JPH0627070A - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JPH0627070A
JPH0627070A JP20709092A JP20709092A JPH0627070A JP H0627070 A JPH0627070 A JP H0627070A JP 20709092 A JP20709092 A JP 20709092A JP 20709092 A JP20709092 A JP 20709092A JP H0627070 A JPH0627070 A JP H0627070A
Authority
JP
Japan
Prior art keywords
film
heater
electrodes
gas sensor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20709092A
Other languages
Japanese (ja)
Other versions
JP3219253B2 (en
Inventor
Takashi Yamaguchi
隆司 山口
Hironori Machida
博宣 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP20709092A priority Critical patent/JP3219253B2/en
Publication of JPH0627070A publication Critical patent/JPH0627070A/en
Application granted granted Critical
Publication of JP3219253B2 publication Critical patent/JP3219253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To obtain a pulse driven gas sensor, whose power consumption is small. CONSTITUTION:Gold electrodes 10 and 12 are connected to a thin film heater 14 of iridium oxide. Opposing parts 22 and 22 are provided and heated with a heating part 24 therebetween. An SnO2 film 16 is laminated in the heater 14, and a gas sensor having two terminals is formed. Etching parts 18 and 18 formed by ion milling are provided in parallel with the lines at both ends of the opposing parts 22 and 22. The thin film heater 14 and the gas detecting film 16 are removed, and power consumption is further reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の利用分野】この発明は、パルス駆動型ガスセン
サに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse drive type gas sensor.

【0002】[0002]

【従来技術】発明者らは、絶縁基板上にガラス断熱膜を
介して、ヒータ膜とガス検出用の金属酸化物半導体膜を
形成し、ヒータをパルス的に発熱させるようにしたガス
センサを提案した(特開平1−206,252号)。ま
た特公平4−1301号,同219号は、シリコン基板
をアンダーカットエッチングした空洞上にシリカの薄い
橋を設け、この橋上にヒータ膜とガス検出用の金属酸化
物半導体膜とを設けることを示している。これらの公報
でもヒータはパルス的に発熱させる。これらのガスセン
サでは、ヒータをパルス的に発熱させ、センサをパルス
駆動することにより消費電力を著しく減少させている。
2. Description of the Related Art The inventors have proposed a gas sensor in which a heater film and a metal oxide semiconductor film for gas detection are formed on an insulating substrate via a glass heat insulating film, and the heater is caused to generate heat in a pulsed manner. (JP-A-1-206,252). Japanese Patent Publication Nos. 4-1301 and 219 disclose that a thin bridge of silica is provided on a cavity obtained by undercut etching a silicon substrate, and a heater film and a metal oxide semiconductor film for gas detection are provided on the bridge. Shows. Also in these publications, the heater generates heat in a pulsed manner. In these gas sensors, the heater is pulsed to generate heat, and the sensor is pulse-driven to significantly reduce the power consumption.

【0003】センサをパルス駆動し消費電力を節減する
と、次の課題はヒータの発熱部を小さくパターニングす
ることになる。このためにはヒータ材料に高抵抗なもの
を用い、ヒータにはPtやAu等の低抵抗な電極を接続
することになる。図4に、考え易い電極配置を示す。図
のように電極01,01を配置すると、ヒータ電流は図
の破線のように流れ、発熱部が本来の意図している範囲
よりも広がる。これは消費電力を増加させる。
When the sensor is pulse-driven to reduce power consumption, the next problem is to pattern the heating portion of the heater in a small size. For this purpose, a high resistance material is used for the heater, and a low resistance electrode such as Pt or Au is connected to the heater. FIG. 4 shows an electrode arrangement that can be easily considered. When the electrodes 01, 01 are arranged as shown in the figure, the heater current flows as shown by the broken line in the figure, and the heat generating portion spreads beyond the originally intended range. This increases power consumption.

【0004】[0004]

【発明の課題】この発明の課題は、以下の点にある。 (1) 発熱部の広がりを抑え、消費電力を抑制すること
(請求項1,2)。 (2) ヒータ膜や、ガス検出膜を設ける場合、ヒータ膜
とガス検出膜を対向部の外側でエッチングし、余分の発
熱と伝熱による消費電力を節減すること(請求項3)。 (3) ヒータ膜の電極パターンとガス検出膜の電極パタ
ーンを重ね、電極からの放熱を最小限にし、かつほこり
の付着等でヒータ膜とガス検出膜とがショートすること
を防止すること(請求項5)。
The problems of the present invention are as follows. (1) The expansion of the heat generating part is suppressed and the power consumption is suppressed (claims 1 and 2). (2) When the heater film and the gas detection film are provided, the heater film and the gas detection film are etched outside the facing portion to reduce power consumption due to extra heat generation and heat transfer (claim 3). (3) Overlapping the electrode pattern of the heater film and the electrode pattern of the gas detection film to minimize the heat radiation from the electrode and prevent the heater film and the gas detection film from being short-circuited due to dust adhesion (claim Item 5).

【0005】[0005]

【発明の構成】この発明は、絶縁基体上にヒータ膜を設
け、ヒータ膜をパルス的に発熱させるようにしたガスセ
ンサにおいて、ヒータ膜には一対の電極を接続すると共
に、これらの電極の先端にそれぞれ、ヒータ膜との接触
箇所で、電極本体と斜めないし直角に配置した直線状の
対向部を設けて、これらの一対の対向部を平行配置して
対向させたことを特徴とする。
According to the present invention, in a gas sensor in which a heater film is provided on an insulating substrate and the heater film is made to generate heat in a pulsed manner, a pair of electrodes are connected to the heater film and the tips of these electrodes are connected. Each of them is characterized in that a linear opposing portion disposed obliquely or at a right angle to the electrode body is provided at a contact portion with the heater film, and the pair of opposing portions are disposed in parallel to face each other.

【0006】ここで例えば基体を絶縁基板の表面に断熱
ガラス膜を設けたものとするが、シリコン等の基板をア
ンダーカットエッチして設けた空洞上にブリッジ状のシ
リカ膜等を設けて、これを基体としても良い。またヒー
タ膜や、ガス検出膜を設ける場合にはヒータ膜とガス検
出膜は、例えば長方形状の形状とし、電極部には設ける
が、対向部の外側には設けないようにする。これはヒー
タ膜や金属酸化物半導体膜のエッチングは電極膜のエッ
チングより難しく、ヒータ膜や金属酸化物半導体膜を対
向部の外側でエッチングし、電極の引出し部側は残すよ
うにすることである。ガスとの接触で抵抗値が変化する
金属酸化物半導体膜を用いる場合、金属酸化物半導体膜
をヒータ膜に積層し、前記の一対の電極によりヒータ膜
と金属酸化物半導体膜との合成抵抗値を検出するように
しても良く、あるいは絶縁膜を中間に設けて、絶縁膜上
にガスとの接触で抵抗値が変化する金属酸化物半導体膜
を積層し、金属酸化物半導体膜に一対の電極を接続し
て、これらの電極がヒータ膜に接続した一対の電極と、
ヒータ膜からの引出し部でパターンが重なるようにして
も良い。用いるヒータ膜やガス検出膜は、原則としてパ
ターニングが容易で、熱容量の小さな薄膜とするが、厚
膜でも良い。
Here, for example, the substrate is assumed to have an insulating glass film provided on the surface of an insulating substrate, but a bridge-like silica film is provided on a cavity formed by undercut etching of a substrate made of silicon or the like. May be used as the base. Further, when the heater film or the gas detection film is provided, the heater film and the gas detection film have, for example, a rectangular shape and are provided on the electrode part, but not provided on the outside of the facing part. This is because etching of the heater film and the metal oxide semiconductor film is more difficult than etching of the electrode film, and the heater film and the metal oxide semiconductor film are etched outside the facing portion, and the electrode lead-out side is left. . When a metal oxide semiconductor film whose resistance value changes in contact with gas is used, the metal oxide semiconductor film is laminated on the heater film, and the combined resistance value of the heater film and the metal oxide semiconductor film is formed by the pair of electrodes. Alternatively, an insulating film may be provided in the middle, and a metal oxide semiconductor film whose resistance value changes due to contact with gas is laminated on the insulating film, and a pair of electrodes may be formed on the metal oxide semiconductor film. And a pair of electrodes in which these electrodes are connected to the heater film,
The patterns may be overlapped at the drawn-out portion from the heater film. The heater film and the gas detection film to be used are, in principle, thin films having a small heat capacity because they are easy to pattern and may be thick films.

【0007】[0007]

【発明の作用】発明の作用を説明する。電極には先端に
直線状の対向部を設け、この間のヒータ領域を発熱部と
する。対向部は直線状で、電極本体とは斜めないし直角
に配置され、電極本体は対向部で相手側の電極や対向部
からマスクされているので、発熱は対向部間でのみ生
じ、発熱部がクリアに定まり、発熱部の広がりによる消
費電力の増加を防止できる。
The operation of the invention will be described. The electrode is provided with a linear facing portion at the tip, and the heater region between them is used as a heat generating portion. The facing portion is linear and is arranged obliquely or at a right angle to the electrode body, and since the electrode body is masked by the opposing electrode or the facing portion at the facing portion, heat is generated only between the facing portions, and the heat generating portion is It is clear and can prevent the increase of power consumption due to the expansion of the heat generating part.

【0008】[0008]

【実施例】図1ないし図3に、最初の実施例を示す。図
1において、2はアルミナ等の基板で、4はその表面全
体に設けた断熱用のガラス膜で、部分的に設けても良
く、厚さは20〜100μm程度が好ましい。6,8は
電極パッド、10,12は一対の電極で、例えばAuや
Pt等を用いる。14は酸化イリジウム,酸化ルテニウ
ム、窒化タンタル等の薄膜ヒータで、例えば0.1〜2
μm程度の膜厚とする。薄膜ヒータ14には、耐久性の
高い酸化イリジウム膜が好ましい。16は、SnO2薄
膜やITO薄膜(In2O3−SnO2薄膜),酸化タン
グステン薄膜、ナフィオン等のプロトン導電体薄膜等
の、ガス検出膜である。ガス検出膜16の膜厚は、例え
ば0.1〜1μmとする。なお接触燃焼式ガスセンサと
し、ヒータ14の温度変化をガス検出信号とする場合に
は、ガス検出膜16は不要である。18,18はエッチ
ング部である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment is shown in FIGS. In FIG. 1, 2 is a substrate of alumina or the like, 4 is a glass film for heat insulation provided on the entire surface thereof, which may be partially provided, and the thickness is preferably about 20 to 100 μm. Reference numerals 6 and 8 are electrode pads, and 10 and 12 are a pair of electrodes, for example, Au or Pt is used. Reference numeral 14 is a thin film heater of iridium oxide, ruthenium oxide, tantalum nitride, etc., for example, 0.1-2.
The film thickness is about μm. For the thin film heater 14, an iridium oxide film having high durability is preferable. Reference numeral 16 is a gas detection film such as a SnO2 thin film, an ITO thin film (In2O3-SnO2 thin film), a tungsten oxide thin film, and a proton conductor thin film such as Nafion. The film thickness of the gas detection film 16 is, eg, 0.1-1 μm. When the contact combustion type gas sensor is used and the temperature change of the heater 14 is used as the gas detection signal, the gas detection film 16 is not necessary. Reference numerals 18 and 18 are etching portions.

【0009】図2に、電極10,12の配置を示す。図
において、20,20はくびれ部、22,22は電極の
対向部で、電極10,12とほぼ直角に配置し、対向部
22,22が平行に向き合うようにする。対向部22,
22は図2のように単純な直線状とする。これは簡単な
形状で、ヒータ膜14の内で発熱する部分を明確に定め
るためである。例えば櫛の歯状電極では、センサの抵抗
値を低下させることができるがパターニングが難しく、
発熱部が大型化し消費電力が増加する。エッチング部1
8,18は、対向部22の両端のラインに平行に、ヒー
タ薄膜14とガス検出膜16とをイオンミリング(逆ス
パッタ)して除去したものである。24は対向部22,
22間のヒータ14の発熱部である。センサの形状精度
は、エッチングが容易な電極10,12に対して20μ
mルールを適用し、電極10,12の本来の線幅W1が
40μm、くびれ部20,20での線幅W2が20μ
m、くびれ部20,20の長さが例えば80μmとす
る。対向部22,22は線幅が30μm、対向部22,
22の長さLが100μm、対向部22,22間の間隔
Dが60μmとする。この結果、発熱部24は、100
μm×60μmとなる。
FIG. 2 shows the arrangement of the electrodes 10 and 12. In the figure, 20 and 20 are constricted portions, and 22 and 22 are facing portions of the electrodes, which are arranged substantially at right angles to the electrodes 10 and 12 so that the facing portions 22 and 22 face each other in parallel. Facing part 22,
22 has a simple linear shape as shown in FIG. This is because the shape of the heater film 14 having a simple shape is clearly defined. For example, with a comb tooth-shaped electrode, the resistance value of the sensor can be reduced, but patterning is difficult,
The heat generating part becomes large and power consumption increases. Etching part 1
Reference numerals 8 and 18 are formed by removing the heater thin film 14 and the gas detection film 16 by ion milling (reverse sputtering) in parallel with the lines on both ends of the facing portion 22. 24 is the facing portion 22,
It is a heat generating part of the heater 14 between 22. The shape accuracy of the sensor is 20μ for electrodes 10 and 12 which are easy to etch.
Applying the m rule, the original line width W1 of the electrodes 10 and 12 is 40 μm, and the line width W2 at the constricted portions 20 and 20 is 20 μm.
m, and the length of the constricted portions 20, 20 is, for example, 80 μm. The line width of the facing portions 22, 22 is 30 μm, and the facing portions 22,
The length L of 22 is 100 μm, and the distance D between the facing portions 22 and 22 is 60 μm. As a result, the heat generating portion 24 is 100
It becomes μm × 60 μm.

【0010】図3に、ガスセンサの要部断面を示す。電
極10,12は例えばヒータ薄膜14上に配置し、ガス
検出膜16の電極と兼用し、全体として2端子のセンサ
とする。
FIG. 3 shows a cross section of the main part of the gas sensor. The electrodes 10 and 12 are arranged, for example, on the heater thin film 14 and also serve as the electrodes of the gas detection film 16 to form a two-terminal sensor as a whole.

【0011】図5に、変形例の電極配置を示す。変形例
では、電極30,32に接続した対向部34,34を斜
めに傾け、電極30,32と対向部34とを斜めに配置
した。これでも図2の電極配置と同様に、対向部34,
34間の領域以外へのヒータ電流の広がりはほとんど無
い。
FIG. 5 shows a modified electrode arrangement. In the modification, the facing portions 34 and 34 connected to the electrodes 30 and 32 are tilted obliquely, and the electrodes 30 and 32 and the facing portion 34 are arranged diagonally. Even in this case, as in the electrode arrangement of FIG.
There is almost no spread of the heater current outside the region between 34.

【0012】図6により、実施例の製造工程を示す。最
初に基板2の全面に断熱ガラス膜4を印刷し、焼成す
る。次に例えば酸化イリジウム膜を印刷等で形成し、焼
成してヒータ14を完成する。この後、電極材料を大き
く印刷し、電極10,12,パッド6,8,対向部2
2,22を残すように、イオンミリングやウェットエッ
チング等でエッチングする。AuやPt等の電極材料の
エッチングは容易である。成膜後にエッチングする変わ
りに、最初からマスクを用いてリフトオフでパターンを
定めても良い。電極10,12の成膜後に、ガス検出膜
16を成膜する。成膜はスパッタリングや真空蒸着、原
材料溶液の印刷等で行う。これらの後に、レジストを印
刷し露光してマスクを設け、エッチング部18,18
で、ヒータ薄膜14とガス検出膜16とをエッチングす
る。SnO2のウェットエッチングは困難なので、イオ
ンミリング(逆スパッタエッチ)を用いた。しかしIT
O膜の場合、ウェットエッチングが可能であった。エッ
チング部18,18は図2のように、対向部22,22
の外側をエッチングし、電極10,12の根元側を残す
ようにする。これは電極材料がエッチングを受け易いた
め、電極10,12側をエッチングすると電極10,1
2もエッチングされてしまうこと、電極10,12側に
ヒータ膜14や金属酸化物半導体膜16が残っても、消
費電力に影響しないことによる。この結果、対向部2
2,22の付近でヒータ薄膜14やガス検出膜16は長
方形状となる。
FIG. 6 shows a manufacturing process of the embodiment. First, the heat insulating glass film 4 is printed on the entire surface of the substrate 2 and baked. Next, for example, an iridium oxide film is formed by printing or the like and baked to complete the heater 14. After that, the electrode material is printed large, and the electrodes 10 and 12, the pads 6 and 8, the facing portion 2 are printed.
Etching is performed by ion milling, wet etching or the like so as to leave 2, 22. Etching of electrode materials such as Au and Pt is easy. Instead of etching after film formation, a mask may be used from the beginning to define the pattern by lift-off. After forming the electrodes 10 and 12, the gas detection film 16 is formed. The film is formed by sputtering, vacuum evaporation, printing of raw material solution, or the like. After these, a resist is printed and exposed to form a mask.
Then, the heater thin film 14 and the gas detection film 16 are etched. Wet etching of SnO2 is difficult, so ion milling (reverse sputter etching) was used. But IT
In the case of the O film, wet etching was possible. As shown in FIG. 2, the etching portions 18 and 18 are opposed portions 22 and 22.
The outer sides of the electrodes are etched so that the base sides of the electrodes 10 and 12 are left. This is because the electrode material is susceptible to etching, so if the electrodes 10 and 12 are etched,
2 is also etched, and even if the heater film 14 and the metal oxide semiconductor film 16 remain on the electrodes 10 and 12, the power consumption is not affected. As a result, the facing portion 2
In the vicinity of 2 and 22, the heater thin film 14 and the gas detection film 16 have a rectangular shape.

【0013】実施例のガスセンサでは、8mSec/S
ecの条件でパルス駆動し、発熱部24の最高温度を4
00℃強とした場合、消費電力を約0.5mWattと
することができる。これは100×60μmに発熱部2
4を絞ったこと、対向部22,22を平行に配置し発熱
部24の広がりを抑えたこと、エッチング部18,18
を設けて、不要部への伝熱と不要部での発熱を抑えたこ
とによるものである。
In the gas sensor of the embodiment, 8 mSec / S
Pulse drive under the condition of ec, and set the maximum temperature of the heat generating part 24 to 4
When the temperature is slightly higher than 00 ° C, the power consumption can be about 0.5 mWatt. This is a heating unit 2 with a size of 100 × 60 μm.
4, the opposing portions 22 and 22 are arranged in parallel to suppress the spread of the heat generating portion 24, and the etching portions 18 and 18 are
Is provided to suppress heat transfer to the unnecessary portion and heat generation in the unnecessary portion.

【0014】[0014]

【実施例2】図7ないし図11に、3端子ないし4端子
のガスセンサを示す。図7において、40はシリカやア
ルミナ膜等の絶縁膜で、膜厚1μm程度のものを用い
る。図8のように、エッチング部18でガス検出膜16
と絶縁膜40,ヒータ膜14を同じライン上でエッチン
グすると、ほこり粒子44の付着等で、ヒータ膜14と
ガス検出膜16が短絡する。そこで図7のように、ヒー
タ膜14を絶縁膜40の成膜前にエッチングし、ヒータ
膜14の端部とガス検出膜16の端部が同じライン上で
露出しないようにする。
Embodiment 2 FIGS. 7 to 11 show a gas sensor having three terminals or four terminals. In FIG. 7, 40 is an insulating film such as a silica or alumina film having a film thickness of about 1 μm. As shown in FIG. 8, the gas detection film 16 is formed in the etching portion 18.
When the insulating film 40 and the heater film 14 are etched on the same line, the heater film 14 and the gas detection film 16 are short-circuited due to adhesion of dust particles 44 and the like. Therefore, as shown in FIG. 7, the heater film 14 is etched before the insulating film 40 is formed so that the end portions of the heater film 14 and the gas detection film 16 are not exposed on the same line.

【0015】図9に、このセンサの電極配置を示す。図
において、42,42は感ガス電極、46,46はその
くびれ部、48,48は対向部で、対向部48,48の
間隔を例えば20μm、対向部48,48の長さを10
0μmとし、図の破線のヒータ側の電極10,12上に
重ねる。この結果発熱部24の中に、対向部48,48
を置き、発熱部24の中心のガス検出膜16を用いて温
度分布の影響を小さくすることができる。また50は、
ガス検出膜16のエッチング部である。感ガス電極4
2,42はヒータ側の電極10,12に重ね、電極から
の放熱を最小にする。即ち電極10,12と感ガス電極
42,42のパターンを重ね、電極からの放熱面積の増
加を防止する。なおセンサは全体として4端子としても
良く、あるいはパッド6,8のいずれかを兼用して3端
子としても良い。
FIG. 9 shows the electrode arrangement of this sensor. In the figure, 42 and 42 are gas sensitive electrodes, 46 and 46 are constricted portions thereof, and 48 and 48 are facing portions, and the spacing between the facing portions 48 and 48 is, for example, 20 μm, and the length of the facing portions 48 and 48 is 10 μm.
The thickness is set to 0 μm, and they are overlapped on the electrodes 10 and 12 on the heater side indicated by the broken line in the figure. As a result, in the heat generating part 24, the facing parts 48, 48
And the influence of the temperature distribution can be reduced by using the gas detection film 16 at the center of the heat generating portion 24. Also 50 is
It is an etching part of the gas detection film 16. Sensitive gas electrode 4
Reference numerals 2 and 42 overlap the electrodes 10 and 12 on the heater side to minimize heat radiation from the electrodes. That is, the patterns of the electrodes 10 and 12 and the gas-sensitive electrodes 42 and 42 are overlapped with each other to prevent an increase in heat radiation area from the electrodes. Note that the sensor may have four terminals as a whole, or may have three terminals by using either of the pads 6 and 8.

【0016】図10に、第2の実施例のセンサの分解状
態を示す。また図11に、その製造工程を示す。
FIG. 10 shows a disassembled state of the sensor of the second embodiment. Further, FIG. 11 shows the manufacturing process.

【0017】[0017]

【発明の効果】この発明では、以下の効果が得られる。 (1) 発熱部の広がりを抑え、消費電力を抑制できる
(請求項1,2)。 (2) ヒータ膜や、ガス検出膜を設ける場合、ヒータ膜
とガス検出膜を対向部の外側でエッチングし、余分の発
熱と伝熱による消費電力を節減できる(請求項3)。 (3) ヒータ膜の電極パターンとガス検出膜の電極パタ
ーンを重ね、電極からの放熱を最小限にし、かつほこり
の付着等でヒータ膜とガス検出膜とがショートすること
を防止できる(請求項5)。
According to the present invention, the following effects can be obtained. (1) It is possible to suppress the spread of the heat generating portion and suppress power consumption (claims 1 and 2). (2) When the heater film and the gas detection film are provided, the heater film and the gas detection film can be etched outside the facing portion to reduce power consumption due to extra heat generation and heat transfer (claim 3). (3) The electrode pattern of the heater film and the electrode pattern of the gas detection film are overlapped to minimize heat radiation from the electrode, and it is possible to prevent the heater film and the gas detection film from being short-circuited due to dust adhesion or the like. 5).

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例のガスセンサの平面図FIG. 1 is a plan view of a gas sensor according to an embodiment.

【図2】 実施例のガスセンサの電極配置を示す要部
平面図
FIG. 2 is a plan view of the essential parts showing the electrode arrangement of the gas sensor of the embodiment.

【図3】 実施例のガスセンサの要部端面図FIG. 3 is an end view of a main part of a gas sensor according to an embodiment.

【図4】 従来例のガスセンサの電極配置を示す要部
平面図
FIG. 4 is a plan view of a main part showing an electrode arrangement of a conventional gas sensor.

【図5】 変形例のガスセンサの電極配置を示す要部
平面図
FIG. 5 is a plan view of a main part showing an electrode arrangement of a gas sensor of a modified example.

【図6】 実施例のガスセンサの製造工程を示す工程
FIG. 6 is a process drawing showing the manufacturing process of the gas sensor of the embodiment.

【図7】 第2の実施例のガスセンサの、要部断面図FIG. 7 is a sectional view of a main part of a gas sensor according to a second embodiment.

【図8】 従来例のガスセンサでの、ほこりによるシ
ョートを示す要部断面図
FIG. 8 is a cross-sectional view of essential parts showing a short circuit due to dust in a conventional gas sensor.

【図9】 第2の実施例のガスセンサの電極配置を示
す要部平面図
FIG. 9 is a plan view of an essential part showing the electrode arrangement of the gas sensor of the second embodiment.

【図10】 第2の実施例のガスセンサの分解状態を示
す斜視図
FIG. 10 is a perspective view showing a disassembled state of the gas sensor of the second embodiment.

【図11】 第2の実施例のガスセンサの、製造工程を
示す工程図
FIG. 11 is a process drawing showing the manufacturing process of the gas sensor of the second embodiment.

【符号の説明】[Explanation of symbols]

2 基板 4 断熱用のガラス膜 6,8 電極パッド 10,12 電極 14 薄膜ヒータ 16 ガス検出膜 18,18 エッチング部 20,20 くびれ部 22,22 電極の対向部 24 発熱部 30,32 電極 34,34 対向部 40 絶縁膜 42,42 感ガス電極 44 ほこり 46,46 くびれ部 48,48 対向部 50,50 エッチング部 2 Substrate 4 Glass film for heat insulation 6,8 Electrode pad 10,12 Electrode 14 Thin film heater 16 Gas detection film 18,18 Etching part 20,20 Constriction part 22,22 Electrode facing part 24 Heating part 30,32 Electrode 34, 34 Opposing part 40 Insulating film 42,42 Gas sensitive electrode 44 Dust 46,46 Constricted part 48,48 Opposing part 50,50 Etching part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基体上にヒータ膜を設け、ヒータ膜
をパルス的に発熱させるようにしたガスセンサにおい
て、 ヒータ膜には一対の電極を接続すると共に、これらの電
極の先端にそれぞれ、ヒータ膜との接触箇所で、電極本
体と斜めないし直角に配置した直線状の対向部を設け
て、これらの一対の対向部を平行に配置しながら対向さ
せたことを特徴とする、ガスセンサ。
1. A gas sensor in which a heater film is provided on an insulating substrate, and the heater film is made to generate heat in a pulsed manner. A pair of electrodes is connected to the heater film, and the heater film is respectively attached to the tips of these electrodes. A gas sensor, characterized in that a straight-line facing portion is provided obliquely or at a right angle to the electrode body at a contact position with the electrode body, and the pair of facing portions are placed in parallel while facing each other.
【請求項2】 前記の基体を、絶縁基板の表面に断熱ガ
ラス膜を設けたものとしたことを特徴とする、請求項1
のガスセンサ。
2. The substrate according to claim 1, wherein an insulating glass film is provided on a surface of an insulating substrate.
Gas sensor.
【請求項3】 電極の対向部の外側でヒータ膜を除去す
るとともに、電極本体側のヒータ膜を除去せずに残した
ことを特徴とする、請求項2のガスセンサ。
3. The gas sensor according to claim 2, wherein the heater film is removed outside the facing portion of the electrode, and the heater film on the electrode body side is left without being removed.
【請求項4】 ヒータ膜に、ガスとの接触で抵抗値が変
化する金属酸化物半導体膜を積層し、前記の一対の電極
によりヒータ膜と金属酸化物半導体膜との合成抵抗値を
検出するようにしたことを特徴とする、請求項3のガス
センサ。
4. The heater film is laminated with a metal oxide semiconductor film whose resistance value changes in contact with gas, and the combined resistance value of the heater film and the metal oxide semiconductor film is detected by the pair of electrodes. The gas sensor according to claim 3, characterized in that.
【請求項5】 ヒータ膜に、絶縁膜を積層するととも
に、絶縁膜上にガスとの接触で抵抗値が変化する金属酸
化物半導体膜を積層し、金属酸化物半導体膜に一対の電
極を接続して、これらの電極がヒータ膜に接続した一対
の電極と、ヒータ膜からの引出し部でパターンが重なる
ようにしたことを特徴とする、請求項3のガスセンサ。
5. An insulating film is laminated on the heater film, a metal oxide semiconductor film whose resistance value is changed by contact with gas is laminated on the insulating film, and a pair of electrodes is connected to the metal oxide semiconductor film. 4. The gas sensor according to claim 3, wherein the electrodes have a pattern overlapping with a pair of electrodes connected to the heater film at a lead-out portion from the heater film.
JP20709092A 1992-07-10 1992-07-10 Gas sensor Expired - Fee Related JP3219253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20709092A JP3219253B2 (en) 1992-07-10 1992-07-10 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20709092A JP3219253B2 (en) 1992-07-10 1992-07-10 Gas sensor

Publications (2)

Publication Number Publication Date
JPH0627070A true JPH0627070A (en) 1994-02-04
JP3219253B2 JP3219253B2 (en) 2001-10-15

Family

ID=16534039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20709092A Expired - Fee Related JP3219253B2 (en) 1992-07-10 1992-07-10 Gas sensor

Country Status (1)

Country Link
JP (1) JP3219253B2 (en)

Also Published As

Publication number Publication date
JP3219253B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
US4984446A (en) Gas detecting device and gas detecting system using the same
JP2018063241A (en) Gas sensor
JPS6136616B2 (en)
JPH0298965A (en) Multielement infrared ray detection sensor
JPH0627070A (en) Gas sensor
JPS61191953A (en) Gas detector
JPH0213739B2 (en)
US9068913B2 (en) Photolithographic structured thick layer sensor
GB2238617A (en) Detector for flammable gases
JP2000019141A (en) Semiconductor gas sensor
JP3345695B2 (en) Acceleration sensor
KR101992022B1 (en) Semiconductor gas sensor
JP3499072B2 (en) Semiconductor gas sensor
JPH11354302A (en) Thin-film resistor element
JP3033143B2 (en) Gas sensor manufacturing method
JPH01313751A (en) Gas sensor
JP2604415B2 (en) Gas sensor
JPS62220850A (en) Atmosphere detector
JP3124609B2 (en) Atmosphere sensor structure
JPH08278273A (en) Gas detector
JP2003294670A (en) Thin film gas sensor
JP2849395B2 (en) Driving method of gas sensor
JPH08219836A (en) Mass flow sensor
JP2002286674A (en) Contact combustion type gas sensor and its manufacturing method
JP2714006B2 (en) Gas sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20070810

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees