JPH0627012B2 - Low loss single mode optical fiber manufacturing method. - Google Patents

Low loss single mode optical fiber manufacturing method.

Info

Publication number
JPH0627012B2
JPH0627012B2 JP61127253A JP12725386A JPH0627012B2 JP H0627012 B2 JPH0627012 B2 JP H0627012B2 JP 61127253 A JP61127253 A JP 61127253A JP 12725386 A JP12725386 A JP 12725386A JP H0627012 B2 JPH0627012 B2 JP H0627012B2
Authority
JP
Japan
Prior art keywords
optical fiber
loss
mode optical
single mode
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61127253A
Other languages
Japanese (ja)
Other versions
JPS62283843A (en
Inventor
勇悦 詫摩
博 梶岡
久典 中居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP61127253A priority Critical patent/JPH0627012B2/en
Publication of JPS62283843A publication Critical patent/JPS62283843A/en
Publication of JPH0627012B2 publication Critical patent/JPH0627012B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/44Monotoring or regulating the preform feed rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は低損失単一モード光ファィバの製造法に係り、
特に波長 1.5μm帯用の低損失光ファイバを製造する方
法に関するものである。
The present invention relates to a method for manufacturing a low loss single mode optical fiber,
In particular, the present invention relates to a method of manufacturing a low loss optical fiber for the wavelength band of 1.5 μm.

[従来の技術] 光通信技術及び光計測技術等における光伝送路として光
ファイバが広く用いられているが、この光ファイバは主
にコアの外周部に低屈折率のクラッドが設けられ、さら
にクラッドの外周部にジャケットが設けられた構造を有
している。一般に、コア及びクラッドは伝送損失を低下
させるためにVAD法等により合成した石英から形成さ
れる、ジャケットは製造コストを低下させると共に製造
時間を短縮するために天然あるいは合成の石英管から形
成されることが多い。
[Prior Art] An optical fiber is widely used as an optical transmission line in optical communication technology, optical measurement technology, and the like. In this optical fiber, a clad having a low refractive index is mainly provided on an outer peripheral portion of a core, and a clad is further provided. Has a structure in which a jacket is provided on the outer peripheral portion of the. Generally, the core and the clad are made of quartz synthesized by the VAD method or the like to reduce the transmission loss, and the jacket is made of a natural or synthetic quartz tube to reduce the manufacturing cost and the manufacturing time. Often.

すなわち、VAD法等により形成したコアロッドを目標
のカットオフ波長となるように延伸し、これをジャケッ
ト用石英管内に挿入した後同時線引を行なって光ファイ
バを製造していた。
That is, an optical fiber is manufactured by extending a core rod formed by the VAD method or the like so as to have a target cutoff wavelength, inserting the core rod into a quartz tube for a jacket, and then performing simultaneous drawing.

ところが、市販の石英管には一般に水酸基や水素等の不
純物が含まれており、この石英管によりジャケットが形
成するとファイバの線引時に石英管から拡散された不純
物がクラッドやコアに浸透し、その結果伝送損失の増加
要因となる。この現象は、電磁界分布が本質的にコアか
らクラッドにまで拡がる単一モード光ファイバにおいて
特に顕著なものとなる。
However, commercially available quartz tubes generally contain impurities such as hydroxyl groups and hydrogen.When the quartz tube forms a jacket, the impurities diffused from the quartz tube during fiber drawing penetrate into the clad and core, As a result, it causes an increase in transmission loss. This phenomenon is especially noticeable in single mode optical fibers where the electromagnetic field distribution essentially extends from the core to the cladding.

そこで、従来単一モード光ファイバを製造する際には、
ジャケットから拡散される不純物が電磁界分布に影響を
及ばさないようにクラッドを厚くする方法が採られてい
た [発明が解決しようとする問題点] しかしながら、水素等の不純物の拡散現象には線引速度
等も影響を及ぼすので、クラッドを厚くするだけでは十
分な低損失化を達成することができなかった。
Therefore, when manufacturing a conventional single-mode optical fiber,
The method of thickening the clad was adopted so that the impurities diffused from the jacket do not affect the electromagnetic field distribution. [Problems to be solved by the invention] Since the pulling speed and other factors also have an effect, it was not possible to achieve a sufficiently low loss simply by thickening the cladding.

また、例えば比屈折率差の大きいコアロッドを線引する
場合に線引温度が高過ぎると、ドーパントの輝散による
構造不整損が増加したりレーレ散乱損が大きくなるの
で、低損失化はさらに困難なものとなる。
Further, for example, when the core rod having a large relative refractive index difference is drawn, if the drawing temperature is too high, structural misalignment loss due to dopant scattering increases and Rayleigh scattering loss increases, making it even more difficult to reduce loss. It will be

かくして、本発明の目的は上記従来技術の問題点を解消
し、水素等の不純物の影響を受けない条件及びドーパン
トが輝散せず低レーレ散乱損となる条件を規定して低損
失の単一モード光ファイバを製造することができる製造
法を提供することにある。
Thus, the object of the present invention is to solve the above-mentioned problems of the prior art and to define a condition that is not affected by impurities such as hydrogen and a condition that the dopant does not scatter and that is a low Rayleigh scattering loss. It is to provide a manufacturing method capable of manufacturing a mode optical fiber.

[問題点を解決するための手段] 本発明の低損失単一モード光ファイバの製造法は上記目
的を達成するために、コア部とクラッド部からなるコア
ロッドをジャケット用石英管内に挿入してこれを母材と
すると共にこの母材を加熱線引きしてコア,クラッド及
びジャケットからなる単一モード光ファイバを製造する
方法において、上記母材を線引きする際の母材送り速度
をV[mm/分]、上記クラッドの外径をd[μm]及び
モードフィールド径を2ω[μm]として を14以上としたものである。
[Means for Solving the Problems] In order to achieve the above object, the method for producing a low-loss single-mode optical fiber according to the present invention is performed by inserting a core rod composed of a core portion and a cladding portion into a quartz tube for a jacket. In the method of manufacturing a single mode optical fiber composed of a core, a clad and a jacket by heating the base material as a base material and heating the base material, the base material feeding speed when the base material is drawn is V [mm / min. ], The outer diameter of the clad is d [μm] and the mode field diameter is 2ω [μm] Is 14 or more.

[作 用] 単一モード光ファイバの損失要因として、材料固有
損、水酸基吸収損、構造不整損、ジャケット石英
管から拡散される水素による損失を挙げることができ
る。
[Operation] Loss factors of the single-mode optical fiber include material intrinsic loss, hydroxyl group absorption loss, structural misalignment loss, and loss due to hydrogen diffused from the jacket quartz tube.

の材料固有損はレーレ散乱損,赤外吸収損,紫外吸収
損の和で求められるが、これらの中でレーレ散乱損が線
引時におけるガラスの固有温度に比例するため、特に低
レーレ散乱損となる線引条件を検討する必要がある。そ
こで、本発明においては線引速度の規制を行なった。
The material intrinsic loss of is calculated by the sum of Rayleigh scattering loss, infrared absorption loss, and ultraviolet absorption loss. Among these, the Rayleigh scattering loss is proportional to the intrinsic temperature of the glass at the time of drawing. It is necessary to consider the wire drawing conditions. Therefore, the drawing speed is regulated in the present invention.

また、の水酸基吸収損は近年の製造技術の向上により
ほとんど無視し得るレベルとなっている。さらに、の
構造不整損は線引温度が高い場合にドーパントが輝散す
ることにより生じるので、線引温度を所定値以上に上げ
ないように規制すればよい。
In addition, the hydroxyl group absorption loss is almost negligible due to the recent improvement in manufacturing technology. Furthermore, since the structural misalignment loss occurs due to the scattering of the dopant when the drawing temperature is high, it is necessary to regulate the drawing temperature so as not to exceed a predetermined value.

次に、の水素による損失について水素の拡散モデルを
考えて説明する。
Next, the loss due to hydrogen will be described by considering a hydrogen diffusion model.

まず、石英管からの水素の拡散を考えると、光ファイバ
の中心から半径rの位置における水素濃度c(r) は次式
で表わされる。
First, considering the diffusion of hydrogen from the quartz tube, the hydrogen concentration c (r) at the position of radius r from the center of the optical fiber is expressed by the following equation.

c(r) =c[1−erf{(r0 2−r)/aL}] ただし、C:石英管に含有されている水素濃度 r:溶着後のクラッド半径 L:水素の拡散距離 a:定数 であり、水素の拡散距離Lは拡散係数をDH、拡散時間
をtとして と表わされる。
c (r) = c 0 [1-erf {(r 0 2 −r 2 ) / aL}] where C 0 : concentration of hydrogen contained in the quartz tube r 0 : clad radius after welding L: of hydrogen Diffusion distance a: a constant, and hydrogen diffusion distance L is DH as the diffusion coefficient and t as the diffusion time. Is represented.

さらに、温度T[K]における水素の拡散係数DH[cm
/sec]は DH=DTexp(−E/RT) ただし、E: 8.83 [Kcal/mol] D: 2.03 ×10-7[cm/sec] R: 1.99 [cal/mol/K] で与えられる。
Further, the hydrogen diffusion coefficient DH [cm at the temperature T [K]
2 / sec] is DH = D 0 Texp (−E / RT) where E: 8.83 [Kcal / mol] D 0 : 2.03 × 10 −7 [cm 2 / sec] R: 1.99 [cal / mol / K] Given in.

ところで、線引温度が一定であり線引速度のみを変化さ
せて光ファイバを製造する場合、拡散時間tは炉内への
母材の送り速度Vの逆数1/Vに比例するものと考えるこ
とができる。すると、(1)式より となる。
By the way, when the optical fiber is manufactured by keeping the drawing temperature constant and changing only the drawing speed, it is considered that the diffusion time t is proportional to the reciprocal 1 / V of the feed rate V of the base material into the furnace. You can Then, from equation (1) Becomes

ここで、水素の拡散による損失を考えるに当たり、拡散
距離Lとファイバのクラッド径d及びモードフィールド
径2ωの大小関係が問題となるので、 なる量ηを定義する。
Here, in considering the loss due to the diffusion of hydrogen, the relation between the diffusion distance L, the cladding diameter d of the fiber and the mode field diameter 2ω becomes a problem. Is defined as

(2)式より、 となるので、 が大きい程正規化拡散距離L/dは小さいことがわか
る。すなわち、量ηが大きい程モールドフィールド径2
ωに対する正規化拡散距離L/dは小さく、水素による
損失の影響が小さいものとなる。
From equation (2), Therefore, It can be seen that the larger the value is, the smaller the normalized diffusion distance L / d is. That is, the larger the amount η is, the mold field diameter is 2
The normalized diffusion distance L / d for ω is small, and the influence of the loss due to hydrogen is small.

[実施例] 以下、本発明の実施例を添付図面に従って説明する。EXAMPLES Examples of the present invention will be described below with reference to the accompanying drawings.

上記の量ηは使用するジャケット石英管の断面積s,コ
アロッドの延伸径D,線引速度v,光ファイバの構造パ
ラメータ特にクラッド厚/コア半径δ及びカットオフ波
長λcに関係しており、クラッド厚/コア半径δとカッ
トオフ波長λcが与えられたときに断面積s,延伸径D
及び線引速度vを決定するものである。
The above amount η is related to the cross-sectional area s of the jacket quartz tube used, the drawing diameter D of the core rod, the drawing speed v, the structural parameters of the optical fiber, especially the clad thickness / core radius δ and the cutoff wavelength λc. When the thickness / core radius δ and the cutoff wavelength λc are given, the cross-sectional area s and the drawing diameter D
And the drawing speed v.

これら各量を以下の表−1に示すように設定して複数の
単一モード光ファイバF〜Fを製造した。
Each of these amounts was set as shown in Table 1 below to manufacture a plurality of single mode optical fibers F 1 to F 9 .

そして、これらファイバF〜Fの波長 1.55 μm帯
における伝送損失αを測定し、その測定結果を上記表−
1に記載した。
Then, the transmission loss α of these fibers F 1 to F 9 in the wavelength 1.55 μm band was measured, and the measurement results are shown in the table above.
It was described in 1.

さらに、各ファイバの量ηと伝送損失αとの関係を第1
図に示した。この第1図からわかるように、量ηが大き
い程ファイバの損失αが小さく、量ηを約14(mm/分)
1/2以上とすることにより波長 1.55 μm帯における伝
送損失αを 0.3dB/km以下とすることができる。
Furthermore, the relationship between the amount η of each fiber and the transmission loss α is
As shown in the figure. As can be seen from FIG. 1, the larger the amount η, the smaller the fiber loss α, and the amount η is about 14 (mm / min).
By setting it to 1/2 or more, the transmission loss α in the wavelength 1.55 μm band can be set to 0.3 dB / km or less.

また、上記のファイバのうちη=16.5(mm/分)1/2
設定して製造した単一モード光ファイバFの損失波長
特性を第2図に示す。このファイバでは波長 1.55 μm
における損失αが 0.227dB/Kmと極めて小さく、低損失
化が良好になされていることがわかる。
Further, FIG. 2 shows the loss wavelength characteristic of the single mode optical fiber F 3 manufactured by setting η = 16.5 (mm / min) 1/2 among the above fibers. Wavelength 1.55 μm in this fiber
The loss α at 0.227 dB / Km is extremely small, and it can be seen that low loss is achieved satisfactorily.

[発明の効果] 以上説明したように本発明によれば、次の如き優れた効
果を発揮する。
[Effects of the Invention] As described above, according to the present invention, the following excellent effects are exhibited.

(1) 量 を所定値以上に規定することにより、極めて低損失の単
一モード光ファイバを製造することができる。
(1) Amount Is defined to be a predetermined value or more, it is possible to manufacture an extremely low loss single mode optical fiber.

(2) 従って、本発明は長距離光伝送システムや高精度
光計測システム等において極めて有用なものとなる。
(2) Therefore, the present invention is extremely useful in long-distance optical transmission systems, high-accuracy optical measurement systems, and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の作用を調べるために製造した複数の単
一モード光ファイバの量ηと波長 1.55 μm帯における
損失αとの関係を示すグラフ、第2図は本発明の一実施
例に係る製造方法で製造した低損失単一モード光ファイ
バの損失波長特性図である。
FIG. 1 is a graph showing the relationship between the amount η of a plurality of single-mode optical fibers manufactured to investigate the operation of the present invention and the loss α in the wavelength 1.55 μm band, and FIG. 2 is an embodiment of the present invention. It is a loss wavelength characteristic view of the low loss single mode optical fiber manufactured by the manufacturing method which concerns.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】コア部とクラッド部からなるコアロッドを
ジャケット用石英管内に挿入してこれを母材とすると共
にこの母材を加熱線引きしてコア,クラッド及びジャケ
ットからなる単一モード光ファイバを製造する方法にお
いて、上記母材を線引きする際の母材送り速度をV[mm
/分]、上記クラッドの外径をd[μm]及びモードフ
ィールド径を2ω[μm]として を14以上としたことを特徴とする低損失単一モード光フ
ァイバの製造法。
1. A core rod comprising a core portion and a cladding portion is inserted into a quartz tube for a jacket, which is used as a base material, and the base material is heated and drawn to obtain a single mode optical fiber comprising a core, a cladding and a jacket. In the manufacturing method, the base material feeding speed when drawing the base material is V [mm
/ Min], the outer diameter of the cladding is d [μm], and the mode field diameter is 2ω [μm] A low-loss single-mode optical fiber manufacturing method characterized in that
JP61127253A 1986-06-03 1986-06-03 Low loss single mode optical fiber manufacturing method. Expired - Fee Related JPH0627012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61127253A JPH0627012B2 (en) 1986-06-03 1986-06-03 Low loss single mode optical fiber manufacturing method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61127253A JPH0627012B2 (en) 1986-06-03 1986-06-03 Low loss single mode optical fiber manufacturing method.

Publications (2)

Publication Number Publication Date
JPS62283843A JPS62283843A (en) 1987-12-09
JPH0627012B2 true JPH0627012B2 (en) 1994-04-13

Family

ID=14955472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127253A Expired - Fee Related JPH0627012B2 (en) 1986-06-03 1986-06-03 Low loss single mode optical fiber manufacturing method.

Country Status (1)

Country Link
JP (1) JPH0627012B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438775B2 (en) * 2000-02-01 2003-08-18 住友電気工業株式会社 Optical fiber manufacturing method

Also Published As

Publication number Publication date
JPS62283843A (en) 1987-12-09

Similar Documents

Publication Publication Date Title
US4154592A (en) Method of drawing optical filaments
US4447125A (en) Low dispension single mode fiber
US3791806A (en) Continuous production of light-conducting glass fibers with ion diffusion
US4439007A (en) Low dispersion single mode fiber
US4689065A (en) Optical waveguide glass fiber flame processing
CA1160085A (en) Gradient index optical components
JPH0627012B2 (en) Low loss single mode optical fiber manufacturing method.
JPS627130B2 (en)
JPH0688806B2 (en) Low loss single mode optical fiber manufacturing method.
US4318726A (en) Process for producing optical fiber preform
US20040055340A1 (en) Method of fabricating graded-index optical fiber lenses
JP2002080238A (en) Base material for optical fiber and method of forming the same
JP2835385B2 (en) Manufacturing method of fluoride optical fiber
CA1209090A (en) Exposing fibre bundles of glass and optical fibres to radiation
JP2652700B2 (en) Optical fiber manufacturing method
JP2749686B2 (en) Silica optical fiber
JPS60122744A (en) Manufacture of simple-mode fiber
JPS61251536A (en) Production of optical fiber
JPH04362603A (en) Low-loss optical fiber
JPH1045421A (en) Production of optical fiber
JP2985627B2 (en) Dispersion compensating fiber and manufacturing method thereof
JPS59217642A (en) Spinning of optical fiber
JPH08248245A (en) Production of image fiber
JPS62283841A (en) Production of single mode optical fiber
JPS60218607A (en) Image guide of two-layer structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees