JPH0626830A - Method and apparatus for measuring interference - Google Patents

Method and apparatus for measuring interference

Info

Publication number
JPH0626830A
JPH0626830A JP4185393A JP18539392A JPH0626830A JP H0626830 A JPH0626830 A JP H0626830A JP 4185393 A JP4185393 A JP 4185393A JP 18539392 A JP18539392 A JP 18539392A JP H0626830 A JPH0626830 A JP H0626830A
Authority
JP
Japan
Prior art keywords
prism
light
beam splitter
reflected
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4185393A
Other languages
Japanese (ja)
Inventor
Kazuo Shiba
和夫 柴
Kazuo Higashiura
一雄 東浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Instruments Corp
Original Assignee
Sankyo Seiki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Seiki Manufacturing Co Ltd filed Critical Sankyo Seiki Manufacturing Co Ltd
Priority to JP4185393A priority Critical patent/JPH0626830A/en
Publication of JPH0626830A publication Critical patent/JPH0626830A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to measure and analyze interference fringes by generating the interference fringes by reflecting one of luminous fluxes, which interfere to each other, by odd number of times from the division of the wave front to the generation of the interference fringes, and reflecting the other by even number of times. CONSTITUTION:Luminous flux to be measured is cast into a semi-transparent prism 14, which is the first beam splitter. When the luminous flux to be measured is cast into the prism 14, a part of it directly passes, and the other is reflected to the left. Thus, the wave front of the luminous flux is divided into two luminous fluxes having the equal wave front. The luminous flux, which is reflected from the prism 14, enters into a semitransparent prism 22, which is the second beam splitter. Meanwhile, the luminous flux, which is transmitted through the prisim 14, is reflected from prisms 16 and 18 and reflected when the flux passes through an image inverting prism 20. The flux is reflected by three times as a whole and cast into the prism 22. The luminous flux is reflected with the prism 14 and combined with the luminous flux, which is reflected by two times with the prism 22. The luminous fluxes interfere to each other, and the interference fringes are generated on a screen 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は干渉測定方法および装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interference measuring method and apparatus.

【0002】[0002]

【従来の技術】測定光束を互いに等価な波面を持った2
光束に波面分割し、これら2光束を互いに干渉させて干
渉縞を発生させ、この干渉縞を測定・解析することによ
り測定光束の波面に含まれた情報を求める干渉測定方式
が知られている。従来、この種の干渉測定方式では、干
渉縞を発生させるために、波面分割された2光束を相互
に横ずらししており、波面の形状によっては干渉縞が発
生し難い場合があった。
2. Description of the Related Art Two measuring beams having equivalent wave fronts are used.
An interference measurement method is known in which a wavefront is divided into light beams, these two light beams interfere with each other to generate interference fringes, and the interference fringes are measured and analyzed to obtain information contained in the wavefront of the measurement light beam. Conventionally, in this type of interferometric measurement method, two light beams divided into wavefronts are laterally displaced from each other in order to generate interference fringes, and it may be difficult for the interference fringes to occur depending on the shape of the wavefront.

【0003】[0003]

【発明が解決しようとする課題】この発明は、波面分割
した2光束を互いに干渉させる干渉測定方法において、
従来にない新規な干渉測定方法および、この方法を実施
するための装置の提供を目的とする。
SUMMARY OF THE INVENTION The present invention provides an interferometry method for interfering two wavefront-divided light fluxes with each other.
It is an object of the present invention to provide a novel interference measurement method that has never existed before and an apparatus for performing this method.

【0004】[0004]

【課題を解決するための手段】この発明の干渉測定方法
は「測定光束を第1のビームスプリッターにより互いに
等価な波面を持った2光束に波面分割し、これら2光束
を第2のビームスプリッターにより合流させて互いに干
渉させる干渉測定方法」であって、「互いに干渉する光
束の一方を、波面分割から干渉縞発生までの間に奇数回
反射させ、他方を偶数回反射させる」ことを特徴とする
(請求項1)。
The interferometric measuring method of the present invention is described as follows: "A measuring beam is split into two beams having equivalent wavefronts by a first beam splitter, and these two beams are split by a second beam splitter. An interferometric method of merging and interfering with each other ", characterized in that" one of the light beams interfering with each other is reflected an odd number of times between the wavefront division and the generation of interference fringes, and the other is reflected an even number of times " (Claim 1).

【0005】ここに、「波面分割から干渉縞発生までの
間の反射回数」には、波面分割および光束合流の際の反
射が含まれる。また反射回数が偶数回であるとは、反射
回数が「0回」の場合を含む。
Here, "the number of reflections from the wavefront division to the generation of interference fringes" includes the reflection at the time of wavefront division and light flux merging. Moreover, the case where the number of reflections is an even number includes the case where the number of reflections is "0".

【0006】上記請求項1記載の干渉測定方法におい
て、「分割された2光束の一方の光路中に、光軸光線の
方向を保存しつつ、像の向きを1方向に反転する像反転
プリズムを用い、これを光軸の回りに回転することによ
り、所望の方向における干渉縞を強調する」ようにする
ことができる。
In the interferometric method according to claim 1, "an image reversing prism for reversing an image direction to one direction while preserving the direction of the optical axis ray is preserved in one optical path of the two divided light beams. Used, and by rotating it around the optical axis, the interference fringes in a desired direction can be emphasized ”.

【0007】請求項3記載の干渉測定装置は、請求項1
に記載された干渉測定方法を実施するための装置であっ
て、測定光束発生部と、第1および第2のビームスプリ
ッターと、2以上のミラー部材と、受光部とを有する。
「測定光束発生部」は、可干渉性の単色光を放射する光
源を含み、測定光束を発生させる。「第1のビームスプ
リッター」は、対物レンズにより平行光束化された測定
光束を互いに等価な波面を持った2光束に波面分割す
る。「第2のビームスプリッター」は、第1のビームス
プリッターにより分離された2光束を再度合流させる。
第1、第2のビームスプリッターとしては半透鏡や半透
鏡プリズム等の光学素子を用いることができる。
The interferometer according to claim 3 is the interferometer according to claim 1.
An apparatus for carrying out the interference measurement method described in 1., which has a measurement light beam generator, first and second beam splitters, two or more mirror members, and a light receiver.
The “measurement light flux generator” includes a light source that emits coherent monochromatic light and generates a measurement light flux. The "first beam splitter" splits the measurement light flux, which is converted into a parallel light flux by the objective lens, into two light fluxes having equivalent wavefronts. The "second beam splitter" rejoins the two light beams separated by the first beam splitter.
Optical elements such as a semi-transparent mirror and a semi-transparent mirror prism can be used as the first and second beam splitters.

【0008】「2以上のミラー部材」は、第1のビーム
スプリッターから第2のビームスプリッターに到る2つ
の光路を形成する。「受光部」は、干渉縞を読み取る。
上記ミラー部材は「一方の光路をたどる光束に対して偶
数回、他方の光路をたどる光束に対して奇数回の反射を
実現する」ように配備され、且つ、ミラー部材の1つは
「光軸光線の方向を保存しつつ、像の向きを1方向に反
転する像反転プリズム」である。像反転プリズム以外の
ミラー部材としては平面鏡やミラープリズム等の光学素
子を用いることができる。
The "two or more mirror members" form two optical paths from the first beam splitter to the second beam splitter. The "light receiving section" reads the interference fringes.
The above-mentioned mirror member is arranged so as to “reflect even number of times for a light beam that follows one optical path and odd number of times for a light beam that follows the other optical path”, and one of the mirror members is “optical axis It is an image inverting prism that reverses the direction of an image in one direction while preserving the direction of light rays. As the mirror member other than the image inverting prism, an optical element such as a plane mirror or a mirror prism can be used.

【0009】上記像反転プリズムは、これを「光軸の回
りに回転可能」に設けることができる(請求項4)。ま
た像反転プリズム以外のミラー部材の1つを「光束の一
方を他方に対して横ずらしできる」ように、変位可能に
設けることができる(請求項5)。さらに請求項5記載
の干渉測定装置においては、「像反転プリズムを光路上
から退避可能とする」ことができる(請求項6)。
The image inverting prism can be provided "rotatably around the optical axis" (claim 4). Further, one of the mirror members other than the image inverting prism can be displaceably provided so that "one of the light fluxes can be laterally displaced from the other" (claim 5). Further, in the interferometer according to claim 5, "the image inverting prism can be retracted from the optical path" (claim 6).

【0010】[0010]

【作用】上記のように、この発明では、干渉縞を発生さ
せるべく互いに干渉し合う2光束の反射回数に「奇数回
の差」があるので、これら光束が干渉しあうとき、各光
束の波面は一方が他方の鏡映像の関係になっている。
As described above, according to the present invention, there is an "odd number difference" in the number of reflections of two light beams that interfere with each other to generate interference fringes. Therefore, when these light beams interfere with each other, the wavefront of each light beam is changed. Is a mirror image of the other.

【0011】[0011]

【実施例】図1は、この発明の干渉測定装置の1実施例
を要部のみ略示している。この実施例は、請求項4記載
の干渉測定装置を「レンズ性能測定」用に構成した例で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 schematically shows only an essential part of one embodiment of the interference measuring apparatus of the present invention. This embodiment is an example in which the interference measuring apparatus according to claim 4 is configured for "lens performance measurement".

【0012】被検体であるレンズ0は、図示されない適
宜の保持体により測定態位に保持され、光源10により
照射される。光源10は、この実施例において半導体レ
ーザーであり、可干渉な単色光を放射する。放射された
光束はレンズ0を透過したのち集束点を過ぎると発散光
となって対物レンズ12に入射し、実質的な平行光束に
変換されて測定光束となる。即ちこの実施例において、
レンズ0を保持する保持体(図示されず)と光源10と
対物レンズ12とは「測定光束発生部」を構成してい
る。この例の場合、測定光束の波面は理想的には平面で
あるが、実際にはレンズ0における収差等の影響で「歪
んだ面」となっており、その「歪み具合」がレンズ0に
関する光学情報を含んでいる。
The lens 0, which is the subject, is held in a measurement position by an appropriate holder (not shown) and is irradiated by the light source 10. The light source 10 is a semiconductor laser in this embodiment, and emits coherent monochromatic light. The radiated light beam passes through the lens 0 and then passes through the focal point to become divergent light, which is then incident on the objective lens 12 and converted into a substantially parallel light beam to be a measurement light beam. That is, in this embodiment,
A holder (not shown) that holds the lens 0, the light source 10 and the objective lens 12 constitute a “measurement light flux generating section”. In the case of this example, the wavefront of the measurement light flux is ideally a plane, but in reality, it is a “distorted surface” due to the influence of the aberration or the like in the lens 0, and the “distortion degree” is an optical value related to the lens 0. Contains information.

【0013】測定光束は先ず第1のビームスプリッター
である半透鏡プリズム14に入射する。半透鏡プリズム
14は反射率50%のアルミニウム反射膜を1対の直角
プリズムの斜面間に挾持したものである。測定光束は半
透鏡プリズム14に入射すると一部はそのまま透過し、
残りは図の左方へ反射される。このようにして測定光束
は互いに等価な波面を持った2光束に波面分割される。
The measurement light beam first enters a semi-transparent mirror prism 14 which is a first beam splitter. The semi-transparent prism 14 is formed by sandwiching an aluminum reflective film having a reflectance of 50% between the inclined surfaces of a pair of rectangular prisms. When the measuring light beam enters the semi-transparent mirror prism 14, a part of it is transmitted as it is,
The rest is reflected to the left of the figure. In this way, the measurement light beam is divided into two light beams having equivalent wavefronts.

【0014】半透鏡プリズム14により反射された光束
は、第2のビームスプリッターである半透鏡プリズム2
2に入射する。この半透鏡プリズム22は半透鏡プリズ
ム14と同じ構造のものである。一方、半透鏡プリズム
14を透過した光束は、ミラー部材であるミラープリズ
ム16,18により順次反射され、像反転プリズム18
を介して半透鏡プリズム22に入射する。ミラープリズ
ム16,18は共に、アルミニウムによる全反射膜を1
対の直角プリズムの斜面間に挾持したものである。
The luminous flux reflected by the semi-transparent mirror prism 14 is the second semi-transparent mirror prism 2 which is a second beam splitter.
Incident on 2. The semi-transparent mirror prism 22 has the same structure as the semi-transparent mirror prism 14. On the other hand, the light flux transmitted through the semi-transparent mirror prism 14 is sequentially reflected by the mirror prisms 16 and 18 which are mirror members, and the image inverting prism 18
It is incident on the semi-transparent mirror prism 22 via. Both the mirror prisms 16 and 18 are made of an aluminum total reflection film.
It is sandwiched between the slopes of a pair of right-angled prisms.

【0015】像反転プリズム20は、対称台形プリズム
の底面に反射膜21を形成したもので、光軸の回りに回
転可能となっている。この像反転プリズム20に光軸に
合致して入射する光線は入射面により屈折され、底面の
反射面により反射され、射出面で再度屈折されて光軸に
合致して射出する。従って、像反転プリズム20を透過
した光束においては「光軸光線の方向が保存される」
が、像の向き、即ち光束断面の向きが1方向(図の例で
は、図の左右方向)に反転される。なお、反射膜21を
設けずに、上記底面における全反射を利用するようにし
てもよい。
The image inverting prism 20 is a symmetrical trapezoidal prism having a reflection film 21 formed on the bottom surface thereof, and is rotatable about the optical axis. A light ray incident on the image inverting prism 20 in alignment with the optical axis is refracted by the incident surface, reflected by the reflecting surface on the bottom surface, refracted again by the exit surface, and emitted in conformity with the optical axis. Therefore, in the light flux transmitted through the image inverting prism 20, "the direction of the optical axis ray is preserved".
However, the direction of the image, that is, the direction of the cross section of the light flux is reversed in one direction (in the example of the figure, the left-right direction of the figure). The total reflection on the bottom surface may be used without providing the reflection film 21.

【0016】像反転プリズム20を透過して半透鏡プリ
ズム22に入射した光束は、半透鏡プリズム22を透過
することにより、「半透鏡プリズム14から直接的に入
射して半透鏡プリズム22により反射された光束」と合
流され、互いに干渉して干渉縞をスクリーン24上に発
生させる。この干渉縞は、結像レンズ26によりCCD
カメラ等のパターン読取装置28の受光面上に結像され
る。従って、この実施例においては、スクリーン24と
結像レンズ26とパターン読取装置28とが受光部を構
成している。
The light flux that has passed through the image inverting prism 20 and has entered the semitransparent mirror prism 22 passes through the semitransparent mirror prism 22 and thus "directly enters from the semitransparent mirror prism 14 and is reflected by the semitransparent mirror prism 22. Light fluxes ”and interfere with each other to generate interference fringes on the screen 24. The interference fringes are transferred to the CCD by the imaging lens 26.
An image is formed on the light receiving surface of the pattern reading device 28 such as a camera. Therefore, in this embodiment, the screen 24, the imaging lens 26, and the pattern reading device 28 constitute a light receiving portion.

【0017】ここで仮りに、像反転プリズム20がない
場合を考えてみると、スクリーン24に到達する光束の
うち、半透鏡プリズム14により反射された光束は、半
透鏡プリズム14と22とに反射されてスクリーン24
に到達するのであるから波面分割から干渉縞発生までに
2回反射されている。これに対し、半透鏡プリズム14
を透過した光束は、像反転プリズムを除いて考える場合
は、ミラープリズム16,18により反射されるのみで
あるから反射回数は2回である。従って、もし像反転プ
リズム20がなければ、各光束は互いに同一の状態で重
なりあい、光束相互にシェア(横ずらし)も存在しない
ので、互いに干渉させてもスクリーン24上に干渉縞は
発生しない。
Here, suppose that the image inverting prism 20 is not provided. Of the light fluxes reaching the screen 24, the light fluxes reflected by the semitransparent mirror prisms 14 are reflected by the semitransparent mirror prisms 14 and 22. Screen 24
Therefore, it is reflected twice from the wavefront division to the generation of interference fringes. On the other hand, the semi-transparent mirror prism 14
The light flux that has passed through is only reflected by the mirror prisms 16 and 18 when the image reversal prism is excluded, so the number of reflections is two. Therefore, if the image inverting prism 20 is not provided, the light beams overlap with each other in the same state, and there is no share (sideways shift) between the light beams, so that interference fringes do not occur on the screen 24 even if they interfere with each other.

【0018】しかるに、像反転プリズム20が図のよう
に配備されていると、半透鏡プリズム22を透過する方
の光束の反射回数は3回となり、その波面は、他方の光
束の波面を図の左右方向へ反転したものとなる。従っ
て、測定光束の波面が光学系光軸に対して非対称である
場合、干渉縞は波面の非対称性を強調したものとして発
生する。従って、このような干渉縞を読取・解析するこ
とにより、レンズ0における光学特性を有効に測定でき
る。
However, when the image inverting prism 20 is arranged as shown in the figure, the number of reflections of the light beam passing through the semi-transparent mirror prism 22 is three times, and the wavefront thereof is the wavefront of the other light beam. It will be flipped to the left and right. Therefore, when the wavefront of the measurement light beam is asymmetric with respect to the optical axis of the optical system, the interference fringes are generated as emphasizing the asymmetry of the wavefront. Therefore, the optical characteristics of the lens 0 can be effectively measured by reading and analyzing such interference fringes.

【0019】上記実施例において、像反転プリズム20
の態位が図の位置に固定的である場合には、互いに像反
転プリズムを透過して他方の光束と干渉する光束の波面
は、他方の光束の波面を図の左右方向に反転したものと
なり、波面の反転方向は図の左右方向に限定される。も
ちろんこのように、波面の反転方向を光学系空間に対し
て固定しても良いが、上記実施例におけるように、像反
転プリズム20の態位を光軸の回りに回転可能にする
と、波面反転の方向を自由に設定できるので、波面を所
望の方向に反転させ、この方向における干渉縞を強調す
ることができる。例えば、レンズ10に光軸の傾きがあ
るような場合、像反転プリズムを回転させて最も顕著に
干渉縞の現われる位置を探れば、光軸の傾きがどの方向
に生じているかを検出できる。
In the above embodiment, the image inverting prism 20
If the position of is fixed at the position shown in the figure, the wavefronts of the rays that pass through the image inversion prism and interfere with the other ray will be the wavefronts of the other ray inverted in the left-right direction of the figure. The inversion direction of the wavefront is limited to the horizontal direction in the figure. Of course, the wavefront inversion direction may be fixed with respect to the optical system space as described above, but if the position of the image inversion prism 20 is rotatable around the optical axis as in the above-described embodiment, the wavefront inversion is performed. Since the direction can be freely set, the wavefront can be inverted to a desired direction and the interference fringes in this direction can be emphasized. For example, when the lens 10 has an inclination of the optical axis, the direction in which the inclination of the optical axis is generated can be detected by rotating the image inverting prism and searching for the position where the interference fringe appears most significantly.

【0020】以下、変形例を説明する。先ず受光部の配
置であるが、図の配置に変えて、受光部を半透鏡プリズ
ム22の左方の位置に配備しても良い。この場合、波面
分割された光束は、半透鏡プリズム14側から入射して
半透鏡プリズム22を透過した光束と、像反転プリズム
20側から入射して半透鏡プリズム22に反射された光
束とが合流されて干渉縞を発生する。前者の光束に就い
ては反射回数は1回であり、後者の光束に就いては反射
回数は4回である。同様に、測定光束発生部を図1にお
いて第1のビームスプリッター14の右方に配しても良
い。
A modified example will be described below. First, regarding the arrangement of the light receiving portion, the light receiving portion may be arranged at a position on the left side of the semitransparent mirror prism 22 instead of the arrangement shown in the drawing. In this case, the light flux divided into the wavefront is merged with the light flux that is incident from the semitransparent mirror prism 14 side and transmitted through the semitransparent mirror prism 22 and the light flux that is incident from the image inverting prism 20 side and reflected by the semitransparent mirror prism 22. Then, interference fringes are generated. The former light beam has one reflection, and the latter light beam has four reflections. Similarly, the measurement light flux generator may be arranged to the right of the first beam splitter 14 in FIG.

【0021】別の変形例として、図1の光学配置もしく
は、直上で述べた「光部を半透鏡プリズム22の左方に
位置させる光学配置」において、像反転プリズム20
を、図1の位置に変えて、半透鏡プリズム14,22間
に配備してもよい。
As another modification, in the optical arrangement shown in FIG. 1 or in the above-mentioned "optical arrangement in which the light portion is located to the left of the semi-transparent mirror prism 22", the image inverting prism 20 is used.
May be placed between the semi-transparent mirror prisms 14 and 22 in place of the position shown in FIG.

【0022】さらに他の変形例として、ミラープリズム
16を図1の上下方向に変位可能とするか、あるいはミ
ラープリズム18を図の左右方向に変位可能にすると、
これら変位可能なミラープリズムを変位させることによ
り、波面分割した2光束間に「シェア」を与えることが
できる。この場合、像反転プリズム20を光路上から退
避できるようにしておき、像反転プリズム20を光路上
から退避させれば、図1の光学系をそのまま、従来から
良く知られた「シェアリング干渉測定装置」として使用
することができる。
As still another modification, if the mirror prism 16 is displaceable in the vertical direction in FIG. 1 or the mirror prism 18 is displaceable in the horizontal direction in the figure,
By displacing these displaceable mirror prisms, it is possible to give a “shear” between the two light fluxes that are wavefront-divided. In this case, if the image inverting prism 20 is retracted from the optical path and the image inverting prism 20 is retracted from the optical path, the optical system of FIG. Can be used as a "device".

【0023】また別の変形例として、上記実施例および
各変形例においてスクリーン24を省略し、結像レンズ
26によりパターン読取装置28上に各光束を結像さ
せ、これら結像光束相互を直接パターン読取装置28の
受光面上で干渉させ、その干渉縞を測定・解析するよう
にしてもよい。
As another modification, the screen 24 is omitted in the above-described embodiment and each modification, each light beam is imaged on the pattern reading device 28 by the imaging lens 26, and these imaging light beams are directly patterned. You may make it interfere on the light-receiving surface of the reader 28, and measure and analyze the interference fringe.

【0024】各実施例・変形例とも、波面分割された2
光束は、偏光方向を保存したまま互いに干渉するので、
干渉効率が良い。
In each of the embodiments and modifications, the wavefront is divided into two parts.
Since the light beams interfere with each other while preserving the polarization direction,
Good interference efficiency.

【0025】[0025]

【発明の効果】以上の如く、この発明によれば新規な干
渉測定方法および装置を提供できる。この発明は上記の
如く、「一方の光束の波面に対して他方の光束の波面を
鏡像的に反転して干渉させる」ので、測定光束における
波面形状が左右・上下等の特定の方向に非対称な場合
に、その非対称性を強調して干渉縞を発生させることが
でき、良好な測定を実現できる。また波面分割された2
光束の反射回数を奇数回だけ異ならせるので、一方の光
束の光路が他方の光束の光路より長くなり、この光路を
通る光束の波面形状がよりよく「参照波面化」されるの
で、このことも測定精度向上の一因となる。
As described above, according to the present invention, a novel interference measuring method and apparatus can be provided. As described above, the present invention "mirrors the wavefront of one light beam with the wavefront of the other light beam to cause interference", so that the wavefront shape of the measurement light beam is asymmetrical in a specific direction such as left / right or up / down. In this case, the asymmetry can be emphasized to generate interference fringes, and good measurement can be realized. In addition, the wavefront is divided into 2
Since the number of times the light beam is reflected is different by an odd number, the light path of one light beam becomes longer than the light path of the other light beam, and the wavefront shape of the light beam passing through this light path is better "referenced wavefront". This contributes to the improvement of measurement accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の1実施例を要部のみ略示する図であ
る。
FIG. 1 is a diagram schematically showing only a main part of one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 光源 0 レンズ(被検体) 12 対物レンズ 14 第1のビームスプリッター 24 第2のビームスプリッター 16,18 ミラープリズム(ミラー部材) 20 像反転プリズム 28 パターン読取装置 10 light source 0 lens (subject) 12 objective lens 14 first beam splitter 24 second beam splitter 16, 18 mirror prism (mirror member) 20 image inverting prism 28 pattern reader

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】測定光束を第1のビームスプリッターによ
り互いに等価な波面を持った2光束に波面分割し、これ
ら2光束を第2のビームスプリッターにより合流させて
互いに干渉させる干渉測定方法において、 互いに干渉する光束の一方を、波面分割から干渉縞発生
までの間に奇数回反射させ、他方を偶数回反射させるこ
とを特徴とする干渉測定方法。
1. An interference measuring method in which a measurement light beam is wavefront-split by a first beam splitter into two light beams having equivalent wavefronts, and these two light beams are merged by a second beam splitter to interfere with each other. An interference measuring method characterized in that one of the interfering light beams is reflected an odd number of times between the wavefront division and the generation of interference fringes, and the other is reflected an even number of times.
【請求項2】請求項1記載の干渉測定方法において、 分割された2光束の一方の光路中に、光軸光線の方向を
保存しつつ、像の向きを1方向に反転する像反転プリズ
ムを用い、これを光軸の回りに回転することにより、所
望の方向における干渉縞を強調することを特徴とする干
渉測定方法。
2. The interferometric measuring method according to claim 1, further comprising an image reversing prism for reversing an image direction in one direction while preserving a direction of an optical axis ray in one optical path of the two divided light beams. An interference measurement method characterized by using this and rotating it around an optical axis to enhance interference fringes in a desired direction.
【請求項3】可干渉性の単色光を放射する測定光束用光
源を含む測定光束発生部と、 測定情報を波面形状として含む測定光束を互いに等価な
波面を持った2光束に波面分割する第1のビームスプリ
ッターと、 この第1のビームスプリッターにより分離された2光束
を再度合流させる第2のビームスプリッターと、 上記第1のビームスプリッターから第2のビームスプリ
ッターに到る2つの光路を形成する2以上のミラー部材
と、 干渉縞を読み取るための受光部とを有し、 上記ミラー部材は、一方の光路をたどる光束に対して偶
数回、他方の光路をたどる光束に対して奇数回の反射を
実現するように配備され、且つ、上記ミラー部材の1つ
が光軸光線の方向を保存しつつ、像の向きを1方向に反
転する像反転プリズムであることを特徴とする干渉測定
装置。
3. A measurement light beam generator including a light source for measurement light beam that emits coherent monochromatic light; and a measurement light beam including measurement information in the form of a wavefront, which is wavefront-divided into two light beams having equivalent wavefronts. A first beam splitter, a second beam splitter that rejoins the two light beams separated by the first beam splitter, and two optical paths from the first beam splitter to the second beam splitter are formed. The mirror member has two or more mirror members and a light receiving unit for reading interference fringes, and the mirror member reflects the light beam that follows one optical path an even number of times and the light beam that follows the other optical path an odd number of times. And one of the mirror members is an image reversing prism that reverses the direction of the image in one direction while preserving the direction of the optical axis ray. Interference measurement device.
【請求項4】請求項3記載の干渉測定装置において、 像反転プリズムが光軸の回りに回転可能であることを特
徴とする、干渉測定装置。
4. The interference measuring apparatus according to claim 3, wherein the image inverting prism is rotatable around the optical axis.
【請求項5】請求項3または4記載の干渉測定装置にお
いて、 像反転プリズム以外のミラー部材の1つが、光束の一方
を他方に対して横ずらしできるように、変位可能である
ことを特徴とする干渉測定装置。
5. The interferometer according to claim 3 or 4, wherein one of the mirror members other than the image inverting prism is displaceable so that one of the light beams can be laterally displaced with respect to the other. Interferometer.
【請求項6】請求項5記載の干渉測定装置において、 像反転プリズムが光路上から退避可能であることを特徴
とする干渉測定装置。
6. The interference measuring apparatus according to claim 5, wherein the image inverting prism is retractable from the optical path.
JP4185393A 1992-07-13 1992-07-13 Method and apparatus for measuring interference Pending JPH0626830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4185393A JPH0626830A (en) 1992-07-13 1992-07-13 Method and apparatus for measuring interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4185393A JPH0626830A (en) 1992-07-13 1992-07-13 Method and apparatus for measuring interference

Publications (1)

Publication Number Publication Date
JPH0626830A true JPH0626830A (en) 1994-02-04

Family

ID=16170028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4185393A Pending JPH0626830A (en) 1992-07-13 1992-07-13 Method and apparatus for measuring interference

Country Status (1)

Country Link
JP (1) JPH0626830A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010447A (en) * 2005-06-30 2007-01-18 Technical:Kk Dimension measuring device
JP2011033567A (en) * 2009-08-05 2011-02-17 Mitsutoyo Corp Oblique incidence interferometer
US8405059B2 (en) 2007-02-02 2013-03-26 King's College London Method and apparatus for improving the resolution and/or sectioning ability of an imaging system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010447A (en) * 2005-06-30 2007-01-18 Technical:Kk Dimension measuring device
US8405059B2 (en) 2007-02-02 2013-03-26 King's College London Method and apparatus for improving the resolution and/or sectioning ability of an imaging system
JP2011033567A (en) * 2009-08-05 2011-02-17 Mitsutoyo Corp Oblique incidence interferometer

Similar Documents

Publication Publication Date Title
US7405830B2 (en) Vibration-insensitive interferometer
US6804011B2 (en) Apparatus and method(s) for reducing the effects of coherent artifacts in an interferometer
JPH0666537A (en) System error measuring method and shape measuring device using it
CN107449361B (en) Stable dual-wavelength real-time interference microscopic device and using method thereof
JPH0587543A (en) Measuring endoscope
JPS61178635A (en) Interference apparatus for measuring wave front aberration
US20040150834A1 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
JP2000329535A (en) Simiultaneous measuring apparatus for phase-shifting interference fringes
JP2011257190A (en) Real-time measurement branch type interferometer
JPH0626830A (en) Method and apparatus for measuring interference
CN1039745C (en) Real-time one-step double-wavelength holographic interference detection device
JP3439803B2 (en) Method and apparatus for detecting displacement or change in position of an object from the focal point of an objective lens
US4105335A (en) Interferometric optical phase discrimination apparatus
EP1384044B1 (en) Reducing coherent artifacts in an interferometer
JP2006349382A (en) Phase shift interferometer
JPH0789052B2 (en) Phase conjugate interferometer for parabolic shape inspection measurement
JPH0634315A (en) Interference measuring apparatus
JPH05157512A (en) Wave surface interferometer
JP2595050B2 (en) Small angle measuring device
JP2020095229A (en) Heterodyne digital holography device
JP2001349704A (en) Interferometer device
US20240264035A1 (en) Interferometer with auxiliary lens for measurement of a transparent test object
JPH055610A (en) Measuring apparatus
EP0467343A2 (en) Optical heterodyne interferometer
JPH04204032A (en) Lens optical performance measuring device