JPH06265235A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine

Info

Publication number
JPH06265235A
JPH06265235A JP5053871A JP5387193A JPH06265235A JP H06265235 A JPH06265235 A JP H06265235A JP 5053871 A JP5053871 A JP 5053871A JP 5387193 A JP5387193 A JP 5387193A JP H06265235 A JPH06265235 A JP H06265235A
Authority
JP
Japan
Prior art keywords
solution
heat
high temperature
refrigerant vapor
regenerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5053871A
Other languages
Japanese (ja)
Other versions
JP2899645B2 (en
Inventor
Masahiko Atsumi
雅彦 渥美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP5053871A priority Critical patent/JP2899645B2/en
Publication of JPH06265235A publication Critical patent/JPH06265235A/en
Application granted granted Critical
Publication of JP2899645B2 publication Critical patent/JP2899645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To enable operating a device referred to above even in the case where the heating capacity of the heating means for heating the solution in a generator is liable to change or the heating capacity is low at all times and make it unnecessary to take measures for preventing crystallization of lithium bromide even where an aqueous solution of lithium bromide is in use for the solution. CONSTITUTION:In a high-temperature generator 30, there are provided a pool of solution into which a dilute solution channel 26 conveys a dilute solution and a heat-transfer tube by which the dilute solution in the pool of solution is heated. High-temperature vapor, which has absorbed heat discharged from a fuel cell (not shown in diagram), is sent into the heat-transfer tube to heat the dilute solution to boil and make it generate refrigerant vapor. The boiling solution overflows a weir marking a specified liquid level and, as a solution of intermediate strength, falls into a channel for a solution of intermediate strength placed under the pool of solution; from this channel the solution flows into a high-temperature heat exchanger 8 through a conveyance line 7 for solution of intermediate strength. Thus the generation of refrigerant vapor and the separation of the refrigerant vapor from the solution of intermediate strength can be effected without using a conventional liquid-lifting tube and a separator.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温再生器内の溶液の
加熱を行なう加熱手段の加熱能力が低い場合や変動する
場合であっても駆動できる吸収冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine which can be driven even when the heating capacity of a heating means for heating a solution in a high temperature regenerator is low or fluctuates.

【0002】[0002]

【従来の技術】吸収式冷凍機で溶液の加熱を行なう熱源
をコジェネレーションシステムなどにより供給する場合
がある。すなわち、燃料電池で発電を行ない、その際生
じる排熱を利用して吸収式冷凍機の溶液の加熱を行なう
場合などである。
2. Description of the Related Art A heat source for heating a solution in an absorption refrigerator may be supplied by a cogeneration system or the like. That is, there is a case where power is generated by the fuel cell and the exhaust heat generated at that time is used to heat the solution of the absorption refrigerator.

【0003】以下では、このようなコジェネレーション
システムを用いた従来の吸収式冷凍機の構造の一例の概
要を、図7を参照しつつ説明する。以下の例では、低温
再生器、高温熱交換器、低温熱交換器などを備えた二重
効用吸収式冷凍機の例で説明している。図7はコジェネ
レーションシステムを用いた空気調和に用いられる二重
効用吸収式冷凍機の一例の系統図である。溶液、冷媒蒸
気、冷温水、冷却水、熱媒体の流れは、図中矢示により
示している。同図において、高温再生器1は内部に伝熱
管2が収められ、伝熱管2内には例えば図示しない燃料
電池などから排出される排熱を吸熱した熱媒体(通常は
高温蒸気)が熱媒体入口3より導入され、冷媒を吸収し
て濃度が薄くなった稀溶液を、この熱媒体の熱で加熱
し、沸騰させる。沸騰した稀溶液は冷媒蒸気を発生させ
ながら稀溶液となって揚液管4を上昇し、冷媒蒸気と冷
媒蒸気を発生して濃度が濃くなった中間濃溶液とは分離
器5で分離され、冷媒蒸気は冷媒蒸気導管25を介して
低温再生器6に送られ、中間濃溶液は中間濃溶液導管7
を介して高温熱交換器8へ送られる。低温再生器6は高
温熱交換器8により温度が低下した中間濃溶液を高温再
生器1から送られてくる冷媒蒸気で再加熱し、中間濃溶
液の中から更に冷媒蒸気を発生させ、これを低温再生器
6と隣接する凝縮器9へ送出し、かつ中間濃溶液自身を
濃溶液にするとともに、高温再生器1からきた冷媒蒸気
を一部凝縮し冷媒液にして凝縮器9へと送り込む。凝縮
器9は低温再生器6で発生した冷媒蒸気と低温再生器6
で冷媒液とならなかった冷媒蒸気を冷却水を用いて冷却
液化して冷媒液にして蒸発器10へ送り込む。11は冷
却水を図示しない冷却塔から導く冷却水入口であり、1
2は該冷却水を図示しない冷却塔に戻す冷却水出口であ
る。蒸発器10内部には冷却すべき冷温水が流れる伝熱
管(冷水器)13が配設され、凝縮器9から伝熱管13
に送られてくる冷媒液を図示しない散布器を用いて散布
し、冷媒液が冷媒蒸気となるときの気化熱を利用して冷
温水を冷却して冷水にする。14は二重効用吸収式冷凍
機内に、この冷温水を導く冷温水入口であり、15は冷
却又は加熱後の冷温水を二重効用吸収式冷凍機から取り
出す冷水出口である。吸収器16は低温再生器6から低
温熱交換器17を通ってきた濃溶液が導入され、上部に
設けられた図示しない散布器を用いて散布・滴下され、
この濃溶液は蒸発器10内で気化した冷媒蒸気を吸収す
る。吸収器16のこの吸収作用によって蒸発器10内は
高真空が確保されており、蒸発器10内の伝熱管13上
に散布された冷媒液は直ちに蒸発できるようになってい
る。また、吸収器16には濃溶液が冷媒蒸気を吸収して
稀溶液となる際の冷却のための冷却手段24が配設され
ている。この冷却手段24はコイル状パイプで構成され
ており、内部に冷却水が導入される。また、この冷却手
段24は凝縮器9内の冷却手段18とも連なっている。
高温熱交換器8は高温の中間濃溶液と低温の稀溶液との
間で熱交換し、また、低温熱交換器17は高温の濃溶液
と低温の稀溶液との間で熱交換を行い、高温側と低温側
とに2段に設けて熱交換効率の向上を図っている。溶液
循環ポンプ19は吸収器16において冷媒蒸気を吸収し
て稀溶液となったものを、低温熱交換器17および高温
熱交換器8を通り、稀溶液導管26を介して高温再生器
1に送り、再び循環させるために設けられている。高温
再生器1を通過した熱媒体は、熱媒体導管22を介して
排熱熱交換器20に導かれ、該熱交換器20内では熱媒
体と低温熱交換器17を通過後の稀溶液との間で熱交換
をして稀溶液を加熱し、もって熱媒体が媒介する熱の有
効利用を図っている。排熱熱交換器20を通過後の稀溶
液は熱媒体出口21より排出される。蒸気トラップ22
は熱媒体導管23内で熱媒体(高温蒸気)が凝縮して生
じた凝縮水を排除する。
An outline of an example of the structure of a conventional absorption refrigerator using such a cogeneration system will be described below with reference to FIG. In the following example, a double-effect absorption refrigerating machine equipped with a low temperature regenerator, a high temperature heat exchanger, a low temperature heat exchanger and the like will be described. FIG. 7 is a system diagram of an example of a double-effect absorption chiller used for air conditioning using a cogeneration system. The flows of the solution, the refrigerant vapor, the cold / hot water, the cooling water, and the heat medium are indicated by arrows in the figure. In the figure, the high temperature regenerator 1 has a heat transfer tube 2 housed therein, and the heat transfer tube 2 contains a heat medium (usually high temperature steam) that has absorbed exhaust heat discharged from a fuel cell (not shown) or the like. The diluted solution, which is introduced from the inlet 3 and has a reduced concentration by absorbing the refrigerant, is heated by the heat of the heat medium and boiled. The boiling rare solution becomes a rare solution while generating a refrigerant vapor and rises in the pumping pipe 4, and the refrigerant vapor and the intermediate concentrated solution that has become thicker due to the refrigerant vapor are separated by the separator 5. The refrigerant vapor is sent to the low temperature regenerator 6 via the refrigerant vapor conduit 25, and the intermediate concentrated solution is converted into the intermediate concentrated solution conduit 7.
To the high temperature heat exchanger 8 via. The low temperature regenerator 6 reheats the intermediate concentrated solution whose temperature has been lowered by the high temperature heat exchanger 8 with the refrigerant vapor sent from the high temperature regenerator 1 to generate further refrigerant vapor from the intermediate concentrated solution. The refrigerant is sent to the condenser 9 adjacent to the low-temperature regenerator 6, and the intermediate concentrated solution itself is made into a concentrated solution, and the refrigerant vapor coming from the high-temperature regenerator 1 is partially condensed to be a refrigerant liquid and sent to the condenser 9. The condenser 9 includes the refrigerant vapor generated in the low temperature regenerator 6 and the low temperature regenerator 6.
Refrigerant vapor that has not become the refrigerant liquid in 1. is cooled and liquefied by using cooling water to be a refrigerant liquid and sent to the evaporator 10. Reference numeral 11 is a cooling water inlet for guiding cooling water from a cooling tower (not shown).
Reference numeral 2 is a cooling water outlet for returning the cooling water to a cooling tower (not shown). Inside the evaporator 10, a heat transfer tube (cooler) 13 through which cold / hot water to be cooled flows is arranged, and the heat transfer tube 13 is connected from the condenser 9 to the heat transfer tube 13.
The refrigerant liquid sent to is sprayed using a sprayer (not shown), and the cold / hot water is cooled into cold water by utilizing the heat of vaporization when the refrigerant liquid becomes refrigerant vapor. Reference numeral 14 is a cold / hot water inlet for introducing the cold / hot water into the double-effect absorption refrigerator, and 15 is a cold water outlet for taking out the cold / hot water after cooling or heating from the double-effect absorption refrigerator. In the absorber 16, the concentrated solution that has passed through the low temperature heat exchanger 17 from the low temperature regenerator 6 is introduced, and the concentrated solution is sprayed and dropped by using a sprayer (not shown) provided in the upper part.
This concentrated solution absorbs the vaporized refrigerant vapor in the evaporator 10. Due to this absorbing action of the absorber 16, a high vacuum is secured inside the evaporator 10, and the refrigerant liquid sprinkled on the heat transfer tubes 13 inside the evaporator 10 can be immediately evaporated. Further, the absorber 16 is provided with cooling means 24 for cooling when the concentrated solution absorbs the refrigerant vapor and becomes a diluted solution. The cooling means 24 is composed of a coiled pipe, into which cooling water is introduced. The cooling means 24 is also connected to the cooling means 18 in the condenser 9.
The high temperature heat exchanger 8 performs heat exchange between the high temperature intermediate concentrated solution and the low temperature diluted solution, and the low temperature heat exchanger 17 performs heat exchange between the high temperature concentrated solution and the low temperature diluted solution. Two stages are provided on the high temperature side and the low temperature side to improve the heat exchange efficiency. The solution circulation pump 19 absorbs the refrigerant vapor in the absorber 16 to form a diluted solution, and sends the diluted solution to the high temperature regenerator 1 through the low temperature heat exchanger 17 and the high temperature heat exchanger 8 and the diluted solution conduit 26. , Provided for recirculation. The heat medium that has passed through the high temperature regenerator 1 is guided to the exhaust heat exchanger 20 via the heat medium conduit 22, and within the heat exchanger 20, the heat medium and the dilute solution after passing through the low temperature heat exchanger 17 are obtained. Heat is exchanged between the two to heat the dilute solution, and the heat mediated by the heat medium is effectively used. The diluted solution that has passed through the exhaust heat exchanger 20 is discharged from the heat medium outlet 21. Steam trap 22
Eliminates condensed water generated by condensation of the heat medium (high temperature steam) in the heat medium conduit 23.

【0004】熱を奪われて凝縮した熱媒体(高温蒸気凝
縮後のドレン)は、熱媒体出口21から排出された後、
図示しないドレン回収タンクに送られるが、このドレン
回収タンクにドレンを導く図示しないドレン戻り配管の
高さが高くなってしまう場合は、ドレン戻り配管中の二
重効用吸収式冷凍機と図示しないドレン回収タンクとの
間にドレンを一時的に溜めておく図示しないドレンタン
クを設け、その出口に図示しないドレン回収ポンプを設
けている。
The heat medium that has been deprived of heat and condensed (drain after condensation of high-temperature steam) is discharged from the heat medium outlet 21,
Although it is sent to a drain recovery tank (not shown), if the height of the drain return pipe (not shown) that guides the drain to this drain recovery tank becomes high, the double-effect absorption refrigerator in the drain return pipe and the drain (not shown) A drain tank (not shown) for temporarily storing drain is provided between the recovery tank and the drain, and a drain recovery pump (not shown) is provided at the outlet of the drain tank.

【0005】なお、暖房運転時は、図示しない冷暖房切
換弁で高温再生器1からの高温の冷媒蒸気を直接蒸発器
10へ導入し、伝熱管13で冷温水と熱交換して冷水の
代わりに温水を得る。
During the heating operation, a high-temperature refrigerant vapor from the high-temperature regenerator 1 is directly introduced into the evaporator 10 by a heating / cooling switching valve (not shown), and heat is exchanged with the cold / hot water by the heat transfer pipe 13 to replace the cold water. Get warm water.

【0006】[0006]

【発明が解決しようとする課題】例えば上述のような従
来の吸収式冷凍機においては、上述のとおり溶液管4と
分離器5とを備えている。そのため、高温再生器1内で
溶液を沸騰させて溶液管4を上昇させ、分離器5に導く
ためには、ある程度以上の大きさの熱エネルギーを溶液
に与えて沸騰させる必要がある。
For example, the conventional absorption refrigerator as described above is provided with the solution pipe 4 and the separator 5 as described above. Therefore, in order to boil the solution in the high-temperature regenerator 1 to raise the solution pipe 4 and guide it to the separator 5, it is necessary to give a certain amount of thermal energy to the solution to boil it.

【0007】しかし、例えば上述のコジェネレーション
システムにより、燃料電池などの排熱で溶液を加熱する
場合などにおいては、燃料電池の電力負荷が変動しうる
ため、燃料電池が排出する単位時間あたりの排熱エネル
ギーも変動しうる。従って、高温再生器1内の溶液を十
分に加熱するためには熱媒体の熱量が足らず(上述の例
では、高温蒸気の蒸気圧力が不足する)、吸収式冷凍機
の運転が不可能となる場合があり、また、上述の溶液と
しては一般に臭化リチウム水溶液が用いられ、この臭化
リチウムの晶析を防止する何らかの手段も必要となる。
However, for example, when the solution is heated by the exhaust heat of the fuel cell or the like by the above-mentioned cogeneration system, the electric power load of the fuel cell may fluctuate. Thermal energy can also fluctuate. Therefore, in order to sufficiently heat the solution in the high temperature regenerator 1, the heat quantity of the heat medium is insufficient (in the above example, the vapor pressure of the high temperature steam is insufficient), and the operation of the absorption chiller becomes impossible. In some cases, an aqueous solution of lithium bromide is generally used as the above-mentioned solution, and some means for preventing the crystallization of this lithium bromide is required.

【0008】また、高温再生器1内の溶液の加熱を行な
う加熱手段の加熱能力が常時低い場合においては、まっ
たく吸収式冷凍機の運転が行なえなくなる。
When the heating capacity of the heating means for heating the solution in the high temperature regenerator 1 is always low, the absorption refrigerator cannot be operated at all.

【0009】本発明は再生器内の溶液の加熱を行なう加
熱手段の加熱能力が変動しうる場合や常時加熱能力が低
い場合であっても駆動することができて、溶液に臭化リ
チウム水溶液を用いても臭化リチウムの晶析防止の手段
を講じる必要がない吸収式冷凍機を提供することを目的
とする。
The present invention can be driven even when the heating capacity of the heating means for heating the solution in the regenerator varies, or even when the constant heating capacity is low, and an aqueous solution of lithium bromide is added to the solution. It is an object of the present invention to provide an absorption refrigerator that does not require any means for preventing crystallization of lithium bromide even when used.

【0010】[0010]

【課題を解決するための手段】かかる課題を解決するた
めの本発明の要旨は、溶液が溜る溶液溜と該溶液溜中の
溶液を加熱する加熱手段とを有して前記加熱により前記
溶液を沸騰させて冷媒蒸気を発生させ濃度の濃くなった
前記溶液を規定液面から溢れ超えさせる再生器と、前記
の溢れ超えた溶液と吸収器側から導かれてきた稀溶液と
の間で熱交換する熱交換器とを備えた吸収式冷凍機にあ
る。
Means for Solving the Problems The gist of the present invention for solving the above problems is to have a solution reservoir for accumulating a solution and heating means for heating a solution in the solution reservoir, and to heat the solution by the heating. Heat exchange between the regenerator that causes the concentrated solution by boiling to generate the refrigerant vapor and overflows from the specified liquid surface, and the overflowed solution and the dilute solution introduced from the absorber side. And an absorption chiller equipped with a heat exchanger.

【0011】また、前記再生器は前記熱交換器より高い
位置に配置された前記の吸収式冷凍機も要旨とする。
The gist of the absorption refrigerator is that the regenerator is arranged at a position higher than the heat exchanger.

【0012】[0012]

【作用】上記の手段によれば、溶液溜中の溶液を加熱手
段で加熱し、溶液を沸騰させて冷媒蒸気を発生させ、濃
度の濃くなった溶液は規定液面から溢れ超えさせること
で、従来の揚液管や分離器を設けなくても、溶液を沸騰
させて冷媒蒸気と濃度の濃くなった溶液とを夫々発生さ
せて分離することができる。しかも、溶液は沸騰すれば
規定液面を超えて溢れる。このように、溶液を揚液管を
伝って上昇させる必要がなく溶液を沸騰させるだけな
ら、それほど大きなエネルギーは必要としない。従っ
て、加熱手段は、溶液を沸騰させて冷媒蒸気と濃度が濃
くなった溶液とを夫々発生させて分離するために、従来
ほど大きな熱エネルギーを必要とはしない。また、この
ような小さな熱エネルギーでも、溶液として臭化リチウ
ム水溶液を用いても臭化リチウムの晶析を防止する手段
を講じる必要はない。
According to the above means, the solution in the solution reservoir is heated by the heating means, the solution is boiled to generate the refrigerant vapor, and the concentrated solution is overflowed from the specified liquid surface, Even if a conventional pumping pipe or separator is not provided, the solution can be boiled and the refrigerant vapor and the concentrated solution can be generated and separated. Moreover, when the solution boils, it overflows beyond the specified liquid level. As described above, if the solution does not need to be raised through the lift pipe and only the solution is boiled, a large amount of energy is not required. Therefore, the heating means does not require a large amount of heat energy as in the prior art in order to boil the solution to generate and separate the refrigerant vapor and the concentrated solution, respectively. Further, even with such a small amount of heat energy, it is not necessary to take measures to prevent crystallization of lithium bromide even if an aqueous lithium bromide solution is used as a solution.

【0013】また、従来、再生器は吸収式冷凍機の装置
全体の中でも比較的下部に配置されていたが、再生器
を、この再生器で溢れ超えた溶液と吸収器側から導かれ
てきた稀溶液との間で熱交換する前記の熱交換器より高
い位置に配置すれば、溶液管を廃止して本発明の再生器
を用いても、分離後の濃度が濃くなった溶液を前記の熱
交換器(例えば二重効用吸収式冷凍機に本発明を適用す
る場合であれば、この熱交換器は高温熱交換器であるの
が一般的である。)に導くためにポンプなどの溶液送出
のための手段を設ける必要はない。
Further, conventionally, the regenerator has been arranged at a relatively lower part of the entire apparatus of the absorption refrigerating machine, but the regenerator has been introduced from the solution overflowed by the regenerator and the absorber side. If it is placed at a position higher than the heat exchanger for exchanging heat with the dilute solution, even if the regenerator of the present invention is used by eliminating the solution pipe, the solution having a high concentration after separation is A solution such as a pump for guiding to a heat exchanger (for example, when the present invention is applied to a double-effect absorption refrigerator, this heat exchanger is generally a high temperature heat exchanger). It is not necessary to provide means for delivery.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は、本発明の一実施例にかかる二重効用吸
収式冷凍機の系統図である。図7と同一符号の部材は、
図7を参照して説明した従来の二重効用吸収式冷凍機と
同様機能の部材であり、説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a double-effect absorption refrigerator according to an embodiment of the present invention. Members having the same reference numerals as in FIG.
It is a member having the same function as that of the conventional double-effect absorption refrigerator described with reference to FIG.

【0015】本実施例の高温再生器30は低温再生器
6、凝縮器9などの各熱交換器の中で最も高い位置に配
置されている。図2は本発明の一実施例にかかる二重効
用吸収式冷凍器の各熱交換器の配置の一例を示すもので
ある。なお、同図において高温再生器30、低温再生器
6などの熱交換器は断面構造で示している。
The high temperature regenerator 30 of this embodiment is arranged at the highest position among the heat exchangers such as the low temperature regenerator 6 and the condenser 9. FIG. 2 shows an example of arrangement of the heat exchangers of the double-effect absorption refrigerator according to the embodiment of the present invention. In the figure, the heat exchangers such as the high temperature regenerator 30 and the low temperature regenerator 6 are shown in a sectional structure.

【0016】高温再生器30の構造については図3乃至
6を参照して説明する。図3は、高温再生器30の断面
図である。高温再生器30は、稀溶液導管26により導
かれた稀溶液が導入される溶液溜31、該溶液溜31内
に配置された伝熱管32、溶液堤38、39、中間濃溶
液流路34などを備えている。図4は、溶液溜31、伝
熱管32などの配置を示す図である。図5は溶液溜3
1、中間濃溶液流路34などの構成を示す図である。伝
熱管32は、コイル状に形成したものであり、熱媒体入
口3から導かれた熱媒体(高温蒸気)が熱媒体採り入れ
口36から導入される。なお、この伝熱管32は支持体
35により支えられている。また、溶液溜31の底板4
2と伝熱管32との間の空間は従来の高温再生器に比べ
て比較的狭く形成し、溶液溜31の底部に滞溜する溶液
量が多くならないようにしている。伝熱管32に導入さ
れた高温蒸気と稀溶液とは熱交換を行ない、もって稀溶
液は加熱される。加熱された稀溶液は沸騰して冷媒蒸気
を発生させ、沸騰した溶液は溶液堤38、39による稀
溶液の規定液面から溢れ超えさせて、溶液溜31の下部
に配置された中間濃溶液流路34に中間濃溶液として流
れ落とす。35は、溶液溜31側と中間濃溶液流路34
とを結ぶ開口である。
The structure of the high temperature regenerator 30 will be described with reference to FIGS. FIG. 3 is a cross-sectional view of the high temperature regenerator 30. The high temperature regenerator 30 includes a solution reservoir 31 into which the dilute solution introduced by the dilute solution conduit 26 is introduced, a heat transfer pipe 32 arranged in the solution reservoir 31, solution banks 38 and 39, an intermediate concentrated solution flow path 34, and the like. Is equipped with. FIG. 4 is a diagram showing the arrangement of the solution reservoir 31, the heat transfer tube 32, and the like. Figure 5 shows the solution reservoir 3
1 is a diagram showing a configuration of an intermediate concentrated solution flow path 34 and the like. The heat transfer tube 32 is formed in a coil shape, and the heat medium (high temperature steam) introduced from the heat medium inlet 3 is introduced from the heat medium intake 36. The heat transfer tube 32 is supported by a support body 35. In addition, the bottom plate 4 of the solution reservoir 31
The space between the heat transfer tube 32 and the heat transfer tube 32 is formed to be relatively narrow as compared with the conventional high temperature regenerator, so that the amount of the solution accumulated at the bottom of the solution reservoir 31 does not increase. The high temperature steam introduced into the heat transfer tube 32 and the dilute solution exchange heat with each other, so that the dilute solution is heated. The heated dilute solution boils to generate a refrigerant vapor, and the boiled solution overflows from the prescribed liquid surface of the dilute solution by the solution banks 38 and 39, and the intermediate concentrated solution flow arranged in the lower part of the solution reservoir 31. Run down to line 34 as an intermediate concentrated solution. 35 is a solution reservoir 31 side and an intermediate concentrated solution flow path 34
It is an opening that connects with.

【0017】伝熱管32内を一巡した高温蒸気は、熱媒
体取出口33から排出され、熱媒体導管23を介して排
熱熱交換器20に導入される。
The high-temperature steam that has passed through the heat transfer tube 32 is discharged from the heat medium outlet 33 and introduced into the exhaust heat exchanger 20 via the heat medium conduit 23.

【0018】開口35の上部には蒸気導入ボックス40
配置され、その下部には邪魔板41が形成されている。
稀溶液の加熱により発生した冷媒蒸気は、蒸気導入ボッ
クス40から冷媒蒸気導管25を介して低温再生器6に
導かれる。邪魔板41は、蒸気導入ボックス41側に中
間濃溶液や稀溶液が入り込まないようにしており、その
取付け構造は図6に示す。
A steam introducing box 40 is provided above the opening 35.
A baffle plate 41 is formed on the lower part of the arrangement.
The refrigerant vapor generated by heating the dilute solution is introduced from the vapor introduction box 40 to the low temperature regenerator 6 via the refrigerant vapor conduit 25. The baffle plate 41 is designed so that an intermediate concentrated solution or a dilute solution does not enter the vapor introducing box 41 side, and its mounting structure is shown in FIG.

【0019】続いて本実施例の二重効用吸収式冷凍機の
作用について説明する。稀溶液は稀溶液導管26を介し
て溶液溜31内に導入され、伝熱管32に導入された熱
媒体(高温蒸気)と熱交換して沸騰する。これにより発
生する冷媒蒸気は蒸気導入ボックス40から冷媒蒸気導
管25を介して低温再生器6に導かれる。沸騰した稀溶
液は溶液堤38、39による規定液面を溢れ超えて、溶
液堤38、39を伝って中間濃溶液として中間濃溶液流
路34に落ちる。中間濃溶液流路34内の中間濃溶液
は、高温再生器30が高温熱交換器8より高い位置に配
置されているため、熱媒体取出口37から、中間濃溶液
導管7を介して高温再生器8に流れ落ちる。その他の作
用については図7を参照して説明した従来の二重効用吸
収式冷凍機と同様であり、説明を省略する。
Next, the operation of the double-effect absorption refrigerator of this embodiment will be described. The dilute solution is introduced into the solution reservoir 31 via the dilute solution conduit 26 and exchanges heat with the heat medium (high temperature steam) introduced into the heat transfer tube 32 to boil. The refrigerant vapor generated thereby is introduced from the vapor introduction box 40 to the low temperature regenerator 6 via the refrigerant vapor conduit 25. The boiled diluted solution overflows the defined liquid surface by the solution banks 38 and 39, travels along the solution banks 38 and 39, and falls into the intermediate concentrated solution flow path 34 as an intermediate concentrated solution. Since the high temperature regenerator 30 is arranged at a position higher than the high temperature heat exchanger 8, the intermediate concentrated solution in the intermediate concentrated solution flow path 34 is regenerated at a high temperature from the heat medium outlet 37 via the intermediate concentrated solution conduit 7. Run down to vessel 8. Other operations are the same as those of the conventional double-effect absorption refrigerator described with reference to FIG. 7, and the description thereof will be omitted.

【0020】以上説明した本実施例の二重効用吸収式冷
凍機によれば、沸騰した溶液溜31中の溶液を伝熱管3
2内を流通する熱媒体で加熱し、溶液を沸騰させて冷媒
蒸気を発生させ、中間濃溶液は、溶液堤38、39によ
る規定液面から溢れ超えさせることで、従来のように揚
液管や分離器を設けなくても、溶液を沸騰させて冷媒蒸
気と中間濃溶液とを夫々発生させて分離することができ
る。しかも、溶液は沸騰すれば規定液面を超えて溢れ
る。このように、溶液を揚液管を伝って上昇させる必要
がなく溶液を沸騰させるだけなら、それほど大きなエネ
ルギーは必要としない。従って、伝熱管32に導入する
熱媒体は、溶液を沸騰させて冷媒蒸気と中間濃溶液とを
夫々発生させて分離するために、従来ほど大きな熱エネ
ルギーを必要とはしない。従って、図示しない燃料電池
の電力負荷が小さくなって、熱媒体たる高温蒸気の蒸気
圧力が小さくなっても二重効用吸収式冷凍機の駆動がで
き、溶液として臭化リチウム水溶液を用いても臭化リチ
ウムの晶析を防止する手段を講じる必要もない。
According to the double-effect absorption refrigerator of the present embodiment described above, the solution in the boiling solution reservoir 31 is transferred to the heat transfer tube 3
2 is heated by a heat medium flowing in 2 to boil the solution to generate a refrigerant vapor, and the intermediate concentrated solution is overflowed from the specified liquid surface by the solution banks 38, 39, so that the liquid is pumped as in the conventional case. Even without providing a separator or a separator, the solution can be boiled to generate a refrigerant vapor and an intermediate concentrated solution, respectively, for separation. Moreover, when the solution boils, it overflows beyond the specified liquid level. As described above, if the solution does not need to be raised through the lift pipe and only the solution is boiled, a large amount of energy is not required. Therefore, the heat medium introduced into the heat transfer tube 32 does not require a large amount of heat energy as in the prior art in order to boil the solution to generate the refrigerant vapor and the intermediate concentrated solution and separate them. Therefore, even if the electric power load of the fuel cell (not shown) becomes small and the vapor pressure of the high-temperature steam as a heat medium becomes small, the double-effect absorption refrigerator can be driven, and even if an aqueous lithium bromide solution is used as the solution, the It is not necessary to take measures to prevent crystallization of lithium chloride.

【0021】また、従来、高温再生器は二重効用吸収式
冷凍機の装置全体の中でも比較的下部に配置されていた
が、本実施例においては高温再生器30を高温熱交換器
8より高い位置に配置しているため、溶液管を廃止して
本実施例の高温再生器30を用いても、分離後の中間濃
溶液を高温熱交換器8に導くためにポンプなどの溶液送
出のための手段を設ける必要はない。
Further, conventionally, the high temperature regenerator has been arranged at a relatively lower part of the entire double effect absorption refrigerator, but in this embodiment, the high temperature regenerator 30 is higher than the high temperature heat exchanger 8. Since it is located at a position, even if the high temperature regenerator 30 of this embodiment is used without using the solution pipe, the intermediate concentrated solution after separation is guided to the high temperature heat exchanger 8 by a pump or the like for delivering the solution. It is not necessary to provide the means of.

【0022】さらに、高温再生器30を低温再生器6な
どより高い位置に配置したことから、熱媒体出口21か
ら排出された熱媒体(高温蒸気凝縮後のドレン)を図示
しないドレン回収タンクに送ための図示しないドレン回
収ポンプなどを設ける必要がなくなる場合が多い。
Further, since the high temperature regenerator 30 is disposed at a higher position than the low temperature regenerator 6 and the like, the heat medium discharged from the heat medium outlet 21 (the drain after the high temperature steam condensation) is sent to a drain recovery tank (not shown). In many cases, it is not necessary to provide a drain recovery pump or the like (not shown).

【0023】その上、溶液溜31の底板42と伝熱管3
2との間の空間は従来の高温再生器に比べて比較的狭く
形成し、溶液溜31の底部に滞溜する溶液量が多くなら
ないようにしているから、高温再生器30の効率(高温
再生器30への熱媒体による入熱量と高温再生器30で
発生する冷媒蒸気量などから求められる熱交換効率)を
従来の高温再生器に比べて10%程度アップすることがで
きる。
In addition, the bottom plate 42 of the solution reservoir 31 and the heat transfer tube 3
The space between the high temperature regenerator 30 and the space between the second high temperature regenerator 30 and the conventional high temperature regenerator is formed to be relatively narrow so that the amount of the solution remaining at the bottom of the solution reservoir 31 does not increase. It is possible to increase the heat input efficiency of the heat medium into the regenerator 30 and the heat exchange efficiency required from the amount of refrigerant vapor generated in the high temperature regenerator 30) by about 10% compared to the conventional high temperature regenerator.

【0024】[0024]

【発明の効果】以上説明した本発明の吸収式冷凍機によ
れば、溶液を加熱する加熱手段は、溶液を沸騰させて冷
媒蒸気と濃度が濃くなった溶液とを夫々発生させて分離
するために、従来ほど大きな熱エネルギーを必要とはし
ない。従って、前記の加熱手段の加熱能力が変動しうる
場合や常時加熱能力が低い場合であっても駆動すること
ができる吸収式冷凍機を提供することができる。
According to the absorption refrigerating machine of the present invention described above, the heating means for heating the solution causes the solution to boil to generate and separate the refrigerant vapor and the concentrated solution respectively. Moreover, it does not require as much heat energy as in the past. Therefore, it is possible to provide an absorption chiller that can be driven even when the heating capacity of the heating means may fluctuate or when the constant heating capacity is low.

【0025】また、このような小さな熱エネルギーで
も、溶液として臭化リチウム水溶液を用いても臭化リチ
ウムの晶析を防止する手段を講じる必要はない。
Further, even with such a small amount of heat energy, even if an aqueous solution of lithium bromide is used as a solution, it is not necessary to take measures to prevent crystallization of lithium bromide.

【0026】さらに、再生器を、この再生器で溢れ超え
た溶液と吸収器側から導かれてきた稀溶液との間で熱交
換する前記の熱交換器より高い位置に配置すれば、溶液
管を廃止して本発明の再生器を用いても、分離後の濃度
が濃くなった溶液を前記の熱交換器(例えば二重効用吸
収式冷凍機に本発明を適用する場合であれば、この熱交
換器は高温熱交換器であるのが一般的である。)に導く
ためにポンプなどの溶液送出のための手段を設ける必要
はない。
Further, if the regenerator is arranged at a position higher than the heat exchanger for exchanging heat between the solution overflowing in the regenerator and the dilute solution introduced from the absorber side, the solution pipe Even if the regenerator of the present invention is abolished and the concentrated solution after separation is applied to the heat exchanger (for example, when the present invention is applied to a double-effect absorption refrigerator, The heat exchanger is generally a high temperature heat exchanger.) It is not necessary to provide means for delivering the solution such as a pump in order to lead to the high temperature heat exchanger.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかる二重効用吸収式冷凍
機の系統図である。
FIG. 1 is a system diagram of a double-effect absorption refrigerator according to an embodiment of the present invention.

【図2】本発明の一実施例にかかる二重効用吸収式冷凍
器の各熱交換器の配置の一例を示す図である。
FIG. 2 is a diagram showing an example of arrangement of heat exchangers of a double-effect absorption refrigerator according to an embodiment of the present invention.

【図3】本発明の一実施例にかかる二重効用吸収式冷凍
機の高温再生器の断面図である。
FIG. 3 is a sectional view of a high temperature regenerator of a double-effect absorption refrigerator according to an embodiment of the present invention.

【図4】本発明の一実施例にかかる二重効用吸収式冷凍
機の高温再生器の溶液溜、熱交換器などの配置を示す図
である。
FIG. 4 is a diagram showing an arrangement of a solution reservoir, a heat exchanger and the like of a high temperature regenerator of a double effect absorption refrigerator according to an embodiment of the present invention.

【図5】本発明の一実施例にかかる二重効用吸収式冷凍
機の高温再生器の溶液溜、中間濃溶液流路などの構成を
示す図である。
FIG. 5 is a diagram showing a configuration of a solution reservoir, an intermediate concentrated solution flow path and the like of a high temperature regenerator of a double-effect absorption refrigerator according to an embodiment of the present invention.

【図6】本発明の一実施例にかかる二重効用吸収式冷凍
機の高温再生器の邪魔板の取付け構造を示す図である。
FIG. 6 is a view showing a structure for mounting a baffle plate of a high temperature regenerator of a double-effect absorption refrigerator according to an embodiment of the present invention.

【図7】従来の二重効用吸収式冷凍機の一例の構造を説
明する系統図である。
FIG. 7 is a system diagram illustrating a structure of an example of a conventional double-effect absorption refrigerator.

【符号の説明】[Explanation of symbols]

30 高温再生器 31 溶液溜 32 伝熱管 38 溶液堤 39 溶液堤 30 high temperature regenerator 31 solution reservoir 32 heat transfer tube 38 solution bank 39 solution bank

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月7日[Submission date] July 7, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温再生器内の溶液の
加熱を行なう加熱手段の加熱能力が低い場合や変動する
場合であっても駆動できる吸収冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine which can be driven even when the heating capacity of a heating means for heating a solution in a high temperature regenerator is low or fluctuates.

【0002】[0002]

【従来の技術】吸収式冷凍機で溶液の加熱を行なう熱源
をコジェネレーションシステムなどにより供給する場合
がある。すなわち、燃料電池で発電を行ない、その際生
じる排熱を利用して吸収式冷凍機の溶液の加熱を行なう
場合などである。
2. Description of the Related Art A heat source for heating a solution in an absorption refrigerator may be supplied by a cogeneration system or the like. That is, there is a case where power is generated by the fuel cell and the exhaust heat generated at that time is used to heat the solution of the absorption refrigerator.

【0003】以下では、このようなコジェネレーション
システムを用いた従来の吸収式冷凍機の構造の一例の概
要を、図7を参照しつつ説明する。以下の例では、低温
再生器、高温熱交換器、低温熱交換器などを備えた二重
効用吸収式冷凍機の例で説明している。図7はコジェネ
レーションシステムを用いた空気調和に用いられる二重
効用吸収式冷凍機の一例の系統図である。溶液、冷媒蒸
気、冷温水、冷却水、熱媒体の流れは、図中矢示により
示している。同図において、高温再生器1は内部に伝熱
管2が収められ、伝熱管2内には例えば図示しない燃料
電池などから排出される排熱を吸熱した熱媒体(通常は
高温蒸気)が熱媒体入口3より導入され、冷媒を吸収し
て濃度が薄くなった稀溶液を、この熱媒体の熱で加熱
し、沸騰させる。沸騰した稀溶液は冷媒蒸気を発生させ
ながら稀溶液となって揚液管4を上昇し、冷媒蒸気と冷
媒蒸気を発生して濃度が濃くなった中間濃溶液とは分離
器5で分離され、冷媒蒸気は冷媒蒸気導管25を介して
低温再生器6に送られ、中間濃溶液は中間濃溶液導管7
を介して高温熱交換器8へ送られる。低温再生器6は高
温熱交換器8により温度が低下した中間濃溶液を高温再
生器1から送られてくる冷媒蒸気で再加熱し、中間濃溶
液の中から更に冷媒蒸気を発生させ、これを低温再生器
6と隣接する凝縮器9へ送出し、かつ中間濃溶液自身を
濃溶液にするとともに、高温再生器1からきた冷媒蒸気
を一部凝縮し冷媒液にして凝縮器9へと送り込む。凝縮
器9は低温再生器6で発生した冷媒蒸気と低温再生器6
で冷媒液とならなかった冷媒蒸気を冷却水を用いて冷却
液化して冷媒液にして蒸発器10へ送り込む。11は冷
却水を図示しない冷却塔から導く冷却水入口であり、1
2は該冷却水を図示しない冷却塔に戻す冷却水出口であ
る。蒸発器10内部には冷却すべき冷温水が流れる伝熱
管(冷水器)13が配設され、凝縮器9から伝熱管13
に送られてくる冷媒液を図示しない散布器を用いて散布
し、冷媒液が冷媒蒸気となるときの気化熱を利用して冷
温水を冷却して冷水にする。14は二重効用吸収式冷凍
機内に、この冷温水を導く冷温水入口であり、15は冷
却又は加熱後の冷温水を二重効用吸収式冷凍機から取り
出す冷水出口である。吸収器16は低温再生器6から低
温熱交換器17を通ってきた濃溶液が導入され、上部に
設けられた図示しない散布器を用いて散布・滴下され、
この濃溶液は蒸発器10内で気化した冷媒蒸気を吸収す
る。吸収器16のこの吸収作用によって蒸発器10内は
高真空が確保されており、蒸発器10内の伝熱管13上
に散布された冷媒液は直ちに蒸発できるようになってい
る。また、吸収器16には濃溶液が冷媒蒸気を吸収して
稀溶液となる際の冷却のための冷却手段24が配設され
ている。この冷却手段24はコイル状パイプで構成され
ており、内部に冷却水が導入される。また、この冷却手
段24は凝縮器9内の冷却手段18とも連なっている。
高温熱交換器8は高温の中間濃溶液と低温の稀溶液との
間で熱交換し、また、低温熱交換器17は高温の濃溶液
と低温の稀溶液との間で熱交換を行い、高温側と低温側
とに2段に設けて熱交換効率の向上を図っている。溶液
循環ポンプ19は吸収器16において冷媒蒸気を吸収し
て稀溶液となったものを、低温熱交換器17および高温
熱交換器8を通り、稀溶液導管26を介して高温再生器
1に送り、再び循環させるために設けられている。高温
再生器1を通過した熱媒体は、熱媒体導管22を介して
排熱熱交換器20に導かれ、該熱交換器20内では熱媒
体と低温熱交換器17を通過後の稀溶液との間で熱交換
をして稀溶液を加熱し、もって熱媒体が媒介する熱の有
効利用を図っている。排熱熱交換器20を通過後の稀溶
液は熱媒体出口21より排出される。蒸気トラップ22
は熱媒体導管23内で熱媒体(高温蒸気)が凝縮して生
じた凝縮水を排除する。
An outline of an example of the structure of a conventional absorption refrigerator using such a cogeneration system will be described below with reference to FIG. In the following example, a double-effect absorption refrigerating machine equipped with a low temperature regenerator, a high temperature heat exchanger, a low temperature heat exchanger and the like will be described. FIG. 7 is a system diagram of an example of a double-effect absorption chiller used for air conditioning using a cogeneration system. The flows of the solution, the refrigerant vapor, the cold / hot water, the cooling water, and the heat medium are indicated by arrows in the figure. In the figure, the high temperature regenerator 1 has a heat transfer tube 2 housed therein, and the heat transfer tube 2 contains a heat medium (usually high temperature steam) that has absorbed exhaust heat discharged from a fuel cell (not shown) or the like. The diluted solution, which is introduced from the inlet 3 and has a reduced concentration by absorbing the refrigerant, is heated by the heat of the heat medium and boiled. The boiling rare solution becomes a rare solution while generating a refrigerant vapor and rises in the pumping pipe 4, and the refrigerant vapor and the intermediate concentrated solution that has become thicker due to the refrigerant vapor are separated by the separator 5. The refrigerant vapor is sent to the low temperature regenerator 6 via the refrigerant vapor conduit 25, and the intermediate concentrated solution is converted into the intermediate concentrated solution conduit 7.
To the high temperature heat exchanger 8 via. The low temperature regenerator 6 reheats the intermediate concentrated solution whose temperature has been lowered by the high temperature heat exchanger 8 with the refrigerant vapor sent from the high temperature regenerator 1 to generate further refrigerant vapor from the intermediate concentrated solution. The refrigerant is sent to the condenser 9 adjacent to the low-temperature regenerator 6, and the intermediate concentrated solution itself is made into a concentrated solution, and the refrigerant vapor coming from the high-temperature regenerator 1 is partially condensed to be a refrigerant liquid and sent to the condenser 9. The condenser 9 includes the refrigerant vapor generated in the low temperature regenerator 6 and the low temperature regenerator 6.
Refrigerant vapor that has not become the refrigerant liquid in 1. is cooled and liquefied by using cooling water to be a refrigerant liquid and sent to the evaporator 10. Reference numeral 11 is a cooling water inlet for guiding cooling water from a cooling tower (not shown).
Reference numeral 2 is a cooling water outlet for returning the cooling water to a cooling tower (not shown). Inside the evaporator 10, a heat transfer tube (cooler) 13 through which cold / hot water to be cooled flows is arranged, and the heat transfer tube 13 is connected from the condenser 9 to the heat transfer tube 13.
The refrigerant liquid sent to is sprayed using a sprayer (not shown), and the cold / hot water is cooled into cold water by utilizing the heat of vaporization when the refrigerant liquid becomes refrigerant vapor. Reference numeral 14 is a cold / hot water inlet for introducing the cold / hot water into the double-effect absorption refrigerator, and 15 is a cold water outlet for taking out the cold / hot water after cooling or heating from the double-effect absorption refrigerator. In the absorber 16, the concentrated solution that has passed through the low temperature heat exchanger 17 from the low temperature regenerator 6 is introduced, and the concentrated solution is sprayed and dropped by using a sprayer (not shown) provided in the upper part.
This concentrated solution absorbs the vaporized refrigerant vapor in the evaporator 10. Due to this absorbing action of the absorber 16, a high vacuum is secured inside the evaporator 10, and the refrigerant liquid sprinkled on the heat transfer tubes 13 inside the evaporator 10 can be immediately evaporated. Further, the absorber 16 is provided with cooling means 24 for cooling when the concentrated solution absorbs the refrigerant vapor and becomes a diluted solution. The cooling means 24 is composed of a coiled pipe, into which cooling water is introduced. The cooling means 24 is also connected to the cooling means 18 in the condenser 9.
The high temperature heat exchanger 8 performs heat exchange between the high temperature intermediate concentrated solution and the low temperature diluted solution, and the low temperature heat exchanger 17 performs heat exchange between the high temperature concentrated solution and the low temperature diluted solution. Two stages are provided on the high temperature side and the low temperature side to improve the heat exchange efficiency. The solution circulation pump 19 absorbs the refrigerant vapor in the absorber 16 to form a diluted solution, and sends the diluted solution to the high temperature regenerator 1 through the low temperature heat exchanger 17 and the high temperature heat exchanger 8 and the diluted solution conduit 26. , Provided for recirculation. The heat medium that has passed through the high temperature regenerator 1 is guided to the exhaust heat exchanger 20 via the heat medium conduit 22, and within the heat exchanger 20, the heat medium and the dilute solution after passing through the low temperature heat exchanger 17 are obtained. Heat is exchanged between the two to heat the dilute solution, and the heat mediated by the heat medium is effectively used. The diluted solution that has passed through the exhaust heat exchanger 20 is discharged from the heat medium outlet 21. Steam trap 22
Eliminates condensed water generated by condensation of the heat medium (high temperature steam) in the heat medium conduit 23.

【0004】熱を奪われて凝縮した熱媒体(高温蒸気凝
縮後のドレン)は、熱媒体出口21から排出された後、
図示しないドレン回収タンクに送られるが、このドレン
回収タンクにドレンを導く図示しないドレン戻り配管の
高さが高くなってしまう場合は、ドレン戻り配管中の二
重効用吸収式冷凍機と図示しないドレン回収タンクとの
間にドレンを一時的に溜めておく図示しないドレンタン
クを設け、その出口に図示しないドレン回収ポンプを設
けている。
The heat medium that has been deprived of heat and condensed (drain after condensation of high-temperature steam) is discharged from the heat medium outlet 21,
Although it is sent to a drain recovery tank (not shown), if the height of the drain return pipe (not shown) that guides the drain to this drain recovery tank becomes high, the double-effect absorption refrigerator in the drain return pipe and the drain (not shown) A drain tank (not shown) for temporarily storing drain is provided between the recovery tank and the drain, and a drain recovery pump (not shown) is provided at the outlet of the drain tank.

【0005】なお、暖房運転時は、図示しない冷暖房切
換弁で高温再生器1からの高温の冷媒蒸気を直接蒸発器
10へ導入し、伝熱管13で冷温水と熱交換して冷水の
代わりに温水を得る。
During the heating operation, a high-temperature refrigerant vapor from the high-temperature regenerator 1 is directly introduced into the evaporator 10 by a heating / cooling switching valve (not shown), and heat is exchanged with the cold / hot water by the heat transfer pipe 13 to replace the cold water. Get warm water.

【0006】[0006]

【発明が解決しようとする課題】例えば上述のような従
来の吸収式冷凍機においては、上述のとおり溶液管4と
分離器5とを備えている。そのため、高温再生器1内で
溶液を沸騰させて溶液管4を上昇させ、分離器5に導く
ためには、ある程度以上の大きさの熱エネルギーを溶液
に与えて沸騰させる必要がある。
For example, the conventional absorption refrigerator as described above is provided with the solution pipe 4 and the separator 5 as described above. Therefore, in order to boil the solution in the high-temperature regenerator 1 to raise the solution pipe 4 and guide it to the separator 5, it is necessary to give a certain amount of thermal energy to the solution to boil it.

【0007】しかし、例えば上述のコジェネレーション
システムにより、燃料電池などの排熱で溶液を加熱する
場合などにおいては、燃料電池の電力負荷が変動しうる
ため、燃料電池が排出する単位時間あたりの排熱エネル
ギーも変動しうる。従って、高温再生器1内の溶液を十
分に加熱するためには熱媒体の熱量が足らず(上述の例
では、高温蒸気の蒸気圧力が不足する)、吸収式冷凍機
の運転が不可能となる場合があり、また、上述の溶液と
しては一般に臭化リチウム水溶液が用いられ、この臭化
リチウムの晶析を防止する何らかの手段も必要となる。
However, for example, when the solution is heated by the exhaust heat of the fuel cell or the like by the above-mentioned cogeneration system, the electric power load of the fuel cell may fluctuate. Thermal energy can also fluctuate. Therefore, in order to sufficiently heat the solution in the high temperature regenerator 1, the heat quantity of the heat medium is insufficient (in the above example, the vapor pressure of the high temperature steam is insufficient), and the operation of the absorption chiller becomes impossible. In some cases, an aqueous solution of lithium bromide is generally used as the above-mentioned solution, and some means for preventing the crystallization of this lithium bromide is required.

【0008】また、高温再生器1内の溶液の加熱を行な
う加熱手段の加熱能力が常時低い場合においては、まっ
たく吸収式冷凍機の運転が行なえなくなる。
When the heating capacity of the heating means for heating the solution in the high temperature regenerator 1 is always low, the absorption refrigerator cannot be operated at all.

【0009】本発明は再生器内の溶液の加熱を行なう加
熱手段の加熱能力が変動しうる場合や常時加熱能力が低
い場合であっても駆動することができて、溶液に臭化リ
チウム水溶液を用いても臭化リチウムの晶析防止の手段
を講じる必要がない吸収式冷凍機を提供することを目的
とする。
The present invention can be driven even when the heating capacity of the heating means for heating the solution in the regenerator varies, or even when the constant heating capacity is low, and an aqueous solution of lithium bromide is added to the solution. It is an object of the present invention to provide an absorption refrigerator that does not require any means for preventing crystallization of lithium bromide even when used.

【0010】[0010]

【課題を解決するための手段】かかる課題を解決するた
めの本発明の要旨は、溶液が溜る溶液溜と該溶液溜中の
溶液を加熱する加熱手段とを有して前記加熱により前記
溶液を沸騰させて冷媒蒸気を発生させ濃度の濃くなった
前記溶液を規定液面から溢れ超えさせる再生器と、前記
の溢れ超えた溶液と吸収器側から導かれてきた稀溶液と
の間で熱交換する熱交換器とを備えた吸収式冷凍機にあ
る。
Means for Solving the Problems The gist of the present invention for solving the above problems is to have a solution reservoir for accumulating a solution and heating means for heating a solution in the solution reservoir, and to heat the solution by the heating. Heat exchange between the regenerator that causes the concentrated solution by boiling to generate the refrigerant vapor and overflows from the specified liquid surface, and the overflowed solution and the dilute solution introduced from the absorber side. And an absorption chiller equipped with a heat exchanger.

【0011】また、前記再生器は前記熱交換器より高い
位置に配置された前記の吸収式冷凍機も要旨とする。
The gist of the absorption refrigerator is that the regenerator is arranged at a position higher than the heat exchanger.

【0012】[0012]

【作用】上記の手段によれば、溶液溜中の溶液を加熱手
段で加熱し、溶液を沸騰させて冷媒蒸気を発生させ、濃
度の濃くなった溶液は規定液面から溢れ超えさせること
で、従来の揚液管や分離器を設けなくても、溶液を沸騰
させて冷媒蒸気と濃度の濃くなった溶液とを夫々発生さ
せて分離することができる。しかも、溶液は沸騰すれば
規定液面を超えて溢れる。このように、溶液を揚液管を
伝って上昇させる必要がなく溶液を沸騰させるだけな
ら、それほど大きなエネルギーは必要としない。従っ
て、加熱手段は、溶液を沸騰させて冷媒蒸気と濃度が濃
くなった溶液とを夫々発生させて分離するために、従来
ほど大きな熱エネルギーを必要とはしない。また、この
ような小さな熱エネルギーでも、溶液として臭化リチウ
ム水溶液を用いても臭化リチウムの晶析を防止する手段
を講じる必要はない。
According to the above means, the solution in the solution reservoir is heated by the heating means, the solution is boiled to generate the refrigerant vapor, and the concentrated solution is overflowed from the specified liquid surface, Even if a conventional pumping pipe or separator is not provided, the solution can be boiled and the refrigerant vapor and the concentrated solution can be generated and separated. Moreover, when the solution boils, it overflows beyond the specified liquid level. As described above, if the solution does not need to be raised through the lift pipe and only the solution is boiled, a large amount of energy is not required. Therefore, the heating means does not require a large amount of heat energy as in the prior art in order to boil the solution to generate and separate the refrigerant vapor and the concentrated solution, respectively. Further, even with such a small amount of heat energy, it is not necessary to take measures to prevent crystallization of lithium bromide even if an aqueous lithium bromide solution is used as a solution.

【0013】また、従来、再生器は吸収式冷凍機の装置
全体の中でも比較的下部に配置されていたが、再生器
を、この再生器で溢れ超えた溶液と吸収器側から導かれ
てきた稀溶液との間で熱交換する前記の熱交換器より高
い位置に配置すれば、溶液管を廃止して本発明の再生器
を用いても、分離後の濃度が濃くなった溶液を前記の熱
交換器(例えば二重効用吸収式冷凍機に本発明を適用す
る場合であれば、この熱交換器は高温熱交換器であるの
が一般的である。)に導くためにポンプなどの溶液送出
のための手段を設ける必要はない。
Further, conventionally, the regenerator has been arranged at a relatively lower part of the entire apparatus of the absorption refrigerating machine, but the regenerator has been introduced from the solution overflowed by the regenerator and the absorber side. If it is placed at a position higher than the heat exchanger for exchanging heat with the dilute solution, even if the regenerator of the present invention is used by eliminating the solution pipe, the solution having a high concentration after separation is A solution such as a pump for guiding to a heat exchanger (for example, when the present invention is applied to a double-effect absorption refrigerator, this heat exchanger is generally a high temperature heat exchanger). It is not necessary to provide means for delivery.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。図1は、本発明の一実施例にかかる二重効用吸
収式冷凍機の系統図である。図7と同一符号の部材は、
図7を参照して説明した従来の二重効用吸収式冷凍機と
同様機能の部材であり、説明を省略する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a double-effect absorption refrigerator according to an embodiment of the present invention. Members having the same reference numerals as in FIG.
It is a member having the same function as that of the conventional double-effect absorption refrigerator described with reference to FIG.

【0015】本実施例の高温再生器30は低温再生器
6、凝縮器9などの各熱交換器の中で最も高い位置に配
置されている。図2は本発明の一実施例にかかる二重効
用吸収式冷凍器の各熱交換器の配置の一例を示すもので
ある。なお、同図において高温再生器30、低温再生器
6などの熱交換器は断面構造で示している。
The high temperature regenerator 30 of this embodiment is arranged at the highest position among the heat exchangers such as the low temperature regenerator 6 and the condenser 9. FIG. 2 shows an example of arrangement of the heat exchangers of the double-effect absorption refrigerator according to the embodiment of the present invention. In the figure, the heat exchangers such as the high temperature regenerator 30 and the low temperature regenerator 6 are shown in a sectional structure.

【0016】高温再生器30の構造については図3乃至
6を参照して説明する。図3は、高温再生器30の断面
図である。高温再生器30は、稀溶液導管26により導
かれた稀溶液が導入される溶液溜31、該溶液溜31内
に配置された伝熱管32、溶液堤38、39などを備え
ている。図4は、溶液溜31、伝熱管32などの配置を
示す図である。図5は溶液溜31、溶液堤内空洞34
どの構成を示す図である。伝熱管32は、コイル状に形
成したものであり、熱媒体入口3から導かれた熱媒体
(高温蒸気)が熱媒体採り入れ口36から導入される。
なお、この伝熱管32は支持体35により支えられてい
る。また、溶液溜31の底板42と伝熱管32との間の
空間は従来の高温再生器に比べて比較的狭く形成し、溶
液溜31の底部に滞溜する溶液量が多くならないように
している。伝熱管32に導入された高温蒸気と稀溶液と
は熱交換を行ない、もって稀溶液は加熱される。加熱さ
れた稀溶液は沸騰して冷媒蒸気を発生させ、沸騰した溶
液は、中間濃溶液導管7の手前の規定液面を溢れ超え
て、中間濃溶液として中間濃溶液導管7に流れ落る。
The structure of the high temperature regenerator 30 will be described with reference to FIGS. FIG. 3 is a cross-sectional view of the high temperature regenerator 30. The high temperature regenerator 30 includes a solution reservoir 31 into which the dilute solution introduced by the dilute solution conduit 26 is introduced, a heat transfer tube 32 arranged in the solution reservoir 31, solution banks 38, 39, and the like. FIG. 4 is a diagram showing the arrangement of the solution reservoir 31, the heat transfer tube 32, and the like. FIG. 5 is a diagram showing the configuration of the solution reservoir 31, the cavity 34 in the solution bank , and the like. The heat transfer tube 32 is formed in a coil shape, and the heat medium (high temperature steam) introduced from the heat medium inlet 3 is introduced from the heat medium intake 36.
The heat transfer tube 32 is supported by a support body 35. Further, the space between the bottom plate 42 of the solution reservoir 31 and the heat transfer tube 32 is formed to be relatively narrow as compared with the conventional high temperature regenerator so that the amount of the solution retained at the bottom of the solution reservoir 31 does not increase. . The high temperature steam introduced into the heat transfer tube 32 and the dilute solution exchange heat with each other, so that the dilute solution is heated. Heated diluted solution generates a refrigerant vapor by boiling, boiling solvent
The liquid overflows the specified liquid level in front of the intermediate concentrated solution conduit 7.
And flows down into the intermediate concentrated solution conduit 7 as an intermediate concentrated solution.

【0017】伝熱管32内を一巡した高温蒸気は、熱媒
体取出口33から排出され、熱媒体導管23を介して排
熱熱交換器20に導入される。
The high-temperature steam that has passed through the heat transfer tube 32 is discharged from the heat medium outlet 33 and introduced into the exhaust heat exchanger 20 via the heat medium conduit 23.

【0018】高温再生器30上部には蒸気導入ボックス
40配置され、その下部には邪魔板41が形成されてい
る。稀溶液の加熱により発生した冷媒蒸気は、蒸気導入
ボックス40から冷媒蒸気導管25を介して低温再生器
6に導かれる。邪魔板41は、蒸気導入ボックス41側
に中間濃溶液や稀溶液が入り込まないようにしており、
その取付け構造は図6に示す。
A steam introduction box 40 is arranged above the high temperature regenerator 30 , and a baffle plate 41 is formed below the steam introduction box 40. The refrigerant vapor generated by heating the dilute solution is introduced from the vapor introduction box 40 to the low temperature regenerator 6 via the refrigerant vapor conduit 25. The baffle plate 41 prevents the intermediate concentrated solution and the dilute solution from entering the steam introducing box 41 side.
The mounting structure is shown in FIG.

【0019】続いて本実施例の二重効用吸収式冷凍機の
作用について説明する。稀溶液は稀溶液導管26を介し
て溶液溜31内に導入され、伝熱管32に導入された熱
媒体(高温蒸気)と熱交換して沸騰する。これにより発
生する冷媒蒸気は蒸気導入ボックス40から冷媒蒸気導
管25を介して低温再生器6に導かれる。沸騰した稀溶
液は溶液堤38、39による規定液面を溢れ超えて、溶
液堤38、39を伝って中間濃溶液として溶液堤内空洞
34に落ちる。その他の作用については図7を参照して
説明した従来の二重効用吸収式冷凍機と同様であり、説
明を省略する。
Next, the operation of the double-effect absorption refrigerator of this embodiment will be described. The dilute solution is introduced into the solution reservoir 31 via the dilute solution conduit 26 and exchanges heat with the heat medium (high temperature steam) introduced into the heat transfer tube 32 to boil. The refrigerant vapor generated thereby is introduced from the vapor introduction box 40 to the low temperature regenerator 6 via the refrigerant vapor conduit 25. The boiling dilute solution overflows the specified liquid surface by the solution banks 38 and 39, travels along the solution banks 38 and 39, and becomes an intermediate concentrated solution, and is a cavity in the solution bank.
Falls to 34 . Other operations are the same as those of the conventional double-effect absorption refrigerator described with reference to FIG. 7, and the description thereof will be omitted.

【0020】以上説明した本実施例の二重効用吸収式冷
凍機によれば、沸騰した溶液溜31中の溶液を伝熱管3
2内を流通する熱媒体で加熱し、溶液を沸騰させて冷媒
蒸気を発生させ、中間濃溶液は、中間濃溶液導管7手前
の規定液面から溢れ超えさせることで、従来のように揚
液管や分離器を設けなくても、溶液を沸騰させて冷媒蒸
気と中間濃溶液とを夫々発生させて分離することができ
る。しかも、溶液は沸騰すれば規定液面を超えて溢れ
る。このように、溶液を揚液管を伝って上昇させる必要
がなく溶液を沸騰させるだけなら、それほど大きなエネ
ルギーは必要としない。従って、伝熱管32に導入する
熱媒体は、溶液を沸騰させて冷媒蒸気と中間濃溶液とを
夫々発生させて分離するために、従来ほど大きな熱エネ
ルギーを必要とはしない。従って、図示しない燃料電池
の電力負荷が小さくなって、熱媒体たる高温蒸気の蒸気
圧力が小さくなっても二重効用吸収式冷凍機の駆動がで
き、溶液として臭化リチウム水溶液を用いても臭化リチ
ウムの晶析を防止する手段を講じる必要もない。
According to the double-effect absorption refrigerator of the present embodiment described above, the solution in the boiling solution reservoir 31 is transferred to the heat transfer tube 3
2 is heated by a heat medium flowing in 2 to boil the solution to generate refrigerant vapor, and the intermediate concentrated solution is in front of the intermediate concentrated solution conduit 7.
By overflowing from the specified liquid surface , the solution can be boiled and the refrigerant vapor and the intermediate concentrated solution can be generated and separated without the need for a pump or a separator as in the conventional case. Moreover, when the solution boils, it overflows beyond the specified liquid level. As described above, if the solution does not need to be raised through the lift pipe and only the solution is boiled, a large amount of energy is not required. Therefore, the heat medium introduced into the heat transfer tube 32 does not require a large amount of heat energy as in the prior art in order to boil the solution to generate the refrigerant vapor and the intermediate concentrated solution and separate them. Therefore, even if the electric power load of the fuel cell (not shown) becomes small and the vapor pressure of the high-temperature steam as a heat medium becomes small, the double-effect absorption refrigerator can be driven, and even if an aqueous lithium bromide solution is used as the solution, the It is not necessary to take measures to prevent crystallization of lithium chloride.

【0021】また、従来、高温再生器は二重効用吸収式
冷凍機の装置全体の中でも比較的下部に配置されていた
が、本実施例においては高温再生器30を高温熱交換器
8より高い位置に配置しているため、溶液管を廃止して
本実施例の高温再生器30を用いても、分離後の中間濃
溶液を高温熱交換器8に導くためにポンプなどの溶液送
出のための手段を設ける必要はない。
Further, conventionally, the high temperature regenerator has been arranged at a relatively lower part of the entire double effect absorption refrigerator, but in this embodiment, the high temperature regenerator 30 is higher than the high temperature heat exchanger 8. Since it is located at a position, even if the high temperature regenerator 30 of this embodiment is used without using the solution pipe, the intermediate concentrated solution after separation is guided to the high temperature heat exchanger 8 by a pump or the like for delivering the solution. It is not necessary to provide the means of.

【0022】さらに、高温再生器30を低温再生器6な
どより高い位置に配置したことから、熱媒体出口21か
ら排出された熱媒体(高温蒸気凝縮後のドレン)を図示
しないドレン回収タンクに送ための図示しないドレン回
収ポンプなどを設ける必要がなくなる場合が多い。
Further, since the high temperature regenerator 30 is disposed at a higher position than the low temperature regenerator 6 and the like, the heat medium discharged from the heat medium outlet 21 (the drain after the high temperature steam condensation) is sent to a drain recovery tank (not shown). In many cases, it is not necessary to provide a drain recovery pump or the like (not shown).

【0023】その上、溶液溜31の底板42と伝熱管3
2との間の空間は従来の高温再生器に比べて比較的狭く
形成し、溶液溜31の底部に滞溜する溶液量が多くなら
ないようにしているから、高温再生器30の効率(高温
再生器30への熱媒体による入熱量と高温再生器30で
発生する冷媒蒸気量などから求められる熱交換効率)を
従来の高温再生器に比べて10%程度アップすることがで
きる。
In addition, the bottom plate 42 of the solution reservoir 31 and the heat transfer tube 3
The space between the high temperature regenerator 30 and the space between the second high temperature regenerator 30 and the conventional high temperature regenerator is formed to be relatively narrow so that the amount of the solution remaining at the bottom of the solution reservoir 31 does not increase. It is possible to increase the heat input efficiency of the heat medium into the regenerator 30 and the heat exchange efficiency required from the amount of refrigerant vapor generated in the high temperature regenerator 30) by about 10% compared to the conventional high temperature regenerator.

【0024】[0024]

【発明の効果】以上説明した本発明の吸収式冷凍機によ
れば、溶液を加熱する加熱手段は、溶液を沸騰させて冷
媒蒸気と濃度が濃くなった溶液とを夫々発生させて分離
するために、従来ほど大きな熱エネルギーを必要とはし
ない。従って、前記の加熱手段の加熱能力が変動しうる
場合や常時加熱能力が低い場合であっても駆動すること
ができる吸収式冷凍機を提供することができる。
According to the absorption refrigerating machine of the present invention described above, the heating means for heating the solution causes the solution to boil to generate and separate the refrigerant vapor and the concentrated solution respectively. Moreover, it does not require as much heat energy as in the past. Therefore, it is possible to provide an absorption chiller that can be driven even when the heating capacity of the heating means may fluctuate or when the constant heating capacity is low.

【0025】また、このような小さな熱エネルギーで
も、溶液として臭化リチウム水溶液を用いても臭化リチ
ウムの晶析を防止する手段を講じる必要はない。
Further, even with such a small amount of heat energy, even if an aqueous solution of lithium bromide is used as a solution, it is not necessary to take measures to prevent crystallization of lithium bromide.

【0026】さらに、再生器を、この再生器で溢れ超え
た溶液と吸収器側から導かれてきた稀溶液との間で熱交
換する前記の熱交換器より高い位置に配置すれば、溶液
管を廃止して本発明の再生器を用いても、分離後の濃度
が濃くなった溶液を前記の熱交換器(例えば二重効用吸
収式冷凍機に本発明を適用する場合であれば、この熱交
換器は高温熱交換器であるのが一般的である。)に導く
ためにポンプなどの溶液送出のための手段を設ける必要
はない。
Further, if the regenerator is arranged at a position higher than the heat exchanger for exchanging heat between the solution overflowing in the regenerator and the dilute solution introduced from the absorber side, the solution pipe Even if the regenerator of the present invention is abolished and the concentrated solution after separation is applied to the heat exchanger (for example, when the present invention is applied to a double-effect absorption refrigerator, The heat exchanger is generally a high temperature heat exchanger.) It is not necessary to provide means for delivering the solution such as a pump in order to lead to the high temperature heat exchanger.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶液が溜る溶液溜と該溶液溜中の溶液を
加熱する加熱手段とを有して前記加熱により前記溶液を
沸騰させて冷媒蒸気を発生させ濃度の濃くなった前記溶
液を規定液面から溢れ超えさせる再生器と、前記の溢れ
超えた溶液と吸収器側から導かれてきた稀溶液との間で
熱交換する熱交換器と、前記の溢れ超えた溶液を前記再
生器から前記熱交換器へ導く溶液導管とを備えた吸収式
冷凍機。
1. A solution containing a solution and a heating means for heating the solution in the solution reservoir, the solution being boiled by the heating to generate a refrigerant vapor, and the concentrated solution is defined. A regenerator for overflowing from the liquid surface, a heat exchanger for exchanging heat between the overflowed solution and the dilute solution introduced from the absorber side, and the overflowed solution from the regenerator. An absorption refrigerator having a solution conduit leading to the heat exchanger.
【請求項2】 前記再生器は前記熱交換器より高い位置
に配置された請求項1項記載の吸収式冷凍機。
2. The absorption refrigerator according to claim 1, wherein the regenerator is arranged at a position higher than the heat exchanger.
JP5053871A 1993-03-15 1993-03-15 Absorption refrigerator Expired - Fee Related JP2899645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5053871A JP2899645B2 (en) 1993-03-15 1993-03-15 Absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5053871A JP2899645B2 (en) 1993-03-15 1993-03-15 Absorption refrigerator

Publications (2)

Publication Number Publication Date
JPH06265235A true JPH06265235A (en) 1994-09-20
JP2899645B2 JP2899645B2 (en) 1999-06-02

Family

ID=12954820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5053871A Expired - Fee Related JP2899645B2 (en) 1993-03-15 1993-03-15 Absorption refrigerator

Country Status (1)

Country Link
JP (1) JP2899645B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529148A (en) * 1975-07-14 1977-01-24 Kawasaki Heavy Ind Ltd Preventive device for crystallization of absorbed liquid absorption re frigerator
JPS60111855A (en) * 1983-11-23 1985-06-18 川重冷熱工業株式会社 Double effect absorption refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529148A (en) * 1975-07-14 1977-01-24 Kawasaki Heavy Ind Ltd Preventive device for crystallization of absorbed liquid absorption re frigerator
JPS60111855A (en) * 1983-11-23 1985-06-18 川重冷熱工業株式会社 Double effect absorption refrigerator

Also Published As

Publication number Publication date
JP2899645B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
JP3445941B2 (en) Multi-stage evaporative absorption type absorption chiller / heater and large temperature difference air conditioning system equipped with the same
KR890004393B1 (en) Air cooling type absorption cooler
CN210922310U (en) Ammonia still tower top ammonia steam waste heat recovery system and coking process system
JP2899645B2 (en) Absorption refrigerator
JPH0446339B2 (en)
US2750763A (en) Absorption refrigeration
JP2003139432A (en) Absorption type heat source device
JP2823295B2 (en) Absorption refrigerator
JPS58150774A (en) Absorption heat pump
JPS60162166A (en) Multiple effect absorption type refrigerator
CN116379634A (en) Closed absorption heat pump system and operation method
JP4282225B2 (en) Absorption refrigerator
JPH0354378Y2 (en)
JPH0325258A (en) Air cooled absorption type cold and hot water supplier
JPH0539410Y2 (en)
JPS60599Y2 (en) low temperature generator
JPS61101766A (en) Absorption type water chiller and heater
JPS6148064B2 (en)
KR840000451B1 (en) Absorption refrigeration system
JP2835801B2 (en) Absorption chiller / heater
CN117168182A (en) Dual-purpose exhaust steam unit for winter and summer
JP4020569B2 (en) Absorption chiller / heater
US3414051A (en) Heating and cooling system
JPS5829424Y2 (en) absorption cold water machine
JPS61295473A (en) Absorption refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees