JPH06268151A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH06268151A
JPH06268151A JP5052205A JP5220593A JPH06268151A JP H06268151 A JPH06268151 A JP H06268151A JP 5052205 A JP5052205 A JP 5052205A JP 5220593 A JP5220593 A JP 5220593A JP H06268151 A JPH06268151 A JP H06268151A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor chip
chip
electrode terminals
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5052205A
Other languages
Japanese (ja)
Inventor
Masahiko Tsumori
昌彦 津守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP5052205A priority Critical patent/JPH06268151A/en
Publication of JPH06268151A publication Critical patent/JPH06268151A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To achieve a high-density mounting operation by a method wherein electrode terminals on the surface of each semiconductor chip are extracted to the surface of a recessed part formed at the peripheral edge part on the back of each chip, chips are stacked and common electrode terminals are connected respectively. CONSTITUTION:A recessed part 2 is formed on the back of a semiconductor chip 1, and a protrusion part 1a is formed at the peripheral edge part on the back of the semiconductor chip 1. Electrode terminals for each semiconductor chip 1 are extracted to the protrusion part 1a, and a plurality of semiconductor chips 1 are stacked. Thereby, active regions 1c for the semiconductor chips 1 do not come into contact with other semiconductor chips 1, and common electrode terminals are connected mutually. As a result, gaps between the semiconductor chips 1 can be reduced, a mounting height can be made small and only the area of the semiconductor chips 1 is sufficient as an area. Thereby, a high-density mounting operation can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に関する。さ
らに詳しくは、メモリモジュールなどのように、同じ回
路が形成された半導体チップを多数個配列し、共通の電
極端子を接続して使用するマルチチップモジュール型の
半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device. More specifically, the present invention relates to a multi-chip module type semiconductor device such as a memory module in which a large number of semiconductor chips on which the same circuit is formed are arranged and common electrode terminals are connected.

【0002】[0002]

【従来の技術】従来、同じ回路が形成された半導体素子
またはチップを多数個配列したモジュール型の半導体装
置がメモリ装置などに用いられている。これらの半導体
装置は最近の電子機器の機能の高度化、複雑化に伴って
同一パッケージ内に多数の素子またはチップを配列する
必要があり、たとえばメモリカードにおいては16個×4
列の64個が配列されている。しかも電子機器の小型化の
要請により実装面積を小さくする必要がある。
2. Description of the Related Art Conventionally, a module type semiconductor device in which a large number of semiconductor elements or chips having the same circuit are arranged is used for a memory device or the like. These semiconductor devices require a large number of elements or chips to be arranged in the same package as the functions of electronic devices have become more sophisticated and complex in recent years.
64 columns are arranged. Moreover, it is necessary to reduce the mounting area due to the demand for miniaturization of electronic devices.

【0003】従来のマルチチップモジュール型の半導体
装置は図3に示すような構造になっている。
A conventional multi-chip module type semiconductor device has a structure as shown in FIG.

【0004】図3(a)は複数の半導体チップ21を、配
線基板などに一定間隔をおいて2次元的に配列したWB
方式のマルチチップモジュールであり、製造は容易であ
るが実装面積が大きくなる。
FIG. 3A shows a WB in which a plurality of semiconductor chips 21 are two-dimensionally arranged on a wiring board or the like at regular intervals.
It is a multi-chip module of the type, and is easy to manufacture, but the mounting area is large.

【0005】図3(b)は2個の半導体チップ21の裏面
(すなわち能動領域と反対側の面)どうしを接着し、樹
脂などで封入したものである。各々の半導体チップの表
側(能動領域部)からはリード線22が導出され、共通の
電極端子は接続されてパッケージの外部に導出されてい
る。
In FIG. 3B, the back surfaces (that is, the surfaces opposite to the active regions) of the two semiconductor chips 21 are adhered and sealed with resin or the like. A lead wire 22 is led out from the front side (active region portion) of each semiconductor chip, and common electrode terminals are connected and led out to the outside of the package.

【0006】前述の方法と比較すると同一面積あたりに
2倍の半導体チップが配列されることになるが、1個の
パッケージ内に半導体チップ2個分しか重ねられず、こ
れ以上の高集積化は、パッケージ厚さの肥大化を招き、
製造工法も複雑になる。。
Compared with the above-mentioned method, twice the number of semiconductor chips will be arranged in the same area, but only two semiconductor chips can be stacked in one package, and higher integration cannot be achieved. , Causing an increase in package thickness,
The manufacturing method also becomes complicated. .

【0007】図3(c)に示される構造は半導体チップ
21の各電極端子に電気配線を可撓性フィルムで保持した
TAB23により接続され、各半導体チップ21に一端側が
接続されたTAB23の他端側で共通電極端子が接続され
ている。
The structure shown in FIG. 3C is a semiconductor chip.
Electrical wiring is connected to each electrode terminal of 21 by a TAB 23 holding a flexible film, and a common electrode terminal is connected to the other end side of the TAB 23 whose one end side is connected to each semiconductor chip 21.

【0008】なお24はリード部保持用のフィルム、25は
チップ表面保護用樹脂である。
Reference numeral 24 is a film for holding the lead portion, and 25 is a resin for protecting the chip surface.

【0009】[0009]

【発明が解決しようとする課題】従来のマルチチップモ
ジュール型の半導体装置は、前述のような構造で形成さ
れている。しかし半導体チップを基板上に並べる構造で
は、平面的に配列しているため、実装面積が大きくなる
という問題がある。
A conventional multi-chip module type semiconductor device is formed with the structure as described above. However, in the structure in which the semiconductor chips are arranged on the substrate, there is a problem that the mounting area becomes large because the semiconductor chips are arranged in a plane.

【0010】さらに、2個のチップの裏面同士を接着す
る構造では、半導体チップ1個が搭載されたパッケージ
品の約1/2の実装面積で済むが、実装時にパッケージ
の面積が必要であると共に、2個以上の集積化を達成で
きない。
Further, in the structure in which the back surfaces of two chips are adhered to each other, the mounting area is about half that of a packaged product on which one semiconductor chip is mounted, but the package area is required at the time of mounting. Unable to achieve integration of two or more.

【0011】また、TABにより各電極端子を接続し半
導体チップを積み重ねる構造では、2個以上積層するこ
とができるが、リード部分の積重ね接続工法が複雑にな
るとともに、フィルム、リード部により実装高さが高く
なり体積的に大きくなる。
Further, in the structure in which the respective electrode terminals are connected by the TAB and the semiconductor chips are stacked, two or more can be stacked, but the stacking connection method of the lead parts becomes complicated and the mounting height is increased by the film and the lead parts. Becomes higher and the volume becomes larger.

【0012】本発明では、かかる問題を解消しマルチチ
ップモジュール型半導体装置で実装の面積および体積の
両面から抑制することによって、小型で高集積の半導体
装置を提供することを目的とする。
It is an object of the present invention to provide a small-sized and highly integrated semiconductor device by solving such a problem and suppressing the mounting area and volume of the multi-chip module type semiconductor device.

【0013】[0013]

【課題を解決するための手段】本発明の半導体装置は、
同じ種類の半導体チップが多数個配列され、共通の電極
端子がそれぞれ接続されるマルチチップモジュール型の
半導体装置であって、前記半導体チップ裏面の周縁部に
凸部が設けられると共に該半導体チップ表面の電極端子
が該凸部表面に導出され、前記半導体チップが積み重ね
られることにより前記共通の電極端子がそれぞれ接続さ
れてなることを特徴とするものである。
The semiconductor device of the present invention comprises:
A multi-chip module type semiconductor device in which a plurality of semiconductor chips of the same type are arranged and common electrode terminals are connected to each other, wherein a convex portion is provided on a peripheral portion of the back surface of the semiconductor chip and The electrode terminals are led out to the surface of the convex portion, and the common electrode terminals are connected to each other by stacking the semiconductor chips.

【0014】[0014]

【作用】本発明によれば、各半導体チップ裏面の周縁部
に凸部を設けると共に各半導体チップの電極端子を凸部
に導出しているため、複数個の半導体チップを直接積み
重ねることにより、半導体チップの能動領域が他の半導
体チップと接触することなく、しかも共通の電極端子は
相互に接続される。その結果、半導体チップの間隙を縮
小できるので、実装高さを小さくできると共に面積も半
導体チップの面積だけで済み、実装の面積および体積の
双方において最小の半導体装置がえられる。
According to the present invention, since the convex portion is provided on the peripheral portion of the back surface of each semiconductor chip and the electrode terminal of each semiconductor chip is led out to the convex portion, a plurality of semiconductor chips are directly stacked to form a semiconductor. The common electrode terminals are connected to each other without the active area of the chip contacting other semiconductor chips. As a result, since the gap between the semiconductor chips can be reduced, the mounting height can be reduced, and the area is limited to the area of the semiconductor chip, and a semiconductor device having the smallest mounting area and volume can be obtained.

【0015】[0015]

【実施例】つぎに図面を参照しながら本発明について説
明する。図1(a)は本発明の半導体装置の一実施例の
断面図であり(b)は(a)の部分拡大図、(c)は
(a)の平面図である。図2は半導体チップを積み重ね
たときの電極端子の接続例を説明する図である。
The present invention will be described below with reference to the drawings. 1A is a sectional view of an embodiment of a semiconductor device of the present invention, FIG. 1B is a partially enlarged view of FIG. 1A, and FIG. 1C is a plan view of FIG. FIG. 2 is a diagram illustrating a connection example of electrode terminals when semiconductor chips are stacked.

【0016】図1(a)に示すように、半導体チップ1
の裏面(能動領域部でない側。図1(a)では下側)に
は凹部2が設けられることにより、半導体チップ1の裏
面の周縁部に凸部1aが形成されている。この凸部1a
を形成する理由は、半導体チップ1の能動領域部1cは
各電極などが形成されており、半導体チップ1を積み重
ねたばあいに、上側の半導体チップ1に接触して物理的
な損傷を与えないようにするためである。そのため図1
(b)に示すように、凸部1aの高さHは能動領域部1
cの盛上がり分あればよく、通常は5〜10μm程度に形
成される。また、半導体チップ1の凸部1aが形成され
た周縁部には半導体チップ1を貫通する上下方向の貫通
孔3が図1(c)に示すように、半導体チップ1の外周
に沿って8〜60個程度設けられており、その個数は半導
体チップの機能によって異なるが、直径は大体0.1 〜0.
5 mm程度が好ましい。余り大きいと端子数を多く取れな
くなり、またチップ面積も大きくなる。また余り小さい
と内部にメッキをできないからである。凹部2および貫
通孔3は共にHF−HNO3 系のエッチング液やアルカ
リ系のエッチング液などによるウェットエッチングまた
はレーザ光照射法などにより形成できる。
As shown in FIG. 1A, the semiconductor chip 1
On the back surface (the side that is not the active region portion; the lower side in FIG. 1A) of the semiconductor chip 1, the concave portion 2 is provided, so that the convex portion 1a is formed on the peripheral portion of the rear surface of the semiconductor chip 1. This convex portion 1a
The reason for forming is that the active region portion 1c of the semiconductor chip 1 is formed with electrodes and the like, and when the semiconductor chips 1 are stacked, they do not come into contact with the upper semiconductor chip 1 to cause physical damage. To do so. Therefore,
As shown in (b), the height H of the convex portion 1a depends on the active region 1
It only needs to have the height of c, and it is usually formed to have a thickness of about 5 to 10 μm. In addition, as shown in FIG. 1C, a vertical through hole 3 penetrating the semiconductor chip 1 is formed on the peripheral portion of the semiconductor chip 1 where the convex portion 1a is formed. About 60 pieces are provided, the number of which depends on the function of the semiconductor chip, but the diameter is about 0.1 to 0.
About 5 mm is preferable. If it is too large, a large number of terminals cannot be obtained and the chip area also becomes large. Also, if it is too small, the inside cannot be plated. Both the concave portion 2 and the through hole 3 can be formed by wet etching using a HF-HNO 3 based etching solution or an alkaline etching solution, or a laser light irradiation method.

【0017】この貫通孔3は図1(b)に示すように、
半導体チップ1の表面側の電極端子を裏面側に電気配線
で導出し、下側の半導体チップ1と接続するためのもの
で、貫通孔3の内部には絶縁膜4を介して導電膜5が無
電解メッキなどにより設けられている。絶縁膜4は半導
体チップ1と導電膜5とを絶縁するもので、CVD法や
酸化法などにより酸化ケイ素膜やチッ化ケイ素膜などが
堆積されることにより設けられる。また導電膜5は密着
性向上、拡散防止のため、下地金属としてのチタン、タ
ンタル、タングステン、ニッケルなどを0.1 〜5μm程
度設け、さらにその表面に酸化防止のため金などの金属
を0.05〜2μm程度設けるのが好ましい。この貫通孔3
内に導電膜5を設けることにより半導体チップ1を積み
重ねたモジュールを小型に形成できるが、半導体チップ
1の周囲に導電膜をはわせて半導体チップ表面の電極端
子を裏面側に導出することもできる。
This through hole 3 is, as shown in FIG.
The electrode terminals on the front surface side of the semiconductor chip 1 are led out to the back surface side by electrical wiring and are connected to the lower semiconductor chip 1, and a conductive film 5 is provided inside the through hole 3 via an insulating film 4. It is provided by electroless plating or the like. The insulating film 4 insulates the semiconductor chip 1 from the conductive film 5, and is provided by depositing a silicon oxide film, a silicon nitride film, or the like by a CVD method, an oxidation method, or the like. Further, the conductive film 5 is provided with a base metal such as titanium, tantalum, tungsten, and nickel in an amount of about 0.1 to 5 μm to improve adhesion and prevent diffusion, and a metal such as gold is added to the surface to prevent oxidation of about 0.05 to 2 μm. It is preferably provided. This through hole 3
A module in which the semiconductor chips 1 are stacked can be formed in a small size by providing the conductive film 5 therein, but a conductive film can be provided around the semiconductor chip 1 so that the electrode terminals on the front surface of the semiconductor chip can be led out to the back surface side. .

【0018】この半導体装置を製造するには、まずメモ
リセルなどからなる半導体回路を半導体ウェハの状態で
通常の製造プロセスにより形成する。
In order to manufacture this semiconductor device, first, a semiconductor circuit including memory cells and the like is formed in the state of a semiconductor wafer by a normal manufacturing process.

【0019】つぎに半導体ウェハの裏面側において、半
導体チップに切断した際に周縁部が幅300 〜800 μm程
度になるように、HF−HNO3 系やアルカリ系のエッ
チング液を用いてエッチングを施し、凹部2を形成す
る。引き続き、貫通孔3を形成する場所以外にマスキン
グし、同様にエッチングをして、半導体チップ1にした
際の周縁部に貫通孔3を形成する。
Next, on the back surface side of the semiconductor wafer, etching is performed using an HF-HNO 3 -based or alkaline-based etching solution so that the peripheral portion has a width of about 300 to 800 μm when it is cut into semiconductor chips. , The recess 2 is formed. Subsequently, masking is applied to a portion other than the place where the through hole 3 is formed, and the same etching is performed to form the through hole 3 in the peripheral portion when the semiconductor chip 1 is formed.

【0020】さらに貫通孔3の表面に、全面にCVD法
により酸化ケイ素などを堆積したり、酸化法により0.1
〜0.5 μm程度の厚さの絶縁膜4を設ける。
Further, silicon oxide or the like is deposited on the entire surface of the through hole 3 by the CVD method, or 0.1% by the oxidation method.
The insulating film 4 having a thickness of about 0.5 μm is provided.

【0021】つぎに、貫通孔3内およびその上下面に無
電解メッキ法により導電膜5を設ける。この際、上下面
での導電膜5は絶縁膜4からはみ出ないようにマスキン
グすると共に、各貫通孔3を導電膜5が電極端子と接続
されるようにする。具体例としては、80〜90℃のNi−
P系メッキ液で無電解ニッケルメッキを行ってニッケル
層を0.1 〜2μmの厚さで形成し、つづいて80〜90℃で
無電解メッキにより0.1 〜1.0 μm程度のAuメッキを
最外層として形成する。そののち室温で約10分間純水洗
浄を行って導電膜5を形成した。
Next, the conductive film 5 is provided in the through hole 3 and on the upper and lower surfaces thereof by electroless plating. At this time, the conductive film 5 on the upper and lower surfaces is masked so as not to protrude from the insulating film 4, and each through hole 3 is connected to the conductive film 5 with an electrode terminal. As a specific example, Ni-at 80 to 90 ° C
Electroless nickel plating is performed with a P-based plating solution to form a nickel layer with a thickness of 0.1 to 2 μm, and then Au plating with a thickness of 0.1 to 1.0 μm is formed as the outermost layer by electroless plating at 80 to 90 ° C. . After that, the conductive film 5 was formed by washing with pure water at room temperature for about 10 minutes.

【0022】このようにして半導体回路と導電膜が形成
された半導体ウエハをダイシングすることにより、各半
導体チップ1がえられる。この半導体チップ1を図1
(a)に示すように、同じ方向に積み重ねて150 〜250
℃の温度で熱圧着することにより、導電膜5の全部分が
接着して共通電極が接続されたマルチチップモジュール
を形成できる。なお、この接着時に超音波を印加するこ
とにより確実な接続がえられる。
By dicing the semiconductor wafer on which the semiconductor circuit and the conductive film are formed in this manner, each semiconductor chip 1 is obtained. This semiconductor chip 1 is shown in FIG.
As shown in (a), stack in the same direction and
By thermocompression bonding at a temperature of ° C., it is possible to form a multi-chip module in which the entire portion of the conductive film 5 is bonded and the common electrode is connected. A reliable connection can be obtained by applying ultrasonic waves during this bonding.

【0023】ここで、データバスかアドレスバスのよう
な各半導体チップで共通な電極端子は半導体チップの同
じ位置に形成することにより、積み重ねて圧着すれば並
列に接続できるが、各半導体チップ固有の信号用電極端
子は別々に導出する必要がある。このばあいには、たと
えば図2(a)〜(d)に示すように、各半導体チップ
11〜14の固有電極端子(たとえば51a、52b、53c、54
d)をずらせて設け、その端子に相当する他の半導体チ
ップの導電膜(たとえば51aに対しては、52a、53a、
54a)の部分はその半導体チップとしてはどこにも接続
されていない端子とすることにより、積み重ねたのち、
図2(e)に示すように、各半導体チップ11、12、13、
14の固有電極端子51a、52b、53c、54dを同一面に導
出することができる。なお、図2において他の導電膜5
は各半導体チップ同士のそれぞれ共通の電極を示す。
Here, electrode terminals common to each semiconductor chip, such as a data bus or an address bus, are formed at the same position on the semiconductor chip so that they can be connected in parallel by stacking and crimping. It is necessary to lead out the signal electrode terminals separately. In this case, for example, as shown in FIGS.
11 to 14 specific electrode terminals (for example, 51a, 52b, 53c, 54)
d) are provided so as to be displaced, and conductive films of other semiconductor chips corresponding to the terminals (for example, 52a, 53a for 51a,
54a) is a terminal that is not connected to any part of the semiconductor chip, and after stacking,
As shown in FIG. 2E, the semiconductor chips 11, 12, 13,
The 14 unique electrode terminals 51a, 52b, 53c, 54d can be led out to the same surface. In FIG. 2, another conductive film 5
Indicates common electrodes of the respective semiconductor chips.

【0024】なお、前記実施例では半導体チップの裏面
に凹部を設けることにより、周縁部に凸部を形成した
が、裏面に凹部を形成しないでスペーサを介在させても
よい。このばあい、通常の半導体または絶縁フィルムを
介在させて、貫通孔および導電膜を同様に設けてもよい
し、異方性導電接着フィルムを周縁部のみに介在させて
導電膜部分のみの導通を図ることもできる。
In the above embodiment, the convex portion is formed on the peripheral edge portion by providing the concave portion on the back surface of the semiconductor chip, but a spacer may be interposed without forming the concave portion on the rear surface. In this case, a through hole and a conductive film may be similarly provided by interposing an ordinary semiconductor or insulating film, or an anisotropic conductive adhesive film may be provided only at the peripheral portion to conduct only the conductive film portion. It can also be planned.

【0025】上述のような構造の半導体装置にすること
により、従来ではチップどうしの積重ね間隔が0.3 〜1.
0 mm程度必要であったのが、凸部の高さ5〜10μm程度
で充分であり、その結果、同一個数の半導体チップを積
み重ねると実装高さは従来の20〜50%程度になる。
By using the semiconductor device having the above-mentioned structure, the stacking interval between chips is 0.3 to 1.
The required height was about 0 mm, but the height of the convex portion of about 5 to 10 μm is sufficient, and as a result, the mounting height becomes about 20 to 50% of the conventional level when the same number of semiconductor chips are stacked.

【0026】[0026]

【発明の効果】本発明によれば、半導体チップの周縁部
に凸部を設け、積み重ねて圧着することによって、他の
チップとの接触を防止し共通電極端子の接続したマルチ
チップモジュール型の半導体装置がえられる。したがっ
て、占有面積のみならず、実装高さも大幅に低くなり、
高密度の実装ができ、小型の半導体装置がえられる。そ
の結果、メモリモジュールなど同一チップを多数接続す
る分野に利用でき、電子機器の小型化に大いに寄与す
る。
According to the present invention, a semiconductor chip of a multi-chip module type is provided in which a convex portion is provided on a peripheral portion of a semiconductor chip and stacked and pressure-bonded to prevent contact with another chip and common electrode terminals are connected. The device can be obtained. Therefore, not only the occupied area but also the mounting height is significantly reduced,
High-density mounting is possible and a small semiconductor device can be obtained. As a result, it can be used in the field of connecting a large number of the same chips such as a memory module, which greatly contributes to downsizing of electronic devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の一実施例の説明図であり
(a)は断面図、(b)は(a)の部分拡大図、(c)
は平面図である。
FIG. 1 is an explanatory view of an embodiment of a semiconductor device of the present invention, (a) is a sectional view, (b) is a partially enlarged view of (a), (c).
Is a plan view.

【図2】半導体チップを積み重ねたときの各チップ固有
の電極端子の接続例を説明する図である。
FIG. 2 is a diagram illustrating a connection example of electrode terminals specific to each chip when semiconductor chips are stacked.

【図3】従来のマルチチップモジュール型の半導体装置
のパッケージの例を示す概略説明図であり、(a)は2
次元型パッケージ、(b)は2枚のチップを貼り合わせ
たパッケージ、(c)はTABを用いた積層型パッケー
ジの例である。
FIG. 3 is a schematic explanatory view showing an example of a package of a conventional multi-chip module type semiconductor device, (a) of FIG.
An example of a dimensional package, (b) is a package in which two chips are bonded together, and (c) is an example of a stacked package using TAB.

【符号の説明】[Explanation of symbols]

1 半導体チップ 1a 凸部 5 導電膜 1 semiconductor chip 1a convex portion 5 conductive film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 同じ種類の半導体チップが多数個配列さ
れ、共通の電極端子がそれぞれ接続されるマルチチップ
モジュール型の半導体装置であって、 前記半導体チップ裏面の周縁部に凸部が設けられると共
に該半導体チップ表面の電極端子が該凸部表面に導出さ
れ、前記半導体チップが積み重ねられることにより前記
共通の電極端子がそれぞれ接続されてなる半導体装置。
1. A multi-chip module type semiconductor device in which a plurality of semiconductor chips of the same type are arranged, and common electrode terminals are connected to each other, wherein a convex portion is provided on a peripheral portion of a back surface of the semiconductor chip. A semiconductor device in which electrode terminals on the surface of the semiconductor chip are led out to the surface of the convex portion and the common electrode terminals are connected by stacking the semiconductor chips.
JP5052205A 1993-03-12 1993-03-12 Semiconductor device Pending JPH06268151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5052205A JPH06268151A (en) 1993-03-12 1993-03-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5052205A JPH06268151A (en) 1993-03-12 1993-03-12 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH06268151A true JPH06268151A (en) 1994-09-22

Family

ID=12908280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5052205A Pending JPH06268151A (en) 1993-03-12 1993-03-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH06268151A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10209204A1 (en) * 2002-03-04 2003-10-02 Infineon Technologies Ag Electronic component comprises a stack of semiconductor chips of different size with one chip having a recess on its passive rear side
JP2006179607A (en) * 2004-12-21 2006-07-06 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP2008072150A (en) * 2007-12-03 2008-03-27 Matsushita Electric Ind Co Ltd Method of manufacturing semiconductor device
JP2008159933A (en) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd Multi-layer substrate
JP2017168533A (en) * 2016-03-14 2017-09-21 東芝メモリ株式会社 Semiconductor device and manufacturing method of the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10209204A1 (en) * 2002-03-04 2003-10-02 Infineon Technologies Ag Electronic component comprises a stack of semiconductor chips of different size with one chip having a recess on its passive rear side
DE10209204B4 (en) * 2002-03-04 2009-05-14 Infineon Technologies Ag Electronic component comprising a stack of semiconductor chips and method of making the same
JP2006179607A (en) * 2004-12-21 2006-07-06 Oki Electric Ind Co Ltd Semiconductor device and manufacturing method thereof
JP4553720B2 (en) * 2004-12-21 2010-09-29 Okiセミコンダクタ株式会社 Semiconductor device and manufacturing method thereof
JP2008159933A (en) * 2006-12-25 2008-07-10 Matsushita Electric Works Ltd Multi-layer substrate
JP2008072150A (en) * 2007-12-03 2008-03-27 Matsushita Electric Ind Co Ltd Method of manufacturing semiconductor device
JP4597183B2 (en) * 2007-12-03 2010-12-15 パナソニック株式会社 Manufacturing method of semiconductor device
JP2017168533A (en) * 2016-03-14 2017-09-21 東芝メモリ株式会社 Semiconductor device and manufacturing method of the same
CN107195621A (en) * 2016-03-14 2017-09-22 东芝存储器株式会社 Semiconductor device and its manufacture method
CN107195621B (en) * 2016-03-14 2019-08-16 东芝存储器株式会社 Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
US7884459B2 (en) Semiconductor device suitable for a stacked structure
JP3186941B2 (en) Semiconductor chips and multi-chip semiconductor modules
JP3499202B2 (en) Method for manufacturing semiconductor device
US7485490B2 (en) Method of forming a stacked semiconductor package
US5481133A (en) Three-dimensional multichip package
JP4412439B2 (en) Memory module and manufacturing method thereof
US5567981A (en) Bonding pad structure having an interposed rigid layer
JP2603636B2 (en) Semiconductor device
JPS6355213B2 (en)
JP2002110898A (en) Semiconductor device
JP2001144218A (en) Semiconductor device and method of manufacture
JP2953899B2 (en) Semiconductor device
JP2001044357A (en) Semiconductor device and manufacture thereof
US7396763B2 (en) Semiconductor package using flexible film and method of manufacturing the same
JP2002343924A (en) Semiconductor device and manufacturing method therefor
JP2001135776A (en) Semiconductor device and method of manufacture the same
US20050093121A1 (en) Chip package and substrate
JPH1092865A (en) Semiconductor device and its manufacture
KR100813623B1 (en) Flexible film semiconductor package and method for manufacturing the same
JPH06268151A (en) Semiconductor device
JPH08306724A (en) Semiconductor device, manufacturing method and its mounting method
JPS61287254A (en) Semiconductor device
JP2001189413A (en) Multi-chip, multi-chip package, semiconductor device, and electronic apparatus
US20050082658A1 (en) Simplified stacked chip assemblies
JP2706699B2 (en) Semiconductor module