JPH06266439A - Speed control method for moving body - Google Patents

Speed control method for moving body

Info

Publication number
JPH06266439A
JPH06266439A JP5056813A JP5681393A JPH06266439A JP H06266439 A JPH06266439 A JP H06266439A JP 5056813 A JP5056813 A JP 5056813A JP 5681393 A JP5681393 A JP 5681393A JP H06266439 A JPH06266439 A JP H06266439A
Authority
JP
Japan
Prior art keywords
acceleration
deceleration
distance
load
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5056813A
Other languages
Japanese (ja)
Inventor
Masashi Nosaka
正志 野坂
Kenji Nakada
健二 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5056813A priority Critical patent/JPH06266439A/en
Publication of JPH06266439A publication Critical patent/JPH06266439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Velocity Or Acceleration (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To execute smooth speed control, and to raise a cycle time by setting acceleration/deceleration to a multistage. CONSTITUTION:A microcomputer waits for a moving start command. When the moving start command is received, whether a load exists at present or not is confirmed, and when the load exists, parameters alpha1-alpha7, beta1-beta7, Vmax, and ta1-ta7, tb1-tb7... of acceleration/deceleration, the maximum speed, etc., at the time when the load exists, and a parameter at the time of no-load are fetched, when the load exists, and when the load does not exist, respectively. Subsequently, a moving distance L is calculated, and an acceleration distance 1e is derived. From this acceleration distance 1e, a pattern of acceleration is generated, but in the case in which the acceleration distance 1e is long, ta4 is calculated so as not to exceed Vmax, an actual acceleration distance 1e' and an acceleration variation point are derived, and a speed pattern of acceleration is generated. In the case in which the acceleration distance is short and ta4 becomes minus and cannot be calculated, ta4 is calculated by varying the number of acceleration stages from 7 to 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エンコ−ダなどのパル
スをカウントすることにより現在位置を認識し、位置制
御を行う移動体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a moving body which recognizes a current position by counting pulses of an encoder or the like and performs position control.

【0002】[0002]

【従来の技術】従来の技術では通常加減速度を一定で制
御していた。また、特開昭63−11095号公報に示
す入出庫用走行クレ−ンの加速制御方法では、モ−タ−
とインバ−タのトルク特性からS字の速度パタ−ンを提
唱しているが、減速時については述べられていない。
又、最高速度に到達しない程の短い移動距離の場合につ
いても、述べられていない。
2. Description of the Related Art In the prior art, the acceleration / deceleration is usually controlled to be constant. Further, in the acceleration control method for the traveling crane for loading and unloading disclosed in Japanese Patent Laid-Open No. 63-11095, a motor is used.
And an S-shaped speed pattern is proposed based on the torque characteristics of the inverter, but no mention is made of deceleration.
Also, it does not describe the case of a short travel distance that does not reach the maximum speed.

【0003】[0003]

【発明が解決しようとする課題】従来の技術では、加減
速度を一定で制御していた為、加速から一定速に移り変
わる時、一定速から減速に移り変わる時、減速からクリ
−プに移り変わる時などの加減速度の変化点でショック
が大きくなっていまい、荷を搬送する場合は荷崩れ、背
の高い移動体の場合は移動体の揺れを、考慮する必要が
ありモ−タ−、インバ−タに余裕がある場合でも、全体
の加減速度を下げなければならなかった。また、加減速
度が一定の場合は、制御系(特にインバ−タの追従性)
の遅れからクリ−プ距離を長くすることによってその遅
れ分を吸収するか、全体の加減速度を下げることによっ
て遅れ分を小さくしなければならなかった。そのためサ
イクルタイムの向上が難しかった。
In the prior art, since the acceleration / deceleration is controlled to be constant, when the acceleration changes to the constant speed, when the constant speed changes to the deceleration, or when the deceleration changes to the creep. It is necessary to consider the shock at the change point of the acceleration / deceleration of the vehicle, the collapse of the load when transporting the load, and the shaking of the mobile vehicle when the vehicle is tall. Even if there was a margin, I had to lower the overall acceleration / deceleration. When the acceleration / deceleration is constant, the control system (especially the followability of the inverter)
The delay must be absorbed by increasing the creep distance from the delay of 1, or the delay can be reduced by decreasing the overall acceleration / deceleration. Therefore, it was difficult to improve the cycle time.

【0004】本発明は、加減速度の変化点のショックを
極力少なくして、滑らかな速度制御を行い、サイクルタ
イムをアップすることにある。
An object of the present invention is to minimize shock at a change point of acceleration / deceleration, perform smooth speed control, and increase cycle time.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、加減速度を多段にし加減速度の変化点に
おけるショックを極力少なくしたものである。また、荷
を搬送する場合はモ−タ−、インバ−タの容量は、荷を
積んだ状態(定格負荷)で選定されるため、空荷時は載
荷時より余裕があるので、空荷時の加減速度、最高速度
を上げることによってサイクルタイムのアップが可能で
ある。
In order to achieve the above object, the present invention has a multistage acceleration / deceleration to minimize the shock at the change point of the acceleration / deceleration. When carrying a load, the motor and inverter capacities are selected with the load loaded (rated load). The cycle time can be increased by increasing the acceleration / deceleration and maximum speed.

【0006】[0006]

【作用】加減速度を多段にすることによって、ショック
レスで滑らかな速度制御が可能である。また、載荷時と
空荷時で、加減速度、最高速度を変えることにより、イ
ンバ−タ、モ−タ−の能力を無駄無く使い、サイクルタ
イムのアップが可能である。
[Function] By controlling the acceleration / deceleration in multiple stages, shockless and smooth speed control is possible. In addition, by changing the acceleration / deceleration and the maximum speed during loading and unloading, it is possible to use the capacity of the inverter and the motor without waste and increase the cycle time.

【0007】[0007]

【実施例】図1に本発明の制御ブロック図、図2にマイ
コン内の制御フロ−チャ−ト、図3に速度パタ−ン図を
示す。制御の構成は、図1に示す様に、移動前に移動距
離から速度パタ−ンを計算しその速度パタ−ンに則った
指令を出力するマイコン1とその指令に従いモ−タ−4
を制御するインバ−タ3、モ−タ−4を停止させるブレ
−キ5と、移動体の位置情報用としてモ−タ−4の回転
に同期したパルス信号をマイコン1に出力するエンコ−
ダからなる。次に、マイコン1の制御内容を図2、3を
用いて以下説明する。
1 is a control block diagram of the present invention, FIG. 2 is a control flow chart in a microcomputer, and FIG. 3 is a speed pattern diagram. As shown in FIG. 1, the control structure is such that the speed pattern is calculated from the moving distance before the movement, and the microcomputer 1 which outputs the command according to the speed pattern and the motor 4 according to the command are output.
An inverter 3 for controlling the motor 4, a brake 5 for stopping the motor 4 and an encoder for outputting a pulse signal synchronized with the rotation of the motor 4 to the microcomputer 1 for position information of the moving body.
It consists of da. Next, the control content of the microcomputer 1 will be described below with reference to FIGS.

【0008】まず、マイコン1は、移動開始指令(例え
ば上位コンピュ−タからの指令)を待つ(F1)。移動
開始指令を受信したら、現在載荷有りか無しかの確認を
行い、載荷有りのときは載荷有り時の加減速度、最高速
度等のパラメ−タ(α1〜α7,β1〜β7,Vma
x,ta1〜ta7,tb1〜tb7−−−但しta
4,tb4は計算で求める可変値のためパラメ−タとし
ては存在しない。)を載荷無しのときは空荷時のパラメ
−タ(前記同様)を取り出してくる(F2,F3a,F
3b)。次に移動距離L(目的位置−現在位置)を算出
(F4)し、加速距離le((移動距離−クリ−プ距
離)/2)を求める(F5)。この加速距離leから加
減速のパタ−ンを作成するのだが、加速距離leが長い
場合は図3aの様に、Vmaxを超えない様にta4を
算出し、実際の加速距離le’及び加速度変化ポイント
をもとめて、加速の速度パタ−ンを作成する(F6,F
7,F8)。加速距離leが短かくてta4がマイナス
になり算出不可の場合は図3bの様に、加速段数を7か
ら5に変えて(α4←α3(α5),ta3、ta5は
存在しなくなる。)ta4を算出する。これでもta4
がマイナスになり算出不可の場合は、加速段数を3→1
と減らしていきta4を算出する(F6,F7)。前記
同様ta4から実際の加速距離le’,最高速度Vma
x’及び加速度変化ポイントをもとめて、加速の速度パ
タ−ンを作成する(F8)。減速の速度パタ−ンは、加
速で求めた実際の最高速度Vmax’(又はVmax)
と目的位置から、加速時と同様にtd4を算出し、減速
度変化ポイントを求めて減速のパタ−ンを作成する(F
9,F10,F11)。
First, the microcomputer 1 waits for a movement start command (for example, a command from a host computer) (F1). When the movement start command is received, it is confirmed whether or not there is a load at present, and if there is a load, parameters (α1 to α7, β1 to β7, Vma) such as acceleration / deceleration and maximum speed when loading
x, ta1 to ta7, tb1 to tb7 --- where ta
Since 4 and tb4 are variable values calculated, they do not exist as parameters. ) Is not loaded, the parameters (same as above) when unloading are taken out (F2, F3a, F
3b). Next, the moving distance L (target position-current position) is calculated (F4), and the acceleration distance le ((moving distance-creep distance) / 2) is calculated (F5). The acceleration / deceleration pattern is created from this acceleration distance le. When the acceleration distance le is long, ta4 is calculated so as not to exceed Vmax as shown in FIG. 3a, and the actual acceleration distance le ′ and the acceleration change are calculated. Create a speed pattern for acceleration based on the points (F6, F
7, F8). When the acceleration distance le is short and ta4 is negative and calculation is not possible, the number of acceleration stages is changed from 7 to 5 as shown in FIG. To calculate. This is also ta4
If becomes negative and calculation is not possible, increase the number of acceleration stages from 3 to 1
And ta4 is calculated (F6, F7). Similar to the above, from ta4 to actual acceleration distance le ', maximum speed Vma
An acceleration velocity pattern is created based on x'and the acceleration change point (F8). The speed pattern of deceleration is the actual maximum speed Vmax '(or Vmax) obtained by acceleration.
Then, from the target position, td4 is calculated in the same manner as during acceleration, the deceleration change point is calculated, and the deceleration pattern is created (F
9, F10, F11).

【0009】ブレ−キを開放して、インバ−タへ制御信
号(前進又は後退)及び最低速度指令(起動時に出力す
る指令)を出力する。エンコ−ダからのパルス信号をカ
ウントすることによって現在位置を認識し、求めた速度
パタ−ンに則り、速度指令をインバ−タに出力する(F
12)。
The brake is released, and a control signal (forward or backward) and a minimum speed command (command output at startup) are output to the inverter. The current position is recognized by counting the pulse signals from the encoder, and the speed command is output to the inverter according to the found speed pattern (F
12).

【0010】[0010]

【発明の効果】加減速度を多段にすることによって、シ
ョックレスで滑らかな速度制御が行える。また、載荷時
と空荷時で、加減速度、最高速度を変えることにより、
インバ−タ、モ−タ−の能力を無駄無く使い、サイクル
タイムアップの効果がある。
EFFECTS OF THE INVENTION By making the acceleration / deceleration multistage, shockless and smooth speed control can be performed. Also, by changing the acceleration / deceleration and maximum speed between loading and empty
The abilities of the inverter and the motor are used without waste, and the cycle time can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の制御ブロック図である。FIG. 1 is a control block diagram of an embodiment of the present invention.

【図2】本発明の一実施例のフロ−チャ−トである。FIG. 2 is a flowchart of an embodiment of the present invention.

【図3】速度パタ−ン図である。FIG. 3 is a velocity pattern diagram.

【符号の説明】[Explanation of symbols]

1…マイコン、2…エンコ−ダ、3…インバ−タ、4…
モ−タ−、5…ブレ−キ、α1〜α7…加速度、β1〜
β7…減速度、ta1〜ta7…加速時間、tb1〜t
b7…減速時間、Vmax…最高速度(パラメ−タ)、
V’max…最高速度(移動距離が短くてVmaxに達
成しないときの最高速度)。
1 ... Microcomputer, 2 ... Encoder, 3 ... Inverter, 4 ...
Motor, 5 ... Brake, α1 to α7 ... Acceleration, β1 to
β7 ... deceleration, ta1 to ta7 ... acceleration time, tb1 to t
b7 ... deceleration time, Vmax ... maximum speed (parameter),
V'max ... Maximum speed (maximum speed when the travel distance is short and Vmax is not reached).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】移動体を駆動させるためのモ−タと、それ
をコントロ−ルするインバ−タと、車輪軸などにとりつ
けて移動時パルスを発生させるエンコ−ダと、エンコ−
ダからのパルスを入力しそれをカウントすることにより
現在位置を認識しその位置情報を基に、インバ−タに対
し速度指令を出力するコントロ−ラとから構成される位
置移動体の制御方法において、加減速度を多段にするこ
とによりショックレスに移動させることを特徴とする移
動体の制御方法。
1. A motor for driving a moving body, an inverter for controlling the motor, an encoder mounted on a wheel shaft or the like to generate a pulse during movement, and an encoder.
In a method of controlling a position-moving body, which comprises a controller for inputting a pulse from a controller and counting the pulse to recognize the current position and outputting a speed command to the inverter based on the position information , A method of controlling a moving body, characterized in that the moving body is moved in a shockless manner by setting acceleration / deceleration in multiple stages.
【請求項2】請求項1において、移動距離によって加減
速度の段数,最高速度を変えることを特徴とする移動体
の制御方法。
2. A method of controlling a moving body according to claim 1, wherein the number of stages of acceleration / deceleration and the maximum speed are changed according to the moving distance.
【請求項3】請求項1において、荷を搬送する場合、載
荷の有無によって加減速度,最高速度を変えることを特
徴とする移動体の制御方法。
3. A method of controlling a moving body according to claim 1, wherein, when a load is conveyed, the acceleration / deceleration and the maximum speed are changed depending on the presence or absence of the load.
JP5056813A 1993-03-17 1993-03-17 Speed control method for moving body Pending JPH06266439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5056813A JPH06266439A (en) 1993-03-17 1993-03-17 Speed control method for moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5056813A JPH06266439A (en) 1993-03-17 1993-03-17 Speed control method for moving body

Publications (1)

Publication Number Publication Date
JPH06266439A true JPH06266439A (en) 1994-09-22

Family

ID=13037822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5056813A Pending JPH06266439A (en) 1993-03-17 1993-03-17 Speed control method for moving body

Country Status (1)

Country Link
JP (1) JPH06266439A (en)

Similar Documents

Publication Publication Date Title
JPS62289429A (en) Propulsion controller for all-wheel-drive vehicle
JP4300732B2 (en) Variable speed device
CN114115232A (en) AGV transportation speed control method, system, equipment and medium
JPH06266439A (en) Speed control method for moving body
JPH10201008A (en) Regenerative braking device for electric vehicle
JPH10236769A (en) Control method for crane
JP2552835B2 (en) Positioning control method for moving body
JPH08221133A (en) Method and unit for controlling travel of moving body
JP4183316B2 (en) Suspension control device for suspended loads
JPH04298490A (en) Method of forming speed reference signal in motor for crane
JPH10212005A (en) Speed controller for stacker crane
CN111497903B (en) Intelligent railcar speed control method, storage and railcar control system
JP2544366B2 (en) How to drive a mobile
JP2000313586A (en) Swing stopping controller for suspended cargo
JPH0378483A (en) Load torque detecting method for carrying machine
JPH07187320A (en) Speed control device for stacker crane
KR20180089592A (en) Speed optimizing control system for robotic transfer vehicle
JP4247697B2 (en) Steady rest control device
JP3599969B2 (en) How to create an acceleration / deceleration pattern
JPH0815865B2 (en) Power steering device
JPH07121227A (en) Asymmetrical acceleration and deceleration filter
JP2727370B2 (en) Travel control method for self-propelled bogie
JP2832657B2 (en) Lifting and transporting steady rest device
JPH02193505A (en) Method and device for controlling running of moving body
JP2004142690A (en) Slope-descending speed control device