JPH0626917A - 坪量測定装置 - Google Patents

坪量測定装置

Info

Publication number
JPH0626917A
JPH0626917A JP18229292A JP18229292A JPH0626917A JP H0626917 A JPH0626917 A JP H0626917A JP 18229292 A JP18229292 A JP 18229292A JP 18229292 A JP18229292 A JP 18229292A JP H0626917 A JPH0626917 A JP H0626917A
Authority
JP
Japan
Prior art keywords
ray
ray detector
detector
basis weight
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18229292A
Other languages
English (en)
Inventor
Kenji Isozaki
健二 磯崎
Makoto Noro
誠 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP18229292A priority Critical patent/JPH0626917A/ja
Publication of JPH0626917A publication Critical patent/JPH0626917A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

(57)【要約】 【目的】 Z方向の変動の影響を受けず,感度低下がな
く,調整工数が不要で高精度な坪量測定装置を提供す
る。 【構成】 β線源から放射され,シ―ト状の被測定体を
透過してくるβ線をβ線検出器により検出し,前記被測
定体の坪量の測定を行う坪量測定装置において,前記β
線検出器の後方に配置され前記β線源から発生する制動
X線を検出するX線検出器を設け,前記β線源とβ線検
出器のZ方向の変位に基づくβ線検出器の出力変動を前
記X線検出器の出力に基づいて補償する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は,紙,プラスチック等の
シ―ト状物質の坪量をオンラインで計測する為の坪量計
に用いられ,更に詳しくは主としてβ線源とβ線検出器
の位置変動に基づく誤差の補償をはかった坪量計に関す
る。
【0002】
【従来の技術】β線が物質層を通過すると,電離作用や
励起作用等によって次第にエネルギ―を失って減衰し,
更にこの様な弾性散乱や非弾性散乱を多数回受けて進行
方向が変化する。従って測定体の物理量(例えば厚さ)
が増すに伴い透過するβ線粒子の数は減少する。この様
な原理を応用し,シ―ト状の種々の物質の物理量を測定
する装置が知られている。
【0003】図15はこの様な放射線応用測定装置の一
般的構成例を示す説明図である。図15に示す様にβ線
放射線源(以下,単にβ線源という)1とβ線検出器2
が対向して配置され,その間に被測定体3を挟んで測定
するように構成されている。このβ線源からのβ線の空
間強度分布は図16に示す様にβ線源の真上方向が最も
強く,正面から遠ざかる程弱いガウス分布状の強度分布
となる。従ってβ線源1と検出器2がX,Y方向または
Z方向に相対的に移動した場合には,検出器2に入射す
るβ線量が変化して出力変動を生じるという問題があ
る。
【0004】従来,この種の出力変動を除去する装置と
して図17(イ),(ロ),(ハ)に示すようなものが
提案されている。即ち,検出器のβ線を受ける部分2a
(以下,単に受光部という)にβ線の照射方向およびX
方向に対して直角に吸収板6を配置して,線源1と受光
部2aとの位置関係の変化に起因する出力変動を軽減し
たものである。
【0005】図17(イ)は線源1と受光部2aおよび
吸収板6の関係を平面図で示すもので,吸収板6は検出
器の受光部の中央部にX方向に対して直角に,線源は受
光部の中央に配置されている。吸収板6は長さl が受光
部の直径よりも長く,幅Wが線源より広く受光窓の直径
より小さいAl板からなり,受光部2aの前面の中央部
に取付けられて,線源1の放射線ビ―ムの最も強い部分
の一部を遮って受光部2aに入射するβ線量を減少させ
ている。β線源1は通常安全対策として金属箱等で包ま
れており,更にβ線源箱の出口が薄い金属板等で覆われ
ているので,β線源1から放射されたβ線は直進しにく
く散乱線となり,β線ビ―ムの強さはβ線源1の正面が
最も強く正面から遠ざかる程弱くなる。
【0006】図17(ロ)は検出器2がX方向(向かっ
て左側)にX1 ずれた状態を示す側面図で,Rは放射線
の等価線量を示している。この様なずれが発生した場
合,向かって左側はβ線源から遠ざかるので出力は弱く
なるが,向かって右側は吸収板6に遮られていたβ線の
最も強い部分が受光面を照射する様になるので出力は強
くなる。従って受光部が受けるβ線の総量は変化せず,
ずれによる出力変動は発生しない。
【0007】図17(ハ)は検出器2がZ方向(図では
上方向)にz1 ずれた状態を示す側面図で,この例では
受光面2aがβ線源に近付くので吸収板6で覆われてい
ない部分は出力が増加する様に作用し,同時にβ線の強
い部分がより広く吸収板6で覆われることになるので放
射線の総量は変化せず,ずれによる出力変動は発生しな
い。上記構成によれば,β線源1と検出器2の関係が
X,Z方向に移動しても放射線量の総量をほぼ同一にす
ることが可能である。なお,Y方向のずれに対しては図
示した吸収板では対応できない。
【0008】
【発明が解決しようとする課題】しかしながら,上記従
来の坪量測定装置においては,検出器の前面に吸収板を
用いて放射線感度を調整している為,検出器の感度が1
/2〜1/5に低下してしまうという問題があった。ま
た,吸収板を用いた場合,その配置場所は被測定体の性
質に合わせて試行錯誤しながら決定する必要があった。
本発明は上記従来技術の課題に鑑みて成されたもので,
感度低下がなく,調整工数が不要で高精度な坪量測定装
置を実現することを目的とする。
【0009】
【課題を解決するための手段】上記課題を解決する為に
本発明は,請求項1においては,β線源から放射され,
シ―ト状の被測定体を透過してくるβ線をβ線検出器に
より検出し,前記被測定体の坪量の測定を行う坪量測定
装置において,前記β線検出器の後方に配置され前記β
線源から発生する制動X線を検出するX線検出器を設
け,前記β線源とβ線検出器のZ方向の変位に基づくβ
線検出器の出力変動を前記X線検出器の出力に基づいて
補償したことを特徴とし,
【0010】請求項2においては,β線源から放射さ
れ,シ―ト状の被測定体を透過してくるβ線をβ線検出
器により検出し,前記被測定体の坪量の測定を行う坪量
測定装置において,前記β線検出器の後方に配置され前
記β線源から発生する制動X線を検出するX線検出器を
設け,坪量の変化に起因して変化するX線検出器の出力
変化を補償し,その補償値に基づいて前記β線源とβ線
検出器のZ方向の変位に起因するβ線検出器の出力変動
を補償したことを特徴とし,
【0011】請求項3においては,β線源から放射さ
れ,シ―ト状の被測定体を透過してくるβ線をβ線検出
器により検出し,前記被測定体の坪量の測定を行う坪量
測定装置において,前記β線検出器の後方に配置され前
記β線源から発生する制動X線を検出するX線検出器を
設けるとともに,前記X線検出器は前記β線源に対向す
る面のみに制動X線が入射する構成とされ,前記β線源
とβ線検出器のZ方向の変位に基づくβ線検出器の出力
変動を前記X線検出器の出力に基づいて補償したことを
特徴とするものである。
【0012】
【作用】請求項1において,電子線であるβ線はβ線検
出器の比較的に浅い薄い層で吸収され,電磁波であるX
線は比較的に深い層まで到達する。従ってβ線検出器の
厚さをβ線が透過しない程度の厚さに形成し,そのβ線
検出器の背後にX線検出器を配置しておけばβ線検出器
は主としてβ線の強さに関連した信号を出力し,X線検
出器はX線の強さに関連した信号を出力する。X線検出
器の出力変化で測定ギャップ(以下単にZという)を求
め,そのZに応じてβ線検出器の出力を補償する。
【0013】請求項2において,β線がβ線検出器に入
射すると制動X線が発生する。X線検出器にはこのβ線
検出器で発生したX線も入射するのでX線検出器の出力
も変動しZ方向の距離検出の誤差要因となる。ここでは
X線検出器の出力をβ線検出器の出力と関連させて補償
し,その補償値に基づいてβ線源とβ線検出器のZの変
位に起因するβ線検出器の出力変動を補償しているの
で,より正確な補償が可能である。
【0014】請求項3において,β線がβ線検出器に入
射すると制動X線が発生する。X線検出器にはそのX線
も入射するのでZ方向の変動検出の誤差要因となる。こ
こではβ線源に対向する面のみに制動X線が入射する構
成としているので前記誤差要因を少なくした正確なZの
測定が可能である。
【0015】
【実施例】図1は本発明の一実施例を示す構成図であ
る。図において10はβ線源であり ,このβ線源10か
らはβ線とX線の2種類が出射する。11はβ線源を収
納する容器で,図では省略するがβ線のシャッタ機能も
有している。12は容器11の開口部に配置されβ線,
X線の出射径を規制するコリメータである。13はβ線
源10の間に所定の測定ギャップ(Z)を隔てて配置さ
れたβ線検出器であり,この測定ギャップ中を被測定体
であるシートが走行する。
【0016】β線検出器13は例えばSiダイオードが
用いられβ線が透過しない程度の厚さに形成されてい
る。14はβ線検出器の背後に設けられた例えばCdT
eからなるX線検出器であり,β線検出器13と共に容
器(図では省略)に収納されている。20,21は各検
出器からの電気信号を増幅する前置増幅器。26は前置
増幅器20の出力を入力して内蔵するZ検量線データか
らZ量を算出し,前置増幅器21の出力を入力して内蔵
する坪量検量線データから坪量の算出を行うとともに,
算出したZ量をもとに補償演算を行って真の坪量出力演
算を行う演算装置である。
【0017】ここで,本発明の前提となるβ線およびX
線について説明する。β線とX線はいずれも物質を透過
するとき,その物質の坪量に従って強度がほぼ指数関数
的に減少することが知られている。即ち試料(ここでは
シート状被測定体)を透過した後の強度Iは次式により
表わすことができる。 I=I0×exp(−μm×B) 但しI0 : 試料入射前の強度 B 試料の坪量(g/m2 μm : 質量減衰係数(m2/g)…β線に対して 質量減弱係数(m2/g)…X線に対して
【0018】上式のμmの値は,β線では試料の物質に
よらずほぼ一定であり,また,X線に対してもX線のエ
ネルギーE(MeV)が0.5≦E≦0.5の範囲(コ
ンプトン効果が支配的な領域)では,試料によらずほぼ
一定となることが知られている。シート状被測定体が紙
の場合のμmの概略値は下表のとおりである。 上表の値から分かるようにX線の紙を透過するときの減
弱率は,β線の減衰率に比較してはるかに小さなものと
なっている。一例として,エネルギー:1(MeV),
紙の坪量:200(g/m2)の場合に対する透過率I
/I0を求めると,β線はI/I0=exp(−2×10
-3×200)なので,およそ0.67,X線はI/I0
=exp(−7×10-6×200)なので,およそ0.
999となる。
【0019】ここで,図1に示す線源10と検出器13
のZが大きくなる(離れる)方向に変化した場合につい
て検討する。Zが大きくなると線源10から検出器13
を見込む立体角が少なくなり,その結果,検出器からの
出力も減少する。図2は本発明の基礎データを求めるた
めの実験装置を示す構成図で図1と同一要素には同一記
号を付している。
【0020】図2においてβ線源は85rを用いてお
り,直径(d)および高さ(h)が6mm程度の容器に閉じ込
められている。このβ線は容器の内壁で反射して上方に
設けられた出射窓(図示せず)から出射するが,電子線
であるβ線は物質により急速に進行方向を変える時,そ
の運動エネルギー変化をX線として放出する(このX線
は制動X線とよばれており,図3はβ線源から出射する
制動X線の分布の測定例を示している)。
【0021】従ってβ線源からは常にX線も放射されて
いる。コリメータ12(ステンレス鋼を使用)の板厚は
6.5mm程度であり,線源の真上に位置する所に直径
6mm程度の貫通孔(d1)が形成されている。β線検出
器13は一辺20mm,厚さは0.5mm程度の正方形
に形成されている。X線検出器14は一辺が2mm程度
の立方体であり,一辺が20mm程度の正方形で,厚さ
2mmのPbの板に直径2mm程度の貫通孔17を形成
したPbコリメータ16を介して固定されている。以下
の実験データはβ線検出器13とコリメータ12の表面
までの測定ギャップZが10mmの場合を基準として上
下に2mm変動した場合を示している。
【0022】図4は上記の装置を用い試料を用いず空気
層のみでβ線検出器と線源のZ変化による出力変化を測
定した結果を示すものである。縦軸は出力の強度(任意
単位),横軸はコリメータ12表面からβ線検出器13
までのZを示している。図によればZが大きくなるほど
β線検出器13の出力が低下しているのがわかる。図5
は坪量53.4(g/m2)の試料(ポリエステル;P
ET…以下PETという)をコリメータ12と検出器1
3の間に挿入した場合のβ線検出器とβ線源のZ変化に
よる出力変化を測定した結果を示すもので,出力は空気
層のみの場合と同様の傾き(変化率)を示していること
がわかる。このことはZの変化が分かれば坪量の補償が
可能であることをあらわしている。
【0023】図6はβ線源10とX線検出器14のZ変
化によるX線検出器14の出力変化を示すものでX線検
出器14の出力はZにほぼ比例して変化していることが
分かる。従って,β線検出器13により坪量に応じた出
力を検出し,X線検出器14によりZを検出し,β線検
出器13の出力をX線検出器14の出力により補償する
ことにより感度低下がなく,調整工数が不要で高精度な
坪量計を実現することができる。
【0024】ところで,上記実施例においてはX線検出
器14の出力はβ線源10とのZのみに依存することを
前提としてβ線検出器の出力を補償した。しかしながら
制動X線はβ線が物質により急速に進行方向を変える時
に発生することから,測定対象のシートを透過したβ線
がβ線検出器13に入射した時も発生する。ここで発生
する制動X線はシート(PET)の坪量に依存するの
で,X線検出器14の出力はβ線源とのZの他に坪量に
も依存する。この坪量変化によるX線検出器の出力変化
は実験結果によれば2%程度であり,測定対象の坪量が
ほぼ一定の場合は無視することも可能である。
【0025】次に上記坪量変化に起因するX線検出器の
出力変化を補償する請求項2について説明する。図7は
異なる坪量(53.4(g/m2),139.3(g/
2))の紙を用いてβ線源とX線検出器のZ変化によ
るX線検出器の出力変化を測定した結果を示す図であ
る。図によれば坪量が大きくなると出力が低下すること
を示しているが,変化率はほぼ一致していることがわか
る。
【0026】図8は距離Zに対する傾き(k)の値を示
すもので,空気層のみ〜坪量12.2〜479.6(g
/m2)までの数種類のシートに対するβ線検出器の出
力のZ依存率を最小自乗法により求めた図である。kは
ほぼ一定の値をとり,β線検出器から発生する制動X線
の発生確率が一定であることを示している。図9は坪量
変化によって発生するβ線検出器からの制動X線の変化
を補償した坪量導出の流れ図を示すものである。図中I
はβ線検出器の出力を示し,この出力Iは坪量(BW)
とZの影響を受ける。CはX線検出器の出力であり,こ
の出力はZとβ線検出器(で発生する制動X線)の影響
を受ける。
【0027】両検出器の出力は演算装置26に送られて
β線検出器で発生した制動X線の影響を除去する演算 Xsource=C−k・I k;定数(図8で求められる) を行ってZ検量線データを基にZを算出し,ある定めら
れたZ(ここでは10mm)の場合のβ検出器の出力 IZ=10=I+(10−Z)・A A;Zを変化させた時のβ線検出器の出力変化率(図
4,図5の他数種類の坪量のシートを用いて測定し,そ
れぞれの変化率を平均化して求める) を算出して坪量検量線データを基に坪量を求める。上記
請求項2に関する補償を行うことにより,より正確な坪
量の測定を行うことができる。
【0028】図10〜図12は空気層,坪量53.4
(g/m2),坪量169.4(g/m2)の試料(PE
T)に対するZ補償の結果を示す図である(点線で結ん
だ□は未補償,実線で結んだ〇は補償後の結果を示して
いる)。距離Zが大きくなるとβ線強度Iが低下するた
めに未補償の点線では実際よりも大きな坪量を指示し,
実線で示す補償後の結果ではZの変動によらずほぼ一定
であり,正しい坪量に近い指示をしている。図11の坪
量53.4(g/m2)の場合をみると8≦Z≧12m
mの範囲ではZ変動による坪量の変化(ΔBW/ΔZ)
が4mm当たりおよそ31.9(g/m2)であったも
のが2.4(g/m2)となり,一桁以上改善されてい
ることがわかる。
【0029】次に請求項3について説明する。β線検出
器で発生した制動X線は誤差要因となるためX線検出器
への入射は阻止した方が望ましい(但し,β線源に対向
する面からの入射はβ線源から飛来するX線が入射する
ので阻止することはできない)。X線検出器の側面から
飛来する制動X線の阻止手段としてはX線検出器をでき
るだけ薄く形成することが考えられるが,薄くするのも
限界がある。そこで本願では図2に示すようにβ線検出
器とX線検出器の間に中心にX線検出器の低面とほぼ同
様の面積の貫通孔を有するPbからなるX線遮断部材を
挿入している。なお,X線阻止方法としてはβ線源に対
向する面以外をPbで覆うようにしてもよい。このよう
にX線検出器の側面から飛来する制動X線の阻止すれば
X線検出器の設計の自由度を向上させることができる。
【0030】なお,β線源10と両検出器13,14は
Zの変動の他XおよびY方向の変動に対しても変動す
る。図13は図2の構成においてZ=10mmとし,β
線源とβ検出器のX−Y面内のずれに対するβ線の強度
分布を示し,図14は同じ条件でX線検出器で測定した
X線の計数率分布を示している。これらの図は,β線と
X線の物質透過特性が大きく異なることを考慮してコリ
メータを設計し,X線の空間分布を最適化すれば,X−
Y面内での相対位置変化に対してもX線出力により坪量
信号を補償することが可能なことを示している。
【0031】
【発明の効果】以上実施例とともに具体的に説明した様
に,本発明の坪量測定装置によれば,吸収板を用いない
ので感度低下がなく,調整工数が不要で高精度な坪量測
定装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の坪量測定装置の一実施例を示す構成図
である。
【図2】基礎データを求めるための実験装置を示す構成
図である。
【図3】β線源から出射する制動X線の分布の測定例を
示す図である。
【図4】空気層のみでβ線検出器と線源のZ変化による
出力変化を測定した結果を示す図である。
【図5】試料をコリメータと検出器の間に挿入しβ線検
出器と線源のZ変化による出力変化を測定した結果を示
す図である。
【図6】β線源とX線検出器のZ変化によるX線検出器
の出力変化を示す図である。
【図7】異なる坪量の紙を用いてβ線源とX線検出器の
Z変化によるX線検出器の出力変化を測定した結果を示
す図である。
【図8】数種類のシートに対するベータ線検出器の出力
のZ依存率を最小自乗法により求めた図である。
【図9】坪量変化によって発生するβ線検出器からの制
動X線の変化を補償した坪量導出の流れ図を示すもので
ある。
【図10】空気層に対するZ補償の結果を示す図であ
る。
【図11】坪量53.4(g/m2)の試料に対するZ
補償の結果を示す図である。
【図12】坪量169.4(g/m2)の試料に対する
Z補償の結果を示す図である。
【図13】β線源とβ線検出器のX−Y面内のずれに対
するβ線の強度分布を示す図である。
【図14】β線源とβ線検出器のX−Y面内のずれに対
する電荷を測定したX線の計数率分布を示す図である。
【図15】坪量測定装置の一般的構成例を示す説明図で
ある。
【図16】β線の強度分布を示す図である。
【図17】従来の位置ずれ補償装置を示す説明図であ
る。
【符号の説明】
10 β線源 11 容器 12 コリメータ 13 β線検出器 14 X線検出器 20,21 前置増幅器 26 演算装置

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 β線源から放射され,シ―ト状の被測定
    体を透過してくるβ線をβ線検出器により検出し,前記
    被測定体の坪量の測定を行う坪量測定装置において,前
    記β線検出器の後方に配置され前記β線源から発生する
    制動X線を検出するX線検出器を設け,前記β線源とβ
    線検出器のZ方向の変位に基づくβ線検出器の出力変動
    を前記X線検出器の出力に基づいて補償したことを特徴
    とする坪量測定装置。
  2. 【請求項2】 β線源から放射され,シ―ト状の被測定
    体を透過してくるβ線をβ線検出器により検出し,前記
    被測定体の坪量の測定を行う坪量測定装置において,前
    記β線検出器の後方に配置され前記β線源から発生する
    制動X線を検出するX線検出器を設け,坪量の変化に起
    因して変化するX線検出器の出力変化を補償し,その補
    償値に基づいて前記β線源とβ線検出器のZ方向の変位
    に起因するβ線検出器の出力変動を補償したことを特徴
    とする坪量測定装置。
  3. 【請求項3】 β線源から放射され,シ―ト状の被測定
    体を透過してくるβ線をβ線検出器により検出し,前記
    被測定体の坪量の測定を行う坪量測定装置において,前
    記β線検出器の後方に配置され前記β線源から発生する
    制動X線を検出するX線検出器を設けるとともに,前記
    X線検出器は前記β線源に対向する面のみに制動X線が
    入射する構成とされ,前記β線源とβ線検出器のZ方向
    の変位に基づくβ線検出器の出力変動を前記X線検出器
    の出力に基づいて補償したことを特徴とするものであ
    る。
JP18229292A 1992-07-09 1992-07-09 坪量測定装置 Pending JPH0626917A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18229292A JPH0626917A (ja) 1992-07-09 1992-07-09 坪量測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18229292A JPH0626917A (ja) 1992-07-09 1992-07-09 坪量測定装置

Publications (1)

Publication Number Publication Date
JPH0626917A true JPH0626917A (ja) 1994-02-04

Family

ID=16115737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18229292A Pending JPH0626917A (ja) 1992-07-09 1992-07-09 坪量測定装置

Country Status (1)

Country Link
JP (1) JPH0626917A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267861A (ja) * 2007-04-17 2008-11-06 Yokogawa Electric Corp シート物理量測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267861A (ja) * 2007-04-17 2008-11-06 Yokogawa Electric Corp シート物理量測定装置

Similar Documents

Publication Publication Date Title
US5917880A (en) X-ray inspection apparatus
US6563906B2 (en) X-ray compton scattering density measurement at a point within an object
EP3397953B1 (en) Reference detector for correcting fluctuations in dose and energy of x-ray sources
EP0137487B1 (en) Energy separated quantum-counting radiography and apparatus
US20090168963A1 (en) Method, a processor, and a system for identifying a substance
US20110309253A1 (en) Detector with Active Collimators
EP2075570B1 (en) X-ray diffraction apparatus for determining the effective atomic number
US9464997B2 (en) Methods and apparatuses for measuring effective atomic number of an object
US3412249A (en) Backscatter thickness measuring gauge utilizing different energy levels of bremsstrahlung and two ionization chambers
SE440826B (sv) Sett att bestemma beskaffenheten av transporterat material samt anordning for genomforande av settet
US5489781A (en) Dual modality detector
JPH0626917A (ja) 坪量測定装置
GB2083969A (en) Scatter radiation fluoroscopy apparatus
US20230184701A1 (en) Method and system for inspecting a structure across a cover layer covering the structure
JP3519208B2 (ja) 真空チャンバを備えたx線小角散乱装置
EP1017986B1 (en) A method of determining the density profile
JPH01227050A (ja) 物体の密度等の測定方法と装置
US8249214B2 (en) Device for the online determination of the contents of a substance, and method for using such a device
JPH0329410B2 (ja)
JPH05149775A (ja) 放射線応用測定装置
CN112033983A (zh) 一种x射线发射系统及检测系统
US6995372B2 (en) Nuclear gauge for measuring a characteristic of a sheet material with sheet position and alignment compensation
US4817122A (en) Apparatus for radiation analysis
RU2617001C1 (ru) Мобильный рентгеновский плотномер
JPH0949809A (ja) メスバウアー分光測定装置及び測定方法