JPH0627217B2 - Method for producing red phosphorus flame retardant - Google Patents

Method for producing red phosphorus flame retardant

Info

Publication number
JPH0627217B2
JPH0627217B2 JP62261252A JP26125287A JPH0627217B2 JP H0627217 B2 JPH0627217 B2 JP H0627217B2 JP 62261252 A JP62261252 A JP 62261252A JP 26125287 A JP26125287 A JP 26125287A JP H0627217 B2 JPH0627217 B2 JP H0627217B2
Authority
JP
Japan
Prior art keywords
red phosphorus
phosphorus
flame retardant
conversion
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62261252A
Other languages
Japanese (ja)
Other versions
JPH01104687A (en
Inventor
一郎 左近
正雄 関口
敦 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PHOSPHORUS CHEM IND
Original Assignee
PHOSPHORUS CHEM IND
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PHOSPHORUS CHEM IND filed Critical PHOSPHORUS CHEM IND
Priority to JP62261252A priority Critical patent/JPH0627217B2/en
Priority to CA000568936A priority patent/CA1309789C/en
Priority to DE8888109684T priority patent/DE3875811T2/en
Priority to AT88109684T priority patent/ATE82309T1/en
Priority to DE198888109684T priority patent/DE296501T1/en
Priority to EP88109684A priority patent/EP0296501B1/en
Publication of JPH01104687A publication Critical patent/JPH01104687A/en
Priority to US07/437,762 priority patent/US5041490A/en
Publication of JPH0627217B2 publication Critical patent/JPH0627217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 <発明の技術分野> 本発明は、赤リン系難燃剤の製造方法に関し、特に高度
の安定性を有する赤リン系難燃剤の製造方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing a red phosphorus flame retardant, and particularly to a method for producing a red phosphorus flame retardant having a high degree of stability.

<発明の背景> 赤リンは合成樹脂の難燃剤として公知であり、種々の樹
脂に添加されているが、市販の赤リンがそのまま用いら
れることは少なく、多くの場合何等かの安定化処理が施
されている。
<Background of the Invention> Red phosphorus is known as a flame retardant for synthetic resins and is added to various resins, but commercially available red phosphorus is rarely used as it is, and in many cases, some stabilization treatment is required. It has been subjected.

これは、赤リンそれ自体が熱、摩擦、衝撃等に対して不
安定なため、保管時や取扱時に、また合成樹脂との混練
時に危険を伴い易く、さらには空気中の水分や酸素と反
応して有害物質を生成したり、合成樹脂との相溶性が悪
く、使用安定性に欠けること等によるもので、通常無機
物又は有機物による被覆処理が行われている。
This is because red phosphorus itself is unstable with respect to heat, friction, shock, etc., so it is likely to be dangerous during storage and handling, and when kneading with synthetic resin, and further reacts with moisture and oxygen in the air. To produce a harmful substance or to have poor compatibility with a synthetic resin and lack in use stability. For this reason, a coating treatment with an inorganic substance or an organic substance is usually performed.

しかし、近年、合成樹脂材料の物性に対する要求が厳し
さを増すと共に赤リン系難燃剤についてもより高度の安
定性を持つものが求められるようになってきた。
However, in recent years, the demands on the physical properties of synthetic resin materials have become more severe, and red phosphorus-based flame retardants have also been required to have higher stability.

熱硬化性樹脂においては、高圧電子部品の絶縁材の難燃
化に赤リン系難燃剤が用いられているが、電気機器の小
型化、高電圧化に伴い絶縁性能の改善が要求され、従来
の赤リン系難燃材では対応が困難な状況となっている。
In thermosetting resins, red phosphorus-based flame retardants are used to make the insulation materials of high-voltage electronic parts flame-retardant, but with the miniaturization of electric equipment and higher voltage, improvement in insulation performance is required. It is difficult to deal with the red phosphorus-based flame retardant materials.

即ち、従来の赤リン系難燃剤は、安定化が十分でないた
め、配合樹脂中で微量の湿分により徐々に変質して腐食
性物質を生成し、これが経時的に樹脂を劣化させ、また
部品を構成する金属を腐食して絶縁不良や性能の低下を
もたらし、耐用性や信頼性をも低下させることが指摘さ
れており、この赤リン系難燃剤の安定性の改善による耐
湿性、耐食性の改善が求められている。
That is, since the conventional red phosphorus flame retardant is not sufficiently stabilized, it is gradually deteriorated by a small amount of moisture in the compounded resin to generate a corrosive substance, which deteriorates the resin with time, and It has been pointed out that it corrodes the metals that make up the epoxy, resulting in poor insulation and reduced performance, and also reduces durability and reliability. Improvement is required.

一方、熱可塑性樹脂は、成型品や装置、機器類のハウジ
ング等に多く使用されているが、成型温度が高いため、
高温で不安定で発火したり、ホスフインを発生したりす
る赤リン系難燃剤は殆ど使用されず、主としてハロゲン
系難燃剤が添加されている。
On the other hand, thermoplastic resins are often used in molded products, devices, housings of devices, etc., but since the molding temperature is high,
Red phosphorus flame retardants that are unstable at high temperatures and ignite or generate phosphine are rarely used, and halogen flame retardants are mainly added.

しかし、ハロゲン系難燃剤は、燃焼時に著しく発煙し多
量の有害ガスを発生するため、合成樹脂の火災安定性に
対する関心が高まる中でこのような多量の公害性ガスを
発生する添加物の使用は、人体に対する安全性のみなら
ず装置、機械類の保全の点でも問題があることは明らか
であり、燃焼時の発煙や有害ガスの発生が少なく、火災
時の安全性、低公害性という点で遥かに優れた赤リン系
難燃剤の耐熱安定性を改善して熱可塑性樹脂用としても
使用できるものの出現が望まれているところである。
However, since halogen-based flame retardants generate a large amount of harmful gas when smoked, it is not possible to use additives that generate such a large amount of pollutant gas as interest in fire stability of synthetic resins increases. However, it is clear that there is a problem not only in terms of human safety but also in the maintenance of equipment and machinery, and there is little smoke or harmful gas generated during combustion, and there is little danger of fire safety and low pollution. It is desired to develop a far superior red phosphorus flame retardant which has improved heat resistance stability and can be used as a thermoplastic resin.

<発明の目的> 本発明者等は、このような状況の中で赤リン系難燃剤の
安定化の問題に取り組み、従来のような単なる赤リン粒
子の表面処理のみによる方法には限界があると考え、全
く別の角度から赤リンの安定化について研究を重ねた結
果、従来の赤リンとは異なる製造方法によって得られ、
赤リン粒子の表面状態や物性値も従来品とは全く異なる
特定の形状を持つ赤リンが極めて安定でそれ自体十分難
燃剤として用いうるだけでなく、これを更に表面処理す
ることにより著しく安定性が高められ、耐湿性、耐食
性、耐熱性が共に従来の赤リン系難燃剤を遥かに上回る
ものが得られることを見いだした。
<Purpose of the Invention> The present inventors have addressed the problem of stabilization of red phosphorus flame retardants in such a situation, and there is a limit to the conventional method by only surface treatment of red phosphorus particles. As a result of repeated studies on the stabilization of red phosphorus from a completely different angle, it was obtained by a manufacturing method different from conventional red phosphorus,
The surface state and physical properties of red phosphorus particles are completely different from those of conventional products.Red phosphorus having a specific shape is extremely stable and can be used as a flame retardant by itself, and it is remarkably stable by further surface treatment. It has been found that the heat resistance is improved, and the moisture resistance, corrosion resistance, and heat resistance are far superior to those of conventional red phosphorus flame retardants.

従って、本発明は、改善された安定性と安全性を持つ赤
リン系難燃剤の製造方法を提供しようとすることを目的
とするものである。
Therefore, it is an object of the present invention to provide a method for producing a red phosphorus flame retardant having improved stability and safety.

<発明の構成及び作用効果> そして、本発明は、 (1)黄リンを250〜600℃に加熱し、黄リンの一部を赤リ
ンに転化して赤リンの含量が70重量%以下の流動性混合
物を形成し(転化反応工程)、 (2)この流動性混合物から未転化の黄リンを除去し(分
離工程)、 (3)得られた球体様粒子及び/又はその集合体粒子から
成る粉末状赤リンに水を加えて懸濁液とした後、熱硬化
性樹脂及び/又は金属の水酸化物で被覆する(表面改質
処理工程)、 ことを特徴とする赤リン系難燃剤の製造方法を要旨と
し、これにより前記した目的とする“改善された安定性
と安全性を持つ赤リン系難燃剤”を提供するものであ
る。
<Structure and Operation and Effect of the Invention> The present invention includes (1) heating yellow phosphorus to 250 to 600 ° C., converting a part of the yellow phosphorus into red phosphorus, and the content of red phosphorus is 70% by weight or less. Forming a fluid mixture (conversion reaction step), (2) removing unconverted yellow phosphorus from the fluid mixture (separation step), (3) from the obtained spherical particles and / or aggregate particles thereof. A red phosphorus-based flame retardant, characterized in that, after adding water to the powdery red phosphorus to form a suspension, the suspension is coated with a thermosetting resin and / or a metal hydroxide (surface modification treatment step). The present invention is intended to provide the above-mentioned objective "red phosphorus flame retardant having improved stability and safety".

以下、本発明の製造方法について、従来法と対比して詳
細に説明する。
Hereinafter, the manufacturing method of the present invention will be described in detail in comparison with the conventional method.

赤リンは黄リンの熱転化によって生成するが、従来の赤
リンの製造方法としては、原料黄リンをその沸点付近の
温度で数日間加熱処理を続け、転化反応を完結させる方
法がとられている。(以下この従来法を「完全転化法」
という。)この場合、赤リンはケーキ状に堅く凝結した
一体の塊状物として生成する。
Red phosphorus is produced by thermal conversion of yellow phosphorus, but as a conventional method for producing red phosphorus, a method of continuing the heat treatment of the raw material yellow phosphorus at a temperature near its boiling point for several days to complete the conversion reaction is taken. There is. (Hereafter, this conventional method is referred to as "complete conversion method".
Say. ) In this case, the red phosphorus forms as a cake-solid, tightly set and integral mass.

しかし、赤リンが合成樹脂中において難燃硬化を発現す
るためには粉末状であることが必要であり、従って転化
釜から一体の塊状物として製出する通常の赤リンにおい
ては、粉砕工程は不可欠のものである。
However, in order for red phosphorus to exhibit flame retardant curing in a synthetic resin, it needs to be in powder form, and therefore, in the case of ordinary red phosphorus produced as an integral lump from a conversion kettle, the crushing step is It is indispensable.

これに対し、本発明の製造方法では、転化の処理条件が
異なるため、赤リンは微粒子で構成される粉末として直
接的に得られ、粉砕工程は必要としない。
On the other hand, in the production method of the present invention, since the conversion processing conditions are different, red phosphorus is directly obtained as a powder composed of fine particles, and a crushing step is not required.

即ち、本発明の製造方法では、まず原料黄リンを不活性
ガスで置換した反応容器にいれて加熱溶融し転化反応を
開始させる。次に、赤リンへの転化が進行し所定の転化
率(70重量%以下の転化率)に達した時この反応を停止
し、任意の方法で未転化の黄リンを除去するものであり
(以下「部分転化法」という)、これにより従来の完全
転化法のように塊状物として生成せず、粉末状の赤リン
として生成する。
That is, in the production method of the present invention, first, the raw material yellow phosphorus is placed in a reaction vessel in which an inert gas is replaced and heated to melt to start the conversion reaction. Next, when the conversion to red phosphorus progresses and reaches a predetermined conversion rate (conversion rate of 70% by weight or less), this reaction is stopped, and unconverted yellow phosphorus is removed by an arbitrary method ( Hereinafter, it will be referred to as "partial conversion method"), and as a result, it will not be formed as a lump as in the conventional complete conversion method, but will be formed as powdery red phosphorus.

本発明者等は、このような部分転化法によって得られる
粉末状赤リンが従来の粉砕赤リンに比べ著しく安定性が
高いことを発見して本発明を完成するにいたった。
The present inventors have completed the present invention by discovering that powdered red phosphorus obtained by such a partial conversion method has remarkably higher stability than conventional ground red phosphorus.

本発明者等の研究によれば、黄リンから赤リンへの転化
は比較的低温から始まり、沸点付近で顕著となり、更に
温度の上昇と共に反応速度は増大する。低い温度領域で
は、赤リンは溶融黄リン中において球体様の微粒子とし
て生成するが、温度の上昇と共に微粒子は集合体を形成
し粒径が増大する。
According to the study by the present inventors, the conversion of yellow phosphorus to red phosphorus begins at a relatively low temperature, becomes remarkable near the boiling point, and the reaction rate increases with an increase in temperature. In the low temperature region, red phosphorus is produced as spherical fine particles in molten yellow phosphorus, but as the temperature rises, the fine particles form aggregates and the particle size increases.

粒子の成長はまた、反応時間の延長によっても認められ
る。このため、反応温度が高過ぎるか、あるいは反応時
間が長過ぎる場合、反応が過度に進行して黄リンの大部
分が赤リンに転化するため、赤リンは粒子として存在す
ることができず、凝結した塊状物となり粉末状赤リンは
得られなくなる。
Particle growth is also observed with extended reaction time. Therefore, if the reaction temperature is too high, or the reaction time is too long, the reaction proceeds excessively and most of the yellow phosphorus is converted to red phosphorus, so red phosphorus cannot exist as particles, It becomes a condensed lump, and powdery red phosphorus cannot be obtained.

本発明者等は、過度の転化反応を抑え、赤リンを微粒子
からなる粉末状として収得するためには、250〜600℃に
おいて反応混合物の流動性を保ちつつ転化させることが
必要であり、また反応混合物の流動性は転化率を70%以
下とすることで保持できることを見いだした。
The present inventors have to suppress the excessive conversion reaction, in order to obtain red phosphorus as a powder consisting of fine particles, it is necessary to convert while maintaining the fluidity of the reaction mixture at 250 ~ 600 ℃, It was found that the fluidity of the reaction mixture can be maintained by setting the conversion to 70% or less.

転化率は、温度と反応時間によって変わり、低温ほど、
また反応時間が短いほど低くなる。従って、転化率は処
理温度と時間の調整により任意に設定することができる
が、転化率を70%以下に抑えることによって反応混合物
は流動状と成り、未転化黄リンの分離後に得られる赤リ
ンは球体様の粉末が生成されることになる。
The conversion rate changes depending on the temperature and the reaction time.
The shorter the reaction time, the lower the reaction time. Therefore, the conversion rate can be set arbitrarily by adjusting the treatment temperature and time, but by suppressing the conversion rate to 70% or less, the reaction mixture becomes fluid and the red phosphorus obtained after the separation of unconverted yellow phosphorus is obtained. Will produce a sphere-like powder.

反応温度が250℃未満では、反応速度が極めて小さいた
め実際的な製造条件としては好ましくなく、また600℃
を超えると、転化速度が過大となって反応の制御が困難
となり急激に反応混合物の流動性が失われて塊状物が生
成し、従来法と同様粉砕工程を経ずに粉末状赤リンを得
ることができなくなる。
When the reaction temperature is less than 250 ° C, the reaction rate is extremely low, which is not preferable as a practical production condition.
If it exceeds, the conversion rate becomes too high, the reaction is difficult to control, the fluidity of the reaction mixture is suddenly lost, and a lump is formed, and powdery red phosphorus is obtained without going through the crushing step as in the conventional method. Can't do it.

本発明の部分転化法で得られる粉末状赤リンの粒子は、
前述のように反応温度が低く、また反応時間が短いほ
ど、従って転化率が低いほど粒径は小さくなる。逆に反
応時間が長く転化率が高くなると、粒子の集合度が高ま
り粒径は大となるが、本発明の方法における流動性のあ
る反応混合物から得られる集合体粒子は、塊状赤リンと
は異なり結合性が極めて弱いため、脆くて崩れやすく粉
砕と言うほどの処理は必要とせず、簡単な機械的処理で
容易に崩壊し粉末状となる。
Particles of powdered red phosphorus obtained by the partial conversion method of the present invention,
As described above, the lower the reaction temperature and the shorter the reaction time, that is, the lower the conversion rate, the smaller the particle size. On the contrary, when the reaction time is long and the conversion rate is high, the degree of aggregation of particles increases and the particle size becomes large, but the aggregate particles obtained from the fluid reaction mixture in the method of the present invention are aggregate red phosphorus. In contrast, since the bonding property is extremely weak, it is brittle and easily crumbles, and does not require a treatment such as crushing, and easily disintegrates into powder by a simple mechanical treatment.

しかもこの集合体粒子の安定性は、このような崩壊処理
によっても失われることがなく、集合体粒子を崩壊して
得られる粉末赤リンも依然高い安定性を示すことが測定
結果から明らかである。
Moreover, it is clear from the measurement results that the stability of the aggregate particles is not lost even by such a disintegration treatment, and the powdered red phosphorus obtained by disintegrating the aggregate particles still shows high stability. .

従って、本発明の方法で得られる粉末状赤リンは、集合
体粒子の崩壊によって得られる粉末状赤リンをも含むも
のである。
Therefore, the powdery red phosphorus obtained by the method of the present invention also includes the powdery red phosphorus obtained by disintegrating the aggregate particles.

本発明の部分転化法で得られる粉末状赤リンの粒径は、
数μmから100μm程度であり、また粒度分布は、従来
の完全転化法で得られる塊状の赤リンを粉砕した赤リン
(以下「粉砕赤リン」という)に比して分布幅が狭く均
一性が高いことを特徴である。
The particle size of powdery red phosphorus obtained by the partial conversion method of the present invention is
The particle size distribution is several μm to 100 μm, and the particle size distribution is narrower and more uniform than the red phosphorus obtained by pulverizing the massive red phosphorus obtained by the conventional complete conversion method (hereinafter referred to as “pulverized red phosphorus”). It is characterized by high price.

本発明の方法では、黄リンから赤リンへの転化を従来の
完全転化法とは異なる部分転化法によっているため、未
反応黄リンの除去工程(分離工程)が必要となるが、こ
れには蒸留法、濾過法、溶媒抽出法など任意の方法を用
いることができる。
In the method of the present invention, since the conversion of yellow phosphorus to red phosphorus is carried out by a partial conversion method different from the conventional complete conversion method, a step of removing unreacted yellow phosphorus (separation step) is required. Any method such as a distillation method, a filtration method and a solvent extraction method can be used.

蒸留法は、反応停止後(転化反応工程後)、不活性ガス
中で減圧又は常圧下で黄リン分を蒸留除去する方法であ
り、濾過法は、反応混合物を水又は水溶液中に投入した
後赤リンを濾別し、更に付着黄リンをアルカリ溶液で洗
浄して乾燥する方法であり、また溶媒抽出法は、反応混
合物から黄リン溶解性の溶媒を用いて黄リンを抽出する
方法であり、これ等は二つ以上の方法を組み合わせて用
いることもできる。何れの場合も分離黄リンは再び赤リ
ンへの転化反応工程に循環させることが可能である。
The distillation method is a method in which the yellow phosphorus content is distilled off under reduced pressure or normal pressure in an inert gas after the reaction is stopped (after the conversion reaction step), and the filtration method is after the reaction mixture is put into water or an aqueous solution. The red phosphorus is filtered off, and the attached yellow phosphorus is washed with an alkaline solution and dried.The solvent extraction method is a method of extracting yellow phosphorus from the reaction mixture using a yellow phosphorus-soluble solvent. , These can also be used in combination of two or more methods. In either case, the separated yellow phosphorus can be recycled to the conversion reaction step to red phosphorus again.

赤リンの表面改質処理として、赤リンを熱硬化性樹脂や
金属の水酸化物で被覆する際、転化反応工程と被覆処理
工程とを連続して実施するのが好都合であるが、本発明
の方法によれば、これを好適に実施することができる。
As a surface modification treatment of red phosphorus, when red phosphorus is coated with a thermosetting resin or a metal hydroxide, it is convenient to continuously carry out the conversion reaction step and the coating treatment step. According to the method (1), this can be preferably implemented.

即ち、本発明の方法では、赤リンへの転化反応終了後、
反応混合物から未転化黄リンを分離除去し、得られた赤
リンに直接水を注入して粉末赤リンをスラリー状とした
り、あるいは直接窒素ガス等で圧送して被覆工程(表面
改質処理工程)に移送することができ、この被覆工程を
容易に連続化することができる利点を有する。
That is, in the method of the present invention, after completion of the conversion reaction to red phosphorus,
The unconverted yellow phosphorus is separated and removed from the reaction mixture, and water is directly injected into the obtained red phosphorus to make powdered red phosphorus into a slurry, or it is directly pumped with nitrogen gas or the like to perform a coating step (surface modification treatment step ) And have the advantage that this coating process can be easily continued.

これに対し、従来の完全転化法では、転化槽中で生成し
た赤リンが堅固に凝結した一体の塊状物となり、該塊状
物を粉砕する煩雑な工程が不可欠であり、また槽の側壁
にも固着しているため多大な労力を要する取出作業が必
要となる欠点を有する。通常、転化槽中の塊状赤リンを
掘削機等を用いて掘り起こし、クラッシャーで粗粒状と
した後粉砕機で粉砕するという煩雑な手順を経て粉末化
が行われるため、本発明のように転化反応工程、分離工
程及び表面改質処理工程(被覆工程)を直結した一連の
工程で接続することは不可能である。
On the other hand, in the conventional complete conversion method, the red phosphorus produced in the conversion tank is solidified into a solid lump, and a complicated process of crushing the lump is indispensable, and also on the side wall of the tank. Since it is fixed, it has a drawback that a labor-intensive take-out operation is required. Usually, the lumpy red phosphorus in the conversion tank is dug up by using an excavator, etc., and powdering is performed through a complicated procedure of crushing with a crusher after coarsely granulating with a crusher, and thus the conversion reaction as in the present invention. It is impossible to connect the process, the separation process, and the surface modification treatment process (coating process) by a series of directly connected processes.

また、従来の完全転化法で得られた固結赤リン中には未
転化の黄リンが内包されて残留し易く、赤リンの品質が
低下したり、後続工程での発火の原因となるが、本発明
の方法では、赤リンが粉末状として生成するため、蒸留
などによる未転化黄リンの除去が容易であり、この様な
問題は生じない。
Further, unconverted yellow phosphorus is likely to be included and remain in the solidified red phosphorus obtained by the conventional complete conversion method, which may deteriorate the quality of red phosphorus or cause ignition in the subsequent step. In the method of the present invention, since red phosphorus is produced in the form of powder, it is easy to remove unconverted yellow phosphorus by distillation and such a problem does not occur.

このように本発明の方法では、危険な粉砕工程を含まな
い一連の簡素化された製造工程により、高品質の赤リン
系難燃剤を容易に経済的に製造することができるもので
あるが、最も重要なことは、本発明の方法で得られる赤
リンは、それ自体従来の安定化赤リンを遥かに上回る高
い安定性を持つことである。
Thus, in the method of the present invention, a high-quality red phosphorus flame retardant can be easily and economically produced by a series of simplified production steps that do not include a dangerous pulverization step. Most importantly, the red phosphorus obtained by the method of the present invention has a high stability which far exceeds that of conventional stabilized red phosphorus.

そして、この部分転化法によって得られた球体様赤リン
を更に熱硬化性樹脂及び/又は水酸化アルミニウム、水
酸化亜鉛のような金属の水酸化物で表面処理することに
より、その安定性は飛躍的に向上し、赤リン系難燃剤の
添加による合成樹脂の劣化の問題が殆ど無くなり、ほぼ
完璧な耐湿性、耐食性が付与されるものである。その上
耐熱安定性の改善も著しく、熱可塑性樹脂の難燃剤とし
ても安全に使用することができるものである。
The sphere-like red phosphorus obtained by this partial conversion method is further surface-treated with a thermosetting resin and / or a metal hydroxide such as aluminum hydroxide or zinc hydroxide to improve its stability. The problem of deterioration of the synthetic resin due to the addition of the red phosphorus flame retardant is almost eliminated, and almost perfect moisture resistance and corrosion resistance are imparted. In addition, the heat resistance is significantly improved, and it can be safely used as a flame retardant for thermoplastic resins.

本発明の赤リン系難燃剤のこのような特異な安定性は、
本発明の方法で製造した赤リンの粒子の表面状態が従来
の粉砕品(粉砕赤リン)とは著しく異なることに由来す
ると考えられる。
Such unique stability of the red phosphorus flame retardant of the present invention is
It is considered that the surface state of the red phosphorus particles produced by the method of the present invention is significantly different from that of the conventional pulverized product (pulverized red phosphorus).

即ち、従来の粉砕赤リンのように堅固に凝結した塊状物
を粉砕して得られる粉粒体では、粒子表面が鋭い稜線や
破砕面から構成された複雑な形態をなしているが、本発
明の方法で得られる赤リンの粒子は、粉砕工程を経ない
ため粉砕面や稜線は殆ど無く、自然発生的に連続した球
体様の表面を持つ粒子やその集合体で構成されているこ
とを電子顕微鏡による観察で確認することができた。
That is, in the granular material obtained by crushing a solidified aggregate like a conventional crushed red phosphorus, the particle surface has a complicated shape composed of sharp ridges and crushed surfaces. The red phosphorus particles obtained by the method described above have almost no crushing surface or ridgeline because they do not go through the crushing process, and it is said that they are composed of particles with spontaneously continuous sphere-like surfaces and their aggregates. It could be confirmed by observation with a microscope.

このため、粉砕赤リンの粒子は、表面の破砕面に多く活
性点を持ち水分や酸素との反応が活発であるのに対し、
本発明の赤リンは、活性点が殆ど無く表面が極めて安定
で水分や酸素との反応が生起し難く、その結果、耐湿安
定性、耐熱安定性が著しく向上する。
Therefore, the particles of crushed red phosphorus have many active points on the crushed surface of the surface, and the reaction with moisture and oxygen is active, whereas
The red phosphorus of the present invention has almost no active sites, its surface is extremely stable, and the reaction with moisture or oxygen hardly occurs. As a result, the moisture resistance stability and heat resistance stability are remarkably improved.

更に、熱硬化性樹脂や金属の水酸化物による表面処理に
際しても、粉砕赤リンは表面の状態から被覆形成が不均
一で露出破砕面が残存しやすいが、一方本発明の赤リン
では被覆が均一かつ完全に行われるため被覆赤リンの安
定性に決定的な差が生じるものである。
Further, even during surface treatment with a thermosetting resin or a metal hydroxide, crushed red phosphorus has uneven coating due to the state of the surface and exposed crushed surfaces tend to remain. Since it is carried out uniformly and completely, there is a definite difference in the stability of the coated red phosphorus.

熱硬化性樹脂及び/又は金属の水酸化物による表面処理
の方法としては、公知の手段(例えば特開昭61-291644
号公報、特開昭61-219706号公報参照)を採用すること
ができる。
As a method for surface treatment with a thermosetting resin and / or a metal hydroxide, known means (for example, JP-A-61-291644) is used.
Japanese Patent Laid-Open Publication No. 61-219706).

このうち、熱硬化性樹脂としてはフェノール・ホルマリ
ン系、尿素・ホルマリン系、メラミン・ホルマリン系、
フルフリルアルコール・ホルマリン系、アニリン・ホル
マリン系等のホルマリン系樹脂や多価アルコール・多塩
基酸系の樹脂等が適しており、水100重量部に対して赤
リン10〜100重量部を含む赤リンの水懸濁液に樹脂の合
成原料又は初期縮合物を赤リン100重量部に対し1〜35
重量部添加し、40〜100℃で1時間攪拌処理を行う。
Of these, thermosetting resins include phenol / formalin type, urea / formalin type, melamine / formalin type,
Formalin-based resins such as furfuryl alcohol / formalin-based, aniline / formalin-based, and polyhydric alcohol / polybasic acid-based resins are suitable, and red containing 10 to 100 parts by weight of red phosphorus to 100 parts by weight of water. 1 to 35 parts by weight of resin synthetic raw material or initial condensate in 100 parts by weight of red phosphorus in an aqueous suspension of phosphorus.
Add parts by weight and stir for 1 hour at 40 to 100 ° C.

この際必要に応じて重合触媒や水酸化アルミニウム、水
酸化マグネシウム又は水酸化チタンのような充填剤を共
存させることができる。
At this time, if necessary, a polymerization catalyst and a filler such as aluminum hydroxide, magnesium hydroxide or titanium hydroxide can coexist.

充填剤の添加により樹脂被覆の機械的強度が向上すると
共に、赤リン特有の紫紅色に対する隠蔽効果があり、赤
リン系難燃剤の用途の拡大が可能となる。
The addition of the filler improves the mechanical strength of the resin coating and has a concealing effect against the purple-red color peculiar to red phosphorus, and thus the application of the red phosphorus flame retardant can be expanded.

また、金属の水酸化物による被覆は、例えば水酸化アル
ミニウムや水酸化亜鉛で被覆する場合、アルミニウムや
亜鉛の硫酸塩、塩化物の水溶液を赤リンの水懸濁液に加
え、水酸化ナトリウムによる中和又は重炭酸アンモニウ
ムによる複分解によって水酸化アルミニウム又は水酸化
亜鉛を赤リン粒子上に吸着させる。この場合、赤リンの
水懸濁液は水100重量部に対し赤リン10〜100重量部が好
ましく、また金属塩の水溶液濃度:5〜30%、水酸化物
の被覆生成量:赤リン100重量部あたり1〜30重量部が
好ましい。
Further, for coating with a metal hydroxide, for example, in the case of coating with aluminum hydroxide or zinc hydroxide, an aqueous solution of aluminum or zinc sulfate or chloride is added to an aqueous suspension of red phosphorus, and then a sodium hydroxide solution is used. Aluminum hydroxide or zinc hydroxide is adsorbed on the red phosphorus particles by neutralization or metathesis with ammonium bicarbonate. In this case, the aqueous suspension of red phosphorus is preferably 10 to 100 parts by weight of red phosphorus with respect to 100 parts by weight of water, the concentration of the metal salt solution in water is 5 to 30%, and the amount of hydroxide formed is 100% by weight of red phosphorus. 1 to 30 parts by weight is preferable per part by weight.

また、本発明の表面改質処理工程(被覆工程)として、
金属水酸化物で被覆した後、更に熱硬化性樹脂により二
重に被覆処理したものは最も安定性に優れ、過酷な条件
下においても変質することがなく、これを用いて難燃化
した樹脂は、長時間に亘って赤リン系難燃剤の添加によ
る影響が殆ど現われない。二重被覆を行う場合、金属の
水酸化物による被覆量は赤リン100重量部に対して0.1〜
30重量部が好ましい。
Further, as the surface modification treatment step (coating step) of the present invention,
A resin that has been coated with a metal hydroxide and then double-coated with a thermosetting resin has the best stability and does not deteriorate even under severe conditions. Has almost no effect due to the addition of the red phosphorus flame retardant over a long period of time. When performing double coating, the coating amount of metal hydroxide is 0.1 to 100 parts by weight of red phosphorus.
30 parts by weight is preferred.

なお、赤リンの製造法に係る従来技術として、前記の完
全転化法にかえて赤リンへの熱転化と黄リンの蒸発とを
同時に行う方法が知られている。
As a conventional technique related to the method for producing red phosphorus, a method is known in which the above-mentioned complete conversion method is replaced with the thermal conversion into red phosphorus and the evaporation of yellow phosphorus at the same time.

例えば特開昭60-141608号公報には、赤リンへの熱転化
が沸点で行われ、黄リンを蒸発させ、黄リンの蒸気が反
応容器から放出され、かつコンデンサーで集収されるこ
とを特徴とする方法について記載されており、この方法
によれば、赤リンは柔らかく砕け易い塊として得られ、
更に殆ど操作を必要とすることなしに所望の粒子形態を
得ることができる旨記載されており、本発明との類似性
がうかがわれる。
For example, JP-A-60-141608 discloses that heat conversion into red phosphorus is performed at a boiling point to evaporate yellow phosphorus, vapor of yellow phosphorus is discharged from a reaction vessel, and is collected by a condenser. According to this method, red phosphorus is obtained as a soft and friable mass,
Further, it is described that the desired particle morphology can be obtained with almost no manipulation, which shows the similarity to the present invention.

しかし、この従来技術による赤リンの製造法では、赤リ
ンの転化及び黄リンの蒸発を同時に行うことが必須要件
とするものであり、従って、 (1)赤リンへの転化反応工程(赤リンの含量が70重量%
以下の流動性混合物を形成する工程、即ち赤リンへの転
化率を70%以下とし、流動性混合物を形成する工程)、 (2)黄リンを除去する分離工程、 とを別々の工程として構成される本発明の方法と明らか
に相違する。
However, in the method for producing red phosphorus according to this conventional technique, it is essential that the conversion of red phosphorus and the evaporation of yellow phosphorus are performed simultaneously. Therefore, (1) the conversion reaction step to red phosphorus (red phosphorus) Content of 70% by weight
The following steps of forming a fluid mixture, that is, a step of forming a fluid mixture with a conversion rate to red phosphorus of 70% or less), and (2) a separation step of removing yellow phosphorus, are configured as separate steps. The method of the present invention is clearly different from the method of the present invention.

その上、上記従来技術では、得られる赤リン生成物が単
に“多孔質で柔らかい”旨開示されているにすぎなく、
本発明で意図する赤リン系難燃剤として好適な物理的性
質(後記表1参照)を有する赤リンが得られることにつ
いては皆無である。
Moreover, the above-mentioned prior art merely discloses that the obtained red phosphorus product is “porous and soft”.
There is nothing about obtaining red phosphorus having physical properties suitable for the red phosphorus flame retardant intended in the present invention (see Table 1 below).

また、別の従来技術として、特公昭59-19044号公報に
は、高率で転化反応が生起するように、また高純度の赤
リンを得ることを目的として、所定温度に設定した回転
ボールミルに徐々に黄リンを導入して転化反応を行い、
転化終了後、水を加えて更に湿式摩砕する方法が記載さ
れている。
In addition, as another conventional technique, Japanese Patent Publication No. 59-19044 discloses a rotary ball mill set at a predetermined temperature for the purpose of obtaining a high-purity red phosphorus so that a conversion reaction occurs at a high rate. Yellow phosphorus is gradually introduced to carry out the conversion reaction,
After the conversion is completed, a method of adding water and further wet milling is described.

この方法によれば、製造工程に粉砕手段を組込むことで
赤リンを粉末化しているものであり、粉砕工程を必要と
しない部分転化を必須要件とする本発明とは明らかに異
なる。また粉砕処理を含むため、本発明のような球体様
粒子から成る粉末状赤リンは得られない。
According to this method, red phosphorus is powdered by incorporating a pulverizing means in the manufacturing process, which is clearly different from the present invention in which partial conversion which does not require the pulverizing step is essential. Further, since the pulverization treatment is included, powdery red phosphorus composed of spherical particles as in the present invention cannot be obtained.

<発明の効果> 後記表1、2に示すように、本発明の方法で製造した赤
リン系難燃剤は、従来の粉砕赤リンによるものに比べて
いずれも発火点が高く耐熱安定性に優れ、かつ耐湿安定
性も大幅に向上しており、水分との反応に起因するホス
フインの発生や腐食性酸性物質の生成が殆ど無いため、
安全性の高い熱可塑性樹脂用難燃剤として、また耐湿、
耐食性に関して高度の品質安定性が求められる高圧電子
部品用絶縁樹脂の難燃剤として最適であり、極めて有用
性の高いものである。
<Effects of the Invention> As shown in Tables 1 and 2 below, all of the red phosphorus flame retardants produced by the method of the present invention have a high ignition point and excellent heat resistance stability as compared with those of conventional ground red phosphorus. In addition, the moisture resistance stability has also been greatly improved, and since there is almost no generation of phosphine or formation of corrosive acidic substances due to the reaction with water,
As a highly safe flame retardant for thermoplastic resin,
It is most suitable and extremely useful as a flame retardant for insulating resins for high-voltage electronic parts, which requires high quality stability in terms of corrosion resistance.

また、本発明の方法は、工程面においても粉砕工程を必
要とせず、工程の連続化が可能であるため従来法に較べ
て、設備、労力、経費等の面で有利であり優れた経済性
を持つものである。
In addition, the method of the present invention does not require a crushing step in terms of steps and can be continuous in steps, so that it is advantageous in terms of equipment, labor, cost, etc. as compared with the conventional method, and has excellent economic efficiency. Is to have.

<実施例> (実施例1) 黄リン500gを窒素ガスで置換したステンレス製容器に入
れて密封し、270℃で4時間加熱した後未転化の黄リン
を除去した。平均粒径50μmの流動性のある粉末状赤リ
ン211gを得た(赤リンへの転化率:42.2%)。
<Example> (Example 1) 500 g of yellow phosphorus was placed in a stainless steel container in which nitrogen gas had been replaced and sealed, and after heating at 270 ° C for 4 hours, unconverted yellow phosphorus was removed. 211 g of powdery red phosphorus having an average particle diameter of 50 μm was obtained (conversion rate to red phosphorus: 42.2%).

上記赤リンを水400mlに懸濁し10%硫酸アルミニウム水
溶液150mlを加え、十分攪拌しながら5%水酸化ナトリ
ウム水溶液50mlを滴下し、50℃に加熱して30分間保持し
た。これを濾過、水洗後乾燥して赤リン系難燃剤217gを
得た。
The red phosphorus was suspended in 400 ml of water, 150 ml of 10% aqueous solution of aluminum sulfate was added, 50 ml of 5% aqueous solution of sodium hydroxide was added dropwise with sufficient stirring, and the mixture was heated to 50 ° C. and kept for 30 minutes. This was filtered, washed with water and dried to obtain 217 g of a red phosphorus flame retardant.

(実施例2) 黄リン100gを窒素ガスで置換した高圧反応容器に入れて
密封し、30分で480℃に昇温し10分間その温度に保持し
た後冷却した。未転化黄リンを除去し68gの粉末状赤リ
ンを得た(赤リンへの転化率:68%)。この赤リンは10
0meshの篩テストで残分は22%であったが、指で粉化す
ることにより100mesh全通となった。
(Example 2) 100 g of yellow phosphorus was placed in a high-pressure reaction vessel in which nitrogen gas was replaced, and the vessel was sealed, heated to 480 ° C in 30 minutes, kept at that temperature for 10 minutes, and then cooled. Unconverted yellow phosphorus was removed to obtain 68 g of powdery red phosphorus (conversion rate to red phosphorus: 68%). This red phosphorus is 10
The residue was 22% in the 0mesh sieve test, but it became 100mesh whole by pulverizing with a finger.

次に、これを水200mlに懸濁させフェノール3g、37%
ホルマリン6gを添加、80℃に加熱して攪拌下に85%リ
ン酸2gを加えた。1時間同温度で加熱攪拌後放冷、濾
過、乾燥して赤リン系難燃剤72gを得た。
Next, suspend this in 200 ml of water, 3 g of phenol, 37%
6 g of formalin was added, heated to 80 ° C., and 2 g of 85% phosphoric acid was added with stirring. After heating and stirring at the same temperature for 1 hour, the mixture was allowed to cool, filtered and dried to obtain 72 g of a red phosphorus flame retardant.

(実施例3) 黄リン200gを窒素ガスで置換した反応容器に入れて密封
し、280℃で1.5時間加熱後未転化の黄リンを除去した。
平均粒径28μmの粉末状赤リン36gを得た(赤リンへの
転化率:18%)。
(Example 3) 200 g of yellow phosphorus was placed in a reaction vessel in which nitrogen gas had been replaced and sealed, and after heating at 280 ° C for 1.5 hours, unconverted yellow phosphorus was removed.
36 g of powdery red phosphorus having an average particle diameter of 28 μm was obtained (conversion rate to red phosphorus: 18%).

これを水100mlに懸濁し8%硫酸アルミニウム水溶液8m
lを添加して攪拌後15%重炭酸アンモニュウム水溶液10m
lを滴下し60℃で10分間加熱した。
This is suspended in 100 ml of water and 8 m of 8% aluminum sulfate aqueous solution
After adding l and stirring, 10% 15% ammonium bicarbonate aqueous solution
l was added dropwise and heated at 60 ° C. for 10 minutes.

次に、フェノール2g、37%ホルマリン4gを加え80℃
に加熱して攪拌下に85%リン酸1gを加えた。1時間同
温度で攪拌を続けた後、放冷、濾過、乾燥して赤リン系
難燃剤39gを得た。
Next, add 2 g of phenol and 4 g of 37% formalin, and add 80 ° C.
1 g of 85% phosphoric acid was added with stirring. After continuing stirring at the same temperature for 1 hour, the mixture was allowed to cool, filtered and dried to obtain 39 g of a red phosphorus flame retardant.

上記実施例1〜3で得た赤リンの物性を表1に、また同
赤リン系難燃剤の安定性を表2にそれぞれ示す。
Table 1 shows the physical properties of the red phosphorus obtained in Examples 1 to 3 and Table 2 shows the stability of the red phosphorus flame retardant.

(比較例1) 市販の粉砕赤リン(その物性を表1に付記した)を前記
実施例1と同様に被覆処理した。
Comparative Example 1 Commercially available ground red phosphorus (the physical properties of which are shown in Table 1) was coated in the same manner as in Example 1 above.

得られた赤リン系難燃剤の安定性を表2に付記した。The stability of the obtained red phosphorus flame retardant is shown in Table 2.

(比較例2) 比較例1で用いた市販の粉砕赤リンを前記実施例2と同
様に被覆処理した。
Comparative Example 2 The commercially available ground red phosphorus used in Comparative Example 1 was coated in the same manner as in Example 2.

得られた赤リン系難燃剤の安定性を表2に付記した。The stability of the obtained red phosphorus flame retardant is shown in Table 2.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−291644(JP,A) 特開 昭61−219706(JP,A) 特開 昭60−141608(JP,A) 特公 昭59−19044(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A 61-291644 (JP, A) JP-A 61-219706 (JP, A) JP-A 60-141608 (JP, A) JP-B 59- 19044 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】黄リンを250〜600℃に加熱し、黄リンの一
部を赤リンに転化して赤リンの含量が70重量%以下の流
動性混合物を形成し、この流動性混合物から未転化の黄
リンを除去し、得られた球体様粒子及び/又はその集合
体粒子から成る粉末状赤リンに水を加えて懸濁液とした
後、熱硬化性樹脂及び/又は金属の水酸化物で被覆する
ことを特徴とする赤リン系難燃剤の製造方法。
1. Yellow phosphorus is heated to 250 to 600 ° C., a part of the yellow phosphorus is converted into red phosphorus to form a fluid mixture having a red phosphorus content of 70% by weight or less. After removing unconverted yellow phosphorus, water is added to the powdery red phosphorus composed of the obtained spherical particles and / or aggregate particles thereof to form a suspension, and then thermosetting resin and / or metal water is added. A method for producing a red phosphorus flame retardant, which comprises coating with an oxide.
JP62261252A 1987-06-26 1987-10-17 Method for producing red phosphorus flame retardant Expired - Fee Related JPH0627217B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62261252A JPH0627217B2 (en) 1987-10-17 1987-10-17 Method for producing red phosphorus flame retardant
CA000568936A CA1309789C (en) 1987-06-26 1988-06-08 Method for producing red phosphorus flame retardant and nonflammable resinous composition
DE8888109684T DE3875811T2 (en) 1987-06-26 1988-06-16 NON-FLAMMABLE RESIN MIXTURE.
AT88109684T ATE82309T1 (en) 1987-06-26 1988-06-16 NON-FLAMMABLE RESIN COMPOUND.
DE198888109684T DE296501T1 (en) 1987-06-26 1988-06-16 METHOD FOR PRODUCING RED PHOSPHORUS-CONTAINING FLAME RETARDER AND NON-FLAMMABLE RESIN COMPOSITION.
EP88109684A EP0296501B1 (en) 1987-06-26 1988-06-16 Nonflammable resinous composition
US07/437,762 US5041490A (en) 1987-06-26 1989-11-15 Method for producing red phosphorus flame retardant and nonflammable resinous composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62261252A JPH0627217B2 (en) 1987-10-17 1987-10-17 Method for producing red phosphorus flame retardant

Publications (2)

Publication Number Publication Date
JPH01104687A JPH01104687A (en) 1989-04-21
JPH0627217B2 true JPH0627217B2 (en) 1994-04-13

Family

ID=17359245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62261252A Expired - Fee Related JPH0627217B2 (en) 1987-06-26 1987-10-17 Method for producing red phosphorus flame retardant

Country Status (1)

Country Link
JP (1) JPH0627217B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2832672B2 (en) * 1993-08-12 1998-12-09 燐化学工業株式会社 Red phosphorus flame retardant and flame retardant resin composition
TW552291B (en) 1998-02-23 2003-09-11 Teijin Ltd Fire-retardant resin compositions
US6248814B1 (en) 1998-03-25 2001-06-19 Teijin Limited Resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919044A (en) * 1982-07-24 1984-01-31 Fumihiko Nakamura Manufacture of pipe for heat exchanger
CA1197072A (en) * 1983-12-08 1985-11-26 Rhodia Canada Inc. Production of red phosphorus
IT1200424B (en) * 1985-03-19 1989-01-18 Saffa Spa RED PHOSPHORUS STABILIZED FOR USE AS A FLAME RETARDANT, ESPECIALLY FOR POLYMER-BASED COMPOSITIONS
JPH0645739B2 (en) * 1985-06-19 1994-06-15 積水化学工業株式会社 Flame-retardant ABS resin composition

Also Published As

Publication number Publication date
JPH01104687A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
UA84311C2 (en) Process for preparation of solid lubricant agglomerates, the solid lubricant agglomerate and use thereof
EP0386868B1 (en) Low-density calcium carbonate agglomerate
JPH0627217B2 (en) Method for producing red phosphorus flame retardant
US2888325A (en) Method of making boron nitride material and bodies
JPH03197311A (en) Production of metallic oxide particle
US4151267A (en) Process for producing alumina
JPH06172581A (en) Gibbsitic aluminum hydroxide as filler for resin
US2491160A (en) Production of dichlorodiphenyltrichloroethane
KR100840218B1 (en) Fabrication and using method of oxide powders with high specific surface area by coating with nacl or salt and ball milling
JPH04219315A (en) Production of indium oxide powder
JPH02271919A (en) Production of fine powder of titanium carbide
JP2013036053A (en) Method for producing metal composite ultrafine particle
JP3185007B2 (en) Method for producing sodium hexatitanate fiber
US3004832A (en) Process for producing titanium carbide
JPH0822731B2 (en) Dental material Ca -4 below P-2 below O-9 below Powder manufacturing method
US2929685A (en) Method for making titanium boride from phosphates
JP3884539B2 (en) Method for producing swellable fluoromica powder
JP7002117B2 (en) Method for producing iron-making dust agglomerates and agglomeration aids
US3278297A (en) Process of gaseous reducing lead oxide employing an agent to maintain lead in particulate form
JPS6186407A (en) Stabilized and inactivated powdery flowable red phosphorus and manufacture
JPH01108115A (en) Production of mechanism oxide substance
JPS6329579B2 (en)
GB1585198A (en) Process for the decomposition of metal silicates
SU1357416A1 (en) Acid-proof lining material
US3401018A (en) Method of producing boron carbide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees