigerant, and a receiver that stores the refrigerant An outdoor refrigerant circuit configured by sequentially connecting a supercooling heat exchanger for imparting supercooling to the refrigerant and a supercooling expansion valve for expanding the bypass refrigerant led to the supercooling heat exchanger by refrigerant piping An outdoor unit from which the gas side pipe and the liquid side pipe are led out from the outdoor refrigerant circuit,
A plurality of sets of indoor side branch gas pipes that are provided with an indoor heat exchanger that exchanges heat between the refrigerant and room air and an indoor expansion valve for cooling that expands the refrigerant, and are branched from the gas side pipe and the liquid side pipe And a plurality of indoor units connected in parallel with each other between the indoor branch liquid pipes, and a refrigerant sealing amount determination method for a multi air conditioning system,
The four-way switching valve is switched to a cooling cycle, and the low pressure and high pressure in the cycle are made constant, and the cooling of the indoor unit is performed by cooling one indoor unit with a constant refrigerant superheat degree at the outlet of the indoor heat exchanger,
In this state, when the refrigerant supercooling degree at the outlet of the outdoor heat exchanger is equal to or greater than a predetermined value, the refrigerant filling amount is determined to be an overcharged state.
冷媒を圧縮する圧縮機と、冷媒循環方向を切り換える四方切換弁と、冷媒と外気とを熱交換する室外熱交換器と、冷媒を膨張させる暖房用の室外膨張弁と、冷媒を貯留するレシーバと、冷媒に過冷却を付与する過冷却熱交換器と、過冷却熱交換器に導かれるバイパス冷媒を膨張させる過冷却用膨張弁と、を順次冷媒配管により接続して構成される室外側冷媒回路を備え、該室外側冷媒回路からガス側配管および液側配管が導出される室外機と、
冷媒と室内空気とを熱交換する室内熱交換器と、冷媒を膨張させる冷房用の室内膨張弁と、を備え、前記ガス側配管および液側配管より分岐される複数組の室内側分岐ガス配管および室内側分岐液配管間に、互いに並列に接続される複数台の室内機と、から構成されるマルチ空調システムの冷媒封入量判定方法であって、
前記四方切換弁を暖房サイクルに切り換え、該サイクル内の低圧圧力および高圧圧力を一定とするとともに、前記室外熱交換器出口の冷媒過熱度を一定として前記室内機を1台暖房運転し、
この状態で前記室外膨張弁の開度が所定値以上または前記室内膨張弁の開度が所定値以下のときに、冷媒封入量がガスロー状態と判定することを特徴とするマルチ空調システムの冷媒封入量判定方法。
A compressor that compresses the refrigerant, a four-way switching valve that switches a refrigerant circulation direction, an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, an outdoor expansion valve for heating that expands the refrigerant, and a receiver that stores the refrigerant An outdoor refrigerant circuit configured by sequentially connecting a supercooling heat exchanger for imparting supercooling to the refrigerant and a supercooling expansion valve for expanding the bypass refrigerant led to the supercooling heat exchanger by refrigerant piping An outdoor unit from which the gas side pipe and the liquid side pipe are led out from the outdoor refrigerant circuit,
A plurality of sets of indoor side branch gas pipes that are provided with an indoor heat exchanger that exchanges heat between the refrigerant and room air and an indoor expansion valve for cooling that expands the refrigerant, and are branched from the gas side pipe and the liquid side pipe And a plurality of indoor units connected in parallel with each other between the indoor branch liquid pipes, and a refrigerant sealing amount determination method for a multi air conditioning system,
The four-way switching valve is switched to a heating cycle, the low pressure and high pressure in the cycle are made constant, and one indoor unit is heated and operated with a constant refrigerant superheat degree at the outlet of the outdoor heat exchanger,
In this state, when the opening degree of the outdoor expansion valve is equal to or greater than a predetermined value or when the opening degree of the indoor expansion valve is equal to or less than a predetermined value, it is determined that the refrigerant charging amount is a gas low state. Quantity judgment method.
冷媒を圧縮する圧縮機と、冷媒循環方向を切り換える四方切換弁と、冷媒と外気とを熱交換する室外熱交換器と、冷媒を膨張させる暖房用の室外膨張弁と、冷媒を貯留するレシーバと、冷媒に過冷却を付与する過冷却熱交換器と、過冷却熱交換器に導かれるバイパス冷媒を膨張させる過冷却用膨張弁と、を順次冷媒配管により接続して構成される室外側冷媒回路を備え、該室外側冷媒回路からガス側配管および液側配管が導出される室外機と、
冷媒と室内空気とを熱交換する室内熱交換器と、冷媒を膨張させる冷房用の室内膨張弁と、を備え、前記ガス側配管および液側配管より分岐される複数組の室内側分岐ガス配管および室内側分岐液配管間に、互いに並列に接続される複数台の室内機と、から構成されるマルチ空調システムの冷媒封入量判定方法であって、
前記四方切換弁を暖房サイクルに切り換え、該サイクル内の低圧圧力および高圧圧力を一定とするとともに、前記室外熱交換器出口の冷媒過熱度を一定として前記室内機を全台暖房運転し、
この状態で前記室内熱交換器出口の冷媒過冷却度が所定値以上のときに、冷媒封入量がオーバーチャージ状態と判定することを特徴とするマルチ空調システムの冷媒封入量判定方法。
A compressor that compresses the refrigerant, a four-way switching valve that switches a refrigerant circulation direction, an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, an outdoor expansion valve for heating that expands the refrigerant, and a receiver that stores the refrigerant An outdoor refrigerant circuit configured by sequentially connecting a supercooling heat exchanger for imparting supercooling to the refrigerant and a supercooling expansion valve for expanding the bypass refrigerant led to the supercooling heat exchanger by refrigerant piping An outdoor unit from which the gas side pipe and the liquid side pipe are led out from the outdoor refrigerant circuit,
A plurality of sets of indoor side branch gas pipes that are provided with an indoor heat exchanger that exchanges heat between the refrigerant and room air and an indoor expansion valve for cooling that expands the refrigerant, and are branched from the gas side pipe and the liquid side pipe And a plurality of indoor units connected in parallel with each other between the indoor branch liquid pipes, and a refrigerant sealing amount determination method for a multi air conditioning system,
The four-way switching valve is switched to a heating cycle, the low pressure and high pressure in the cycle are made constant, and the indoor unit is heated by heating all the indoor units with a constant refrigerant superheat degree at the outdoor heat exchanger outlet,
In this state, when the refrigerant subcooling degree at the outlet of the indoor heat exchanger is equal to or greater than a predetermined value, the refrigerant charging amount is determined to be an overcharged state.
冷媒を圧縮する圧縮機と、冷媒循環方向を切り換える四方切換弁と、冷媒と外気とを熱交換する室外熱交換器と、冷媒を膨張させる暖房用の室外膨張弁と、冷媒を貯留するレシーバと、冷媒に過冷却を付与する過冷却熱交換器と、過冷却熱交換器に導かれるバイパス冷媒を膨張させる過冷却用膨張弁と、を順次冷媒配管により接続して構成される室外側冷媒回路を備え、該室外側冷媒回路からガス側配管および液側配管が導出される室外機と、
冷媒と室内空気とを熱交換する室内熱交換器と、冷媒を膨張させる冷房用の室内膨張弁と、を備え、前記ガス側配管および液側配管より分岐される複数組の室内側分岐ガス配管および室内側分岐液配管間に、互いに並列に接続される複数台の室内機と、から構成されるマルチ空調システムの冷媒封入量判定方法であって、
請求項1に記載の冷房サイクルでのガスロー判定と、請求項2に記載の冷房サイクルでのオーバーチャージ判定と、請求項3に記載の暖房サイクルでのガスロー判定と、請求項4に記載の暖房サイクルでのオーバーチャージ判定と、を一括して適宜の順序で行うことを特徴とするマルチ空調システムの冷媒封入量判定方法。
A compressor that compresses the refrigerant, a four-way switching valve that switches a refrigerant circulation direction, an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, an outdoor expansion valve for heating that expands the refrigerant, and a receiver that stores the refrigerant An outdoor refrigerant circuit configured by sequentially connecting a supercooling heat exchanger for imparting supercooling to the refrigerant and a supercooling expansion valve for expanding the bypass refrigerant led to the supercooling heat exchanger by refrigerant piping An outdoor unit from which the gas side pipe and the liquid side pipe are led out from the outdoor refrigerant circuit,
A plurality of sets of indoor side branch gas pipes that are provided with an indoor heat exchanger that exchanges heat between the refrigerant and room air and an indoor expansion valve for cooling that expands the refrigerant, and are branched from the gas side pipe and the liquid side pipe And a plurality of indoor units connected in parallel with each other between the indoor branch liquid pipes, and a refrigerant sealing amount determination method for a multi air conditioning system,
The gas low determination in the cooling cycle according to claim 1, the overcharge determination in the cooling cycle according to claim 2, the gas low determination in the heating cycle according to claim 3, and the heating according to claim 4. A method for determining a refrigerant filling amount of a multi-air conditioning system, wherein overcharge determination in a cycle is collectively performed in an appropriate order.
夏季には、冷房サイクルでのガスロー判定およびオーバーチャージ判定を、暖房サイクルでのガスロー判定およびオーバーチャージ判定に優先して行い、冬季には、暖房サイクルでのガスロー判定およびオーバーチャージ判定を、冷房サイクルでのガスロー判定およびオーバーチャージ判定に優先して行うことを特徴とする請求項5に記載のマルチ空調システムの冷媒封入量判定方法。   In summer, gas low judgment and overcharge judgment in the cooling cycle are given priority over gas low judgment and overcharge judgment in the heating cycle, and in winter, gas low judgment and overcharge judgment in the heating cycle are performed in the cooling cycle. 6. The method for determining the amount of refrigerant enclosed in a multi-air conditioning system according to claim 5, wherein the determination is performed with priority over the gas low determination and overcharge determination. マルチ空調システム据え付け後の試運転時に、請求項1ないし6のいずれかに記載の冷媒封入量判定方法により冷媒封入量の判定を行い、その結果を初期運転データとして記憶し、その後の適宜時期に同様の冷媒封入量判定を行って、その運転データを前記初期運転データと比較することにより、冷媒漏洩の有無を検知することを特徴とするマルチ空調システムの冷媒漏洩検知方法。
During trial operation after installation of the multi air conditioning system, the refrigerant charging amount is determined by the refrigerant charging amount determination method according to any one of claims 1 to 6, the result is stored as initial operation data, and the same is performed at an appropriate time thereafter. A refrigerant leakage detection method for a multi-air-conditioning system, wherein the presence or absence of refrigerant leakage is detected by performing a refrigerant filling amount determination and comparing the operation data with the initial operation data.
JP2006280012A 2006-10-13 2006-10-13 Refrigerant filling amount determination method and refrigerant leakage detection method for multi-air conditioning system Expired - Fee Related JP5210510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280012A JP5210510B2 (en) 2006-10-13 2006-10-13 Refrigerant filling amount determination method and refrigerant leakage detection method for multi-air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280012A JP5210510B2 (en) 2006-10-13 2006-10-13 Refrigerant filling amount determination method and refrigerant leakage detection method for multi-air conditioning system

Publications (2)

Publication Number Publication Date
JP2008096051A true JP2008096051A (en) 2008-04-24
JP5210510B2 JP5210510B2 (en) 2013-06-12

Family

ID=39379076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280012A Expired - Fee Related JP5210510B2 (en) 2006-10-13 2006-10-13 Refrigerant filling amount determination method and refrigerant leakage detection method for multi-air conditioning system

Country Status (1)

Country Link
JP (1) JP5210510B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250479A (en) * 2008-04-03 2009-10-29 Sharp Corp Air conditioner
KR20100081619A (en) * 2009-01-06 2010-07-15 엘지전자 주식회사 Air conditioner and method for charging of refrigerant of air conditioner
JP2010198362A (en) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd Remote maintenance management system for air conditioning equipment and remote maintenance management server
JP2010223542A (en) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2011064357A (en) * 2009-09-15 2011-03-31 Daikin Industries Ltd Leakage diagnostic method and leakage diagnostic device
JP2012047447A (en) * 2008-09-30 2012-03-08 Daikin Industries Ltd Leakage diagnosing device
CN104949411A (en) * 2015-06-09 2015-09-30 广东美的暖通设备有限公司 Device and method for detecting quantity of refrigerants and air-conditioner with device for detecting quantity of refrigerants
JP2016050680A (en) * 2014-08-28 2016-04-11 三菱電機株式会社 Refrigeration air conditioner
WO2016155369A1 (en) * 2015-03-31 2016-10-06 广东美的暖通设备有限公司 Multi-online system
WO2017002213A1 (en) * 2015-06-30 2017-01-05 三菱電機株式会社 Refrigerant leakage detection device
JPWO2015125509A1 (en) * 2014-02-18 2017-03-30 東芝キヤリア株式会社 Refrigeration cycle equipment
CN108061412A (en) * 2017-12-06 2018-05-22 珠海格力电器股份有限公司 Refrigerant filling equipment and control method thereof
CN108278725A (en) * 2018-01-22 2018-07-13 南京天加环境科技有限公司 A kind of method that multi-line system realizes system balancing
WO2018159202A1 (en) 2017-02-28 2018-09-07 三菱重工サーマルシステムズ株式会社 Refrigerant charge determination device, air conditioning system, refrigerant charge determination method, and program
CN109764490A (en) * 2019-01-21 2019-05-17 宁波奥克斯电气股份有限公司 Air conditioner coolant supply state detection method, device and air-conditioning and storage medium
JP2019148393A (en) * 2018-02-28 2019-09-05 株式会社富士通ゼネラル Air conditioner
CN110657560A (en) * 2019-09-24 2020-01-07 四川长虹空调有限公司 Electronic expansion valve opening control method
JP2020169809A (en) * 2018-09-27 2020-10-15 ダイキン工業株式会社 Air conditioner, management device, and refrigerant communication pipe
CN112797680A (en) * 2020-12-31 2021-05-14 珠海格力电器股份有限公司 Control device, method and system for automatically filling refrigerant and air conditioning equipment
WO2022024660A1 (en) * 2020-07-29 2022-02-03 株式会社富士通ゼネラル Air conditioner
CN114543259A (en) * 2022-03-08 2022-05-27 青岛海信日立空调系统有限公司 Air conditioner
WO2022244793A1 (en) * 2021-05-21 2022-11-24 ダイキン工業株式会社 Refrigeration cycle device
WO2022244739A1 (en) * 2021-05-21 2022-11-24 ダイキン工業株式会社 Refrigerant leakage detection system
WO2024062948A1 (en) * 2022-09-20 2024-03-28 ダイキン工業株式会社 Heat source unit and freezing device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194259A (en) * 1984-03-14 1985-10-02 ダイキン工業株式会社 Refrigerator with electric expansion valve
JPS61202056A (en) * 1985-02-28 1986-09-06 ダイキン工業株式会社 Refrigerator with electric type expansion valve
JPS6332272A (en) * 1986-07-24 1988-02-10 ダイキン工業株式会社 Refrigerator
JPH02208469A (en) * 1989-02-03 1990-08-20 Daikin Ind Ltd Air conditioner
JPH03186170A (en) * 1989-12-13 1991-08-14 Hitachi Ltd Refrigerating machine and refrigerant amount indicating method in refrigerating machine
JPH06273013A (en) * 1993-03-19 1994-09-30 Toshiba Corp Air conditioning apparatus
JPH08254376A (en) * 1995-03-17 1996-10-01 Mitsubishi Electric Corp Air conditioner
JP2000052754A (en) * 1998-08-10 2000-02-22 Mitsubishi Heavy Ind Ltd Vehicle air-conditioning device
JP2001349623A (en) * 2000-06-06 2001-12-21 Daikin Ind Ltd Freezer device
JP2005257219A (en) * 2004-03-15 2005-09-22 Mitsubishi Electric Corp Air conditioner
JP2006023072A (en) * 2004-06-11 2006-01-26 Daikin Ind Ltd Air conditioner

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194259A (en) * 1984-03-14 1985-10-02 ダイキン工業株式会社 Refrigerator with electric expansion valve
JPS61202056A (en) * 1985-02-28 1986-09-06 ダイキン工業株式会社 Refrigerator with electric type expansion valve
JPS6332272A (en) * 1986-07-24 1988-02-10 ダイキン工業株式会社 Refrigerator
JPH02208469A (en) * 1989-02-03 1990-08-20 Daikin Ind Ltd Air conditioner
JPH03186170A (en) * 1989-12-13 1991-08-14 Hitachi Ltd Refrigerating machine and refrigerant amount indicating method in refrigerating machine
JPH06273013A (en) * 1993-03-19 1994-09-30 Toshiba Corp Air conditioning apparatus
JPH08254376A (en) * 1995-03-17 1996-10-01 Mitsubishi Electric Corp Air conditioner
JP2000052754A (en) * 1998-08-10 2000-02-22 Mitsubishi Heavy Ind Ltd Vehicle air-conditioning device
JP2001349623A (en) * 2000-06-06 2001-12-21 Daikin Ind Ltd Freezer device
JP2005257219A (en) * 2004-03-15 2005-09-22 Mitsubishi Electric Corp Air conditioner
JP2006023072A (en) * 2004-06-11 2006-01-26 Daikin Ind Ltd Air conditioner

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250479A (en) * 2008-04-03 2009-10-29 Sharp Corp Air conditioner
JP2012047447A (en) * 2008-09-30 2012-03-08 Daikin Industries Ltd Leakage diagnosing device
KR20100081619A (en) * 2009-01-06 2010-07-15 엘지전자 주식회사 Air conditioner and method for charging of refrigerant of air conditioner
KR101583344B1 (en) 2009-01-06 2016-01-19 엘지전자 주식회사 Air conditioner and method for charging of refrigerant of air conditioner
JP2010198362A (en) * 2009-02-25 2010-09-09 Mitsubishi Heavy Ind Ltd Remote maintenance management system for air conditioning equipment and remote maintenance management server
JP2010223542A (en) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2011064357A (en) * 2009-09-15 2011-03-31 Daikin Industries Ltd Leakage diagnostic method and leakage diagnostic device
JPWO2015125509A1 (en) * 2014-02-18 2017-03-30 東芝キヤリア株式会社 Refrigeration cycle equipment
JP2016050680A (en) * 2014-08-28 2016-04-11 三菱電機株式会社 Refrigeration air conditioner
WO2016155369A1 (en) * 2015-03-31 2016-10-06 广东美的暖通设备有限公司 Multi-online system
CN104949411A (en) * 2015-06-09 2015-09-30 广东美的暖通设备有限公司 Device and method for detecting quantity of refrigerants and air-conditioner with device for detecting quantity of refrigerants
WO2017002213A1 (en) * 2015-06-30 2017-01-05 三菱電機株式会社 Refrigerant leakage detection device
GB2555256A (en) * 2015-06-30 2018-04-25 Mitsubishi Electric Corp Refrigerant leakage detection device
GB2555256B (en) * 2015-06-30 2020-09-02 Mitsubishi Electric Corp Refrigerant leakage detection device
WO2018159202A1 (en) 2017-02-28 2018-09-07 三菱重工サーマルシステムズ株式会社 Refrigerant charge determination device, air conditioning system, refrigerant charge determination method, and program
CN110199163A (en) * 2017-02-28 2019-09-03 三菱重工制冷空调系统株式会社 Determining amount of refrigerant device, air handling system, method of determining amount of refrigerant and program
CN108061412A (en) * 2017-12-06 2018-05-22 珠海格力电器股份有限公司 Refrigerant filling equipment and control method thereof
CN108278725A (en) * 2018-01-22 2018-07-13 南京天加环境科技有限公司 A kind of method that multi-line system realizes system balancing
JP2019148393A (en) * 2018-02-28 2019-09-05 株式会社富士通ゼネラル Air conditioner
JP2020169809A (en) * 2018-09-27 2020-10-15 ダイキン工業株式会社 Air conditioner, management device, and refrigerant communication pipe
US12013139B2 (en) 2018-09-27 2024-06-18 Daikin Industries, Ltd. Air conditioning apparatus, management device, and connection pipe
CN109764490A (en) * 2019-01-21 2019-05-17 宁波奥克斯电气股份有限公司 Air conditioner coolant supply state detection method, device and air-conditioning and storage medium
CN110657560A (en) * 2019-09-24 2020-01-07 四川长虹空调有限公司 Electronic expansion valve opening control method
EP4191155A4 (en) * 2020-07-29 2024-03-27 Fujitsu General Limited Air conditioner
WO2022024660A1 (en) * 2020-07-29 2022-02-03 株式会社富士通ゼネラル Air conditioner
JP2022025509A (en) * 2020-07-29 2022-02-10 株式会社富士通ゼネラル Air conditioner
JP7124851B2 (en) 2020-07-29 2022-08-24 株式会社富士通ゼネラル air conditioner
CN112797680A (en) * 2020-12-31 2021-05-14 珠海格力电器股份有限公司 Control device, method and system for automatically filling refrigerant and air conditioning equipment
WO2022244793A1 (en) * 2021-05-21 2022-11-24 ダイキン工業株式会社 Refrigeration cycle device
JP2022179198A (en) * 2021-05-21 2022-12-02 ダイキン工業株式会社 Refrigeration cycle device
JP2022179216A (en) * 2021-05-21 2022-12-02 ダイキン工業株式会社 Refrigerant leakage detection system
JP7197814B2 (en) 2021-05-21 2022-12-28 ダイキン工業株式会社 Refrigerant leak detection system
WO2022244739A1 (en) * 2021-05-21 2022-11-24 ダイキン工業株式会社 Refrigerant leakage detection system
US11982478B2 (en) 2021-05-21 2024-05-14 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11994326B2 (en) 2021-05-21 2024-05-28 Daikin Industries, Ltd. Refrigerant leakage detection system
CN114543259B (en) * 2022-03-08 2023-10-17 青岛海信日立空调系统有限公司 Air conditioner
CN114543259A (en) * 2022-03-08 2022-05-27 青岛海信日立空调系统有限公司 Air conditioner
WO2024062948A1 (en) * 2022-09-20 2024-03-28 ダイキン工業株式会社 Heat source unit and freezing device

Also Published As

Publication number Publication date
JP5210510B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5210510B2 (en) Refrigerant filling amount determination method and refrigerant leakage detection method for multi-air conditioning system
US8919139B2 (en) Air conditioning apparatus
EP2236960B1 (en) Air conditioner and method of determining amount of refrigerant
EP1995536B1 (en) Air conditioner
US8402779B2 (en) Air conditioner
EP1942306B1 (en) Air-conditioning apparatus, method of refrigerant filling in air-conditioning apparatus, method of judging state of refrigerant filling in air-conditioning apparatus, and method of refrigerant filling/piping cleaning for air-conditioning apparatus
US7752855B2 (en) Air conditioner with refrigerant quantity judging mode
JP3852472B2 (en) Air conditioner
EP3279580B1 (en) Air-conditioning device
US10088206B2 (en) Air-conditioning apparatus
AU2009248466B2 (en) Refrigeration Apparatus
JP4270197B2 (en) Air conditioner
KR20030075194A (en) Freezer
US9689589B2 (en) Refrigeration apparatus
CN109073304B (en) Refrigerating device
US7854134B2 (en) Air conditioner
EP3431903A1 (en) Air-conditioning apparatus and method for operating the same
JP5138292B2 (en) Air conditioner
KR20210005511A (en) Refrigerant charge device and Refrigerant system having the same
CN111316051B (en) Refrigeration cycle apparatus
JP3824008B2 (en) Supercooling device
JP2013195016A (en) Outdoor multi-type air conditioning device
JPH0972636A (en) Accumulator and air conditioner utilizing this accumulator
JP2023092357A (en) Heat source unit and refrigeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5210510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees