JPH06264073A - Coal gasifier - Google Patents

Coal gasifier

Info

Publication number
JPH06264073A
JPH06264073A JP5053827A JP5382793A JPH06264073A JP H06264073 A JPH06264073 A JP H06264073A JP 5053827 A JP5053827 A JP 5053827A JP 5382793 A JP5382793 A JP 5382793A JP H06264073 A JPH06264073 A JP H06264073A
Authority
JP
Japan
Prior art keywords
fluidized bed
furnace
gas
coal
char
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5053827A
Other languages
Japanese (ja)
Other versions
JP3105687B2 (en
Inventor
Yuichi Fujioka
祐一 藤岡
Kimiyo Tokuda
君代 徳田
Fumiya Nakajima
文也 中島
Shigeyasu Ishigami
重泰 石神
Toshimitsu Ichinose
利光 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP05053827A priority Critical patent/JP3105687B2/en
Priority to FI941141A priority patent/FI941141A/en
Priority to DE69404187T priority patent/DE69404187T2/en
Priority to EP94103919A priority patent/EP0616114B1/en
Publication of JPH06264073A publication Critical patent/JPH06264073A/en
Priority to US08/375,520 priority patent/US5517815A/en
Priority to US08/594,407 priority patent/US5765365A/en
Application granted granted Critical
Publication of JP3105687B2 publication Critical patent/JP3105687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

PURPOSE:To provide a coal gasifier whereby the chemical energy of coal can be effectively utilized and the concentration of sulfur components in the formed gas can be lowered. CONSTITUTION:A formed gas 700a leaving a coal gasifier 1 is led to a desulfurization oven 2 in which a fluidized bed of limestone is formed. The inside of the oven 2 is divided into upper and lower fluidized layers 2B and 2A with an inside dispersing plate 22. The char 101 from the oven 1 passes hoppers 7a to 74a, is elevated in pressure and is fed to an oxidation oven 3. The CaS, etc., also leaving the oven 2 pass hoppers 70b to 74b, are elevated in pressure, and are fed to the oven 3. In the oven 3, the heat generated by the oxidation of the char 101 and the CaS, etc., 401 with air 201 and steam 300 is recovered with a heat exchanger 4 in the oven 3. The combustion gas from the oven 3 is led through a cyclone 6 to the gasifier 1. In the Fig., 10a, 10b, 10c and 10d are flow rate control means in which inert gas is utilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は石炭をガス化して石炭ガ
ス化ガスを得る装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for gasifying coal to obtain coal gasification gas.

【0002】[0002]

【従来の技術】石炭は埋蔵量の多さと、その埋蔵量の偏
在性が世界的に小さいことから発電用の燃料として今後
とも重要であるが、石炭発電所からのSOX ,NOX ,CO2
等の地球環境に悪影響を与える物質の排出量を低減さ
せ、かつ発電効率を向上させる必要がある。そのため
に、従来の微粉炭ボイラにかわる石炭ガス化発電装置や
加圧流動層燃焼ボイラ発電装置が開発されている。それ
ら開発中の発電装置の一つとして、流動層石炭ガス化炉
を用いた発電装置がある。その従来例を図3に示す。
2. Description of the Related Art Coal is still important as a fuel for power generation because of its large reserves and uneven distribution of reserves worldwide, but SO X , NO X , CO from coal power plants 2
It is necessary to reduce the emission of substances that adversely affect the global environment such as the above and improve the power generation efficiency. For this reason, coal gasification power generators and pressurized fluidized bed combustion boiler power generators have been developed that replace conventional pulverized coal boilers. One of the power generators under development is a power generator using a fluidized bed coal gasification furnace. A conventional example is shown in FIG.

【0003】この従来例は、本発明者らが開発を実施し
ていた流動層石炭ガス化炉である。その開発に関しては
三菱重工技報のVol.22 No.3 の1〜7頁に報告してい
る。図3に沿って、その従来例を説明する。石炭100 と
石炭の搬送空気200 は、石炭ガス化炉1へ供給される。
石炭ガス化炉1では、石炭とチャーが流動層1Aの流動化
粒子となり、ガス分散板11を通して導入される下段ガス
化炉9のガス化ガス700dと石炭の搬送空気200 により流
動化されて流動層1Aが形成されている。石炭100 が流動
層1Aにおいてガス化される。
This conventional example is a fluidized bed coal gasification furnace which the present inventors have developed. The development is reported on pages 1 to 7 of Mitsubishi Heavy Industries Technical Report Vol.22 No.3. A conventional example will be described with reference to FIG. Coal 100 and coal carrier air 200 are supplied to the coal gasifier 1.
In the coal gasification furnace 1, coal and char become fluidized particles of the fluidized bed 1A, which are fluidized by the gasification gas 700d of the lower gasification furnace 9 and the coal carrier air 200 which are introduced through the gas dispersion plate 11. The layer 1A is formed. 100 coal is gasified in the fluidized bed 1A.

【0004】石炭ガス化炉1から発生したガス化ガス70
0aはサイクロン5により脱塵される。脱塵後のガス化ガ
ス700bは後流のガス精製装置(図示せず。)へ送られ
る。石炭ガス化炉1でガス化されなかったチャー101
は、石炭ガス化炉1から抜き出されてチャー移送装置76
へ移送される。サイクロン5により回収されたチャー10
2 はチャー移送装置77に移送される。
Gasification gas 70 generated from the coal gasification furnace 1
Cyclone 5 removes dust from 0a. The gasified gas 700b after dedusting is sent to a gas purification device (not shown) in the downstream. Char 101 not gasified in coal gasifier 1
Is extracted from the coal gasifier 1 and the char transfer device 76
Be transferred to. Char 10 recovered by Cyclone 5
2 is transferred to the char transfer device 77.

【0005】チャー移送装置76により、重力とイナート
ガス500eの作用によりチャー101 は下段ガス化炉9へ供
給される。チャー移送装置77により、チャー102 は空気
203に気流搬送されて下段ガス化炉9へ供給される。下
段ガス化炉9には、空気201 と水蒸気300 がガス分散板
31を通して供給される。空気201 と水蒸気300 により、
チャーが流動化され、流動層9Aにおいてチャーがガス化
され、可燃のガス化ガス700dと排出灰901 に転換され
る。
By the char transfer device 76, the char 101 is supplied to the lower gasification furnace 9 by the action of gravity and the inert gas 500e. The char transfer device 77 allows the char 102 to move to the air.
The gas is conveyed to 203 and supplied to the lower gasification furnace 9. In the lower gasification furnace 9, air 201 and steam 300 are distributed on the gas dispersion plate.
Supplied through 31. With air 201 and steam 300,
The char is fluidized, the char is gasified in the fluidized bed 9A, and is converted into combustible gasified gas 700d and exhaust ash 901.

【0006】以上説明した従来技術の第一の問題点は、
石炭の有する化学エネルギーの利用効率が低いことであ
る。石炭の持つ化学エネルギーの内、石炭ガス化炉1お
よび下段ガス化炉9でガス化されずに系外に排出された
チャー901 および石炭ガス化ガス700bに随伴されて系外
へ持ち出される未燃炭素の割合が大きかった。従来の技
術の第二の問題点は、脱硫のために石炭ガス化ガス700b
の温度を低下させる必要があり、この温度低下がエネル
ギーロスとなっていたことである。
The first problem of the prior art described above is that
The utilization efficiency of the chemical energy of coal is low. Of the chemical energy of coal, the unburned char 901 discharged to the outside of the system without being gasified in the coal gasification furnace 1 and the lower gasification furnace 9 and the coal gasification gas 700b and taken out of the system The carbon content was high. The second problem of the conventional technology is that the coal gasification gas 700b is used for desulfurization.
It is necessary to lower the temperature of, and this temperature reduction resulted in energy loss.

【0007】[0007]

【発明が解決しようとする課題】本発明は、石炭の有す
る化学エネルギーをガスの顕熱に効率的に変化させて火
力プラントで利用することができるようにした高効率の
石炭ガス化装置を提供することを課題としている。ま
た、本発明はSOX , NOX , CO2 などの排出量が少い石炭
ガス化炉を提供することも課題としている。更に、本発
明は石炭ガス化炉を出た石炭ガス化ガスが導かれる脱硫
装置を上下流動層に分割しそれぞれの流動層を最適条件
に制御して石炭ガス化ガス中の硫黄化合物を効果的に固
定することができるようにした石炭ガス化装置を提供す
ることも課題としている。
DISCLOSURE OF THE INVENTION The present invention provides a highly efficient coal gasifier which efficiently converts the chemical energy of coal into sensible heat of gas so that it can be used in a thermal power plant. The task is to do. Another object of the present invention is to provide a coal gasification furnace that emits a small amount of SO X , NO X , CO 2 , and the like. Furthermore, the present invention effectively divides a desulfurizer into which coal gasification gas leaving the coal gasification furnace is divided into upper and lower fluidized beds, and controls each fluidized bed under optimum conditions to effectively remove sulfur compounds in the coal gasification gas. It is also an object to provide a coal gasification device that can be fixed to the.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

(未燃炭素の減少)本発明による石炭ガス化装置では、
石炭ガス化炉からチャーの供給を受けてチャー中の未燃
分を酸化すると共に脱硫炉から脱硫剤の供給を受けて脱
硫剤中のCaS をCaSO4 へ転換し、これら酸化反応によっ
て生じた熱で流体を加熱する熱交換器を備え、燃焼ガス
を石炭ガス化炉へ燃焼ガスとして供給する酸化炉を設け
ている。この酸化炉では、未燃炭素を減少させるため
に、空気比1以上で運転できるように、炉内に熱交換器
を設置し、流動層の温度を流動層粒子が軟化し、粒子同
士の付着による造粒が生じないような温度以下に制御し
ながら、ガス化炉で発生したチャーを燃焼させ、チャー
の保有しているエネルギーを有効に回収する。
(Reduction of unburned carbon) In the coal gasifier according to the present invention,
The char is supplied from the coal gasification furnace to oxidize the unburned components in the char, and the desulfurization agent is supplied from the desulfurization furnace to convert CaS in the desulfurization agent to CaSO 4 and heat generated by these oxidation reactions. Is equipped with a heat exchanger that heats the fluid, and an oxidation furnace that supplies combustion gas to the coal gasification furnace as combustion gas is provided. In this oxidation furnace, in order to reduce unburned carbon, a heat exchanger is installed in the furnace so that it can be operated at an air ratio of 1 or more, the temperature of the fluidized bed is softened by fluidized bed particles, and the particles adhere to each other. The char generated in the gasification furnace is burned and the energy held by the char is effectively recovered while controlling the temperature below the temperature at which the granulation by the above does not occur.

【0009】(ガス化ガスを冷却せずに脱硫)本発明に
よる石炭ガス化装置では、ガス化ガスの脱硫を石炭ガス
化ガス温度をあまり低下させずに行えるように、石灰石
を脱硫剤とした脱硫炉を石炭ガス化炉の後流に設置して
いる。すなわち、本発明による石炭ガス化装置において
は、石灰石の供給を受け同石灰石を流動化用の粒子と
し、ガス化炉から供給される石炭ガス化ガスを流動化用
のガスとして流動層を形成し同石炭ガス化ガス中の硫黄
化合物をCaS として固定する脱硫炉を設けている。
(Desulfurization of Gasified Gas without Cooling) In the coal gasifier according to the present invention, limestone is used as a desulfurizing agent so that the desulfurization of the gasified gas can be performed without significantly lowering the temperature of the coal gasified gas. A desulfurization furnace is installed downstream of the coal gasification furnace. That is, in the coal gasifier according to the present invention, limestone is supplied and the limestone is used as particles for fluidization, and coal gasification gas supplied from the gasification furnace is used as gas for fluidization to form a fluidized bed. A desulfurization furnace is installed to fix the sulfur compounds in the coal gasification gas as CaS.

【0010】更にまた、本発明による石炭ガス化装置で
は次の構成をもつ脱硫炉も採用する。すなわち、脱硫炉
として、石灰石の流動層を形成させるガス分散板と、同
流動層内に配設され同流動層内の粒子の動きを制限し同
流動層を上段流動層と下段流動層に分割する内部分散板
とを有し、前記上段流動層には熱交換器が配設されて同
上段流動層の温度が800 °〜900 ℃に保たれると共に前
記石灰石が供給され、前記下段流動層には前記ガス分散
板を経て石炭ガス化炉から石炭ガス化ガスが供給されて
同下段流動層の温度が900 °〜1000℃に保たれる。
Furthermore, the coal gasifier according to the present invention also employs a desulfurization furnace having the following structure. That is, as a desulfurization furnace, a gas dispersion plate that forms a fluidized bed of limestone, and the movement of particles in the fluidized bed that is arranged in the fluidized bed is restricted and the fluidized bed is divided into an upper fluidized bed and a lower fluidized bed. A heat exchanger is provided in the upper fluidized bed to keep the temperature of the upper fluidized bed at 800 ° to 900 ° C and the limestone is supplied to the lower fluidized bed. The coal gasification gas is supplied from the coal gasification furnace through the gas dispersion plate to maintain the temperature of the lower fluidized bed at 900 ° to 1000 ° C.

【0011】[0011]

【作用】[Action]

(未燃炭素の減少)本発明による石炭ガス化装置では前
記したように酸化炉を設置しており、この酸化炉を酸化
雰囲気として石炭ガス化炉から出るチャーを燃焼させる
ことにより、石炭ガス化炉で発生したチャー中の未燃分
を完全にガスに転換することが可能となり、石炭ガス化
ガスに随伴して系外に持ち出される未燃分と、この酸化
炉の下部から抜き出される灰中の未燃分の濃度を極めて
小さな値とすることが可能となった。
(Reduction of unburned carbon) In the coal gasification apparatus according to the present invention, the oxidation furnace is installed as described above, and the char that comes out of the coal gasification furnace is burned by using this oxidation furnace as an oxidizing atmosphere to generate coal gasification. It becomes possible to completely convert the unburned components in the char generated in the furnace into gas, and the unburned components taken out of the system along with the coal gasification gas and the ash extracted from the lower part of this oxidation furnace. It has become possible to make the concentration of unburned components inside extremely small.

【0012】(ガス化ガスを冷却せずに脱硫)石灰石と
H2S およびCOS の反応は、石灰石からCO2 が抜けていく
カルシネーション反応を併発させてやることにより、石
灰石からCaS への反応率を向上させることができる。石
炭ガス化ガスをガスタービンコンバインド発電用に使用
する場合は、ガス化炉の圧力は10〜30Kg/cm2の圧力が選
定されるが、そのような場合の脱硫温度は、900 〜1050
℃が適当である。この温度は、流動層石炭ガス化炉の運
用温度とほぼ同じ温度となり、石炭ガス化ガスを冷却な
しで脱硫炉へ導入して、ガス化ガスの脱硫が可能とな
る。本発明による石炭ガス化装置においては、前記した
ように石灰石の流動層による脱硫炉を用いており、石灰
石の滞留時間は、石灰石の流動層高さを調整することに
より調整可能であり、石灰石がCaS へ転換する反応が完
了する、任意の石灰石の滞留時間を確保することが可能
となる。
(Desulfurization of gasified gas without cooling) with limestone
The reaction of H 2 S and COS can improve the reaction rate from limestone to CaS by simultaneously causing the calcination reaction in which CO 2 escapes from limestone. When coal gasification gas is used for gas turbine combined power generation, the pressure of the gasification furnace is selected to be 10 to 30 Kg / cm 2 , and the desulfurization temperature in such a case is 900 to 1050.
℃ is suitable. This temperature is almost the same as the operating temperature of the fluidized bed coal gasification furnace, and it is possible to desulfurize the gasification gas by introducing the coal gasification gas into the desulfurization furnace without cooling. In the coal gasifier according to the present invention, the desulfurization furnace using the fluidized bed of limestone is used as described above, the residence time of limestone can be adjusted by adjusting the fluidized bed height of limestone, and limestone is It is possible to secure a residence time for any limestone that completes the reaction of converting to CaS.

【0013】なお、本発明によって脱硫炉内の流動層を
内部分散板によって上下段に分割し、上段流動層には熱
交換器が配設されて800 °〜900 ℃に保たれると共に石
灰石が供給され、下段流動層にはガス分散板を経て石炭
ガス化炉から石炭ガス化ガスが供給されて900 °〜1000
℃に保たれている構成を採用したものでは、上段流動層
では石灰石の粒子の表面付近で未反応の石灰石とH2S ,
COS が反応し、ガス中のH2S ,COS が石灰石表面に固定
される。
According to the present invention, the fluidized bed in the desulfurization furnace is divided into upper and lower tiers by the internal dispersion plate, and a heat exchanger is arranged in the upper fluidized tier to keep the limestone at 800 ° -900 ° C. It is supplied to the lower fluidized bed from the coal gasification furnace through the gas distribution plate, and the gas is supplied from 900 ° to 1000 ° C.
In the upper fluidized bed, the unreacted limestone and H 2 S,
COS reacts and H 2 S and COS in the gas are fixed on the limestone surface.

【0014】表面がCaS となった石灰石の粒子は下段流
動層へ移動し、流動層温度が900 〜1000℃となり、石灰
石中のCaSO3 がCaO とCO2 に分解する反応が生じ、石灰
石粒子内部からCO2 が放出される際に石灰石の反応有効
面積が増加し、H2S とCOS が石灰石内部にCaS として固
定される。下段流動層の温度を900 〜1000℃とすること
で、CaCO3 がCaO とCO2 になる反応速度と、脱硫反応速
度をほぼ等速度とすることが可能となり、石灰石重量あ
たりのCaS 生成重量を増大させることができる。上記の
CaCO3 がCaO とCO2 になる反応速度はCO2 分圧に影響さ
れるので、温度によりCaCO3 がCaO とCO2 となる反応速
度の微調整が可能となる。
The particles of limestone whose surface became CaS move to the lower fluidized bed, the fluidized bed temperature reaches 900 to 1000 ° C., and the reaction of CaSO 3 in limestone to decompose into CaO and CO 2 occurs, and the inside of the limestone particle When CO 2 is released from limestone, the effective reaction area of limestone increases, and H 2 S and COS are fixed as CaS inside limestone. By setting the temperature of the lower fluidized bed to 900-1000 ° C, the reaction rate of CaCO 3 to CaO and CO 2 and the desulfurization reaction rate can be made almost equal, and the CaS production weight per limestone weight can be set. Can be increased. above
Since the reaction rate at which CaCO 3 becomes CaO and CO 2 is affected by the CO 2 partial pressure, the reaction rate at which CaCO 3 becomes CaO and CO 2 can be finely adjusted depending on the temperature.

【0015】下段流動層でガス化ガス中のH2S とCOS の
濃度が低下するが、石灰石とH2S の反応平衡から図2に
示すように、温度が高いほど反応平衡上ガス中のH2S 濃
度は高くなる。下段流動層で反応平衡上のガス中のH2S
濃度に近い値となった後、上段流動層で未反応の石灰石
と下段流動層よりも低い温度で反応することにより、更
にH2S 濃度を低減することが可能となる。
In the lower fluidized bed, the concentrations of H 2 S and COS in the gasified gas decrease, but from the reaction equilibrium of limestone and H 2 S, as shown in FIG. The H 2 S concentration is high. H 2 S in gas on reaction equilibrium in lower fluidized bed
After reaching a value close to the concentration, it is possible to further reduce the H 2 S concentration by reacting unreacted limestone in the upper fluidized bed with a temperature lower than that in the lower fluidized bed.

【0016】(発電効率向上)本発明による石炭ガス化
装置により生成されるガス化ガスをガスタービンコンバ
インドサイクル発電装置用に使用する場合、本発明によ
る石炭ガス化装置で採用している酸化炉内に配設された
熱交換器に供給する流体としては水蒸気と加圧空気の2
ケースが考えられる。即ち、酸化炉の熱交換器に水蒸気
を供給し、その水蒸気によりスチームタービンを駆動さ
せ発電する場合と、酸化炉の熱交換器に空気圧縮器から
発生する加圧空気を供給して加圧空気の温度を上昇させ
て、その加圧空気をガスタービンのガス燃焼器に供給し
その燃焼ガスをガスタービンに供給することにより、ガ
スタービンの発電出力を増加させる場合であるが、いづ
れの場合も発電効率を向上させることが可能になる。
(Improvement of power generation efficiency) When the gasification gas generated by the coal gasifier according to the present invention is used for a gas turbine combined cycle power generator, the inside of the oxidation furnace used in the coal gasifier according to the present invention As the fluid to be supplied to the heat exchanger installed in the
A case is possible. That is, when steam is supplied to the heat exchanger of the oxidation furnace and the steam turbine is driven by the steam to generate electric power, and when compressed air generated from the air compressor is supplied to the heat exchanger of the oxidation furnace. It is a case where the power generation output of the gas turbine is increased by increasing the temperature of the gas, supplying the compressed air to the gas combustor of the gas turbine and supplying the combustion gas to the gas turbine. In either case, It becomes possible to improve power generation efficiency.

【0017】(脱硫率の向上(酸化炉ガスの脱硫))本
発明による石炭ガス化装置で採用している酸化炉では脱
硫炉から出るCaS をO2と反応させてCaSO4 とする次の反
応が生じる。
(Improvement of Desulfurization Rate (Desulfurization of Oxidation Furnace Gas)) In the oxidation furnace used in the coal gasifier according to the present invention, CaS from the desulfurization furnace is reacted with O 2 to form CaSO 4. Occurs.

【0018】[0018]

【数1】 [Equation 1]

【0019】その副反応として次の反応が生じる。The following reaction occurs as the side reaction.

【0020】[0020]

【数2】 [Equation 2]

【0021】上記(2)の反応により発生したSO2 は、
酸化炉流動層内でCaO と反応して上記(1)の反応でCa
SO4 として固定されるが、CaO と接触するチャンスが無
いまヽこの酸化炉から石炭ガス化炉へ燃焼ガス中のSO2
として供給されても、石炭ガス化炉でSO2 がH2S に転換
され、石灰石中にCaS として固定される。
SO 2 generated by the above reaction (2) is
By reacting with CaO in the fluidized bed of the oxidation furnace, Ca
It is fixed as SO 4 , but there is no chance of contact with CaO. SO 2 in the combustion gas from this oxidation furnace to the coal gasifier
However, SO 2 is converted to H 2 S in the coal gasification furnace and fixed as CaS in limestone.

【0022】[0022]

【実施例】以下、本発明による石炭ガス化装置を図1に
示す一実施例に基づいて具体的に説明する。石炭ガス化
炉1に石炭100 と加圧空気200 を供給する。石炭ガス化
炉1において石炭100 が加圧空気200 中の酸素とガス化
炉分散板11を通して導入される酸化炉3の燃焼ガス600d
によりガス化され、ガス化ガス700aと、チャー101 に転
換される。
EXAMPLE A coal gasifier according to the present invention will be specifically described below based on an example shown in FIG. 100 coal and 200 compressed air are supplied to the coal gasifier 1. In the coal gasification furnace 1, coal 100 is introduced through oxygen in the compressed air 200 and the gasification furnace dispersion plate 11 and combustion gas 600d of the oxidation furnace 3
It is gasified by and converted into the gasified gas 700a and the char 101.

【0023】粒子流量調整部10a は、配管内にイナート
ガス500aが供給される。そのイナートガス500aは断続的
に供給され、イナートガス500aが供給された場合は、配
管内粒子は流動化し、イナートガス500aが供給されない
場合は固定層となる。粒子が流動化している時に、ガス
化炉1からホッパ 70aへ粒子が移送される。チャー101
は、イナートガス500aの供給量とその断続させる時間に
より、排出量を制御してホッパ 70aへ抜き出す量を制御
する。
The particle flow rate adjusting unit 10a is supplied with the inert gas 500a in the pipe. The inert gas 500a is intermittently supplied, and when the inert gas 500a is supplied, the particles in the pipe are fluidized, and when the inert gas 500a is not supplied, it becomes a fixed bed. When the particles are fluidized, the particles are transferred from the gasification furnace 1 to the hopper 70a. Char 101
Controls the discharge amount by controlling the supply amount of the inert gas 500a and the time for which the inert gas 500a is interrupted, and controls the discharge amount to the hopper 70a.

【0024】ガス化ガス700aはサイクロン5により脱塵
される。サイクロン5により脱塵された粒子は粒子流量
調整部10b を通して、イナートガス500bでサイクロン5
の下部から流動層1A内にリサイクルする。脱塵後のガス
化ガス700bは脱硫炉2へ分散板21を通して供給される。
脱硫炉2において石灰石400 の流動層が形成され、ガス
化ガス700bは、その流動層の流動化ガスの役目を果た
す。
The gasification gas 700a is dedusted by the cyclone 5. The particles dedusted by the cyclone 5 are passed through the particle flow rate adjusting unit 10b and the inert gas 500b is used to remove the particles in the cyclone 5.
Recycle from the bottom to the inside of fluidized bed 1A. The gasified gas 700b after dedusting is supplied to the desulfurization furnace 2 through the dispersion plate 21.
A fluidized bed of limestone 400 is formed in the desulfurization furnace 2, and the gasification gas 700b serves as the fluidized gas of the fluidized bed.

【0025】脱硫炉2は上部流動層2Bと下部流動層2Aに
内部分散板22で分割されている。石灰石400 は、上部流
動層2Bへ供給される。内部分散板22は流動層の断面積
を、その部分だけ50%以下にせばめており、上部流動層
2Bと下部流動層2Aの粒子混合を制限している。上部流動
層2B内には冷却器23が設置されており、これによる粒子
とガスの冷却と、内部分散板22の上部流動層2Bの粒子と
下部流動層2Aの粒子の混合量の制御により、上部流動層
2Bの温度は800 〜900 ℃に、下部流動層2Aの温度は950
℃に保たれる。石灰石400 とガス化ガス700b中のH2S と
COS が反応し、石灰石400 の一部がCaS に転換される。
脱硫後のガス化ガス700cは脱塵装置( 図示せず。) へ送
られる。
The desulfurization furnace 2 is divided into an upper fluidized bed 2B and a lower fluidized bed 2A by an internal dispersion plate 22. Limestone 400 is supplied to the upper fluidized bed 2B. The internal dispersion plate 22 has the cross-sectional area of the fluidized bed limited to 50% or less only in that portion, and the upper fluidized bed is
2B and lower fluidized bed 2A are limited in particle mixing. A cooler 23 is installed in the upper fluidized bed 2B, by which particles and gas are cooled, and by controlling the mixing amount of the particles of the upper fluidized bed 2B of the internal dispersion plate 22 and the particles of the lower fluidized bed 2A, Upper fluidized bed
2B temperature is 800-900 ℃, lower fluidized bed 2A temperature is 950
Kept at ℃. Limestone 400 and H 2 S in gasification gas 700b
COS reacts and part of limestone 400 is converted to CaS.
The desulfurized gasified gas 700c is sent to a dust removing device (not shown).

【0026】脱硫炉2から抜き出す脱硫剤401 は、イナ
ートガス500cを用いた粒子流量調整部10c により、その
抜き出し量を調整されながら抜き出される。石炭ガス化
炉1で生成したチャー101 は、ホッパ 70aに受け入れら
れ、ホッパ72a が加圧中の場合はホッパ72a の圧力がホ
ッパ70a と同圧となるまでチャー101はホッパ 70aの中
に蓄えられ、ホッパ 70aとホッパ72a が同圧となった
ら、バルブ71a が開かれ、チャー101 は、ホッパ72a へ
落下する。次にバルブ71a が閉じられ、ホッパ72a は加
圧され、ホッパ74a と同圧となったらバルブ73a が開か
れチャー101 はホッパ74a に落下する。ホッパ74a 内の
チャー101 はロータリーフィーダ75a により、酸化炉3
へ定量供給される。
The desulfurization agent 401 extracted from the desulfurization furnace 2 is extracted while the amount of extraction is adjusted by the particle flow rate adjusting unit 10c using the inert gas 500c. The char 101 produced in the coal gasifier 1 is received by the hopper 70a, and if the hopper 72a is being pressurized, the char 101 is stored in the hopper 70a until the pressure of the hopper 72a becomes the same as that of the hopper 70a. When the hopper 70a and the hopper 72a have the same pressure, the valve 71a is opened and the char 101 drops to the hopper 72a. Next, the valve 71a is closed, the hopper 72a is pressurized, and when the pressure becomes the same as that of the hopper 74a, the valve 73a is opened and the char 101 drops into the hopper 74a. The char 101 in the hopper 74a is connected to the oxidizing furnace 3 by the rotary feeder 75a.
Is supplied in a fixed amount.

【0027】脱硫炉2で生成したCaS を含む石灰石は、
チャー101 と同様にして、ホッパ70b ,72b, 74b とバ
ルブ71b , 73b とロータリーフィーダ75b を使用して酸
化炉3へ供給される。酸化炉3では、主として脱硫剤に
より流動層が形成される。チャー101 と、石灰石401 と
サイクロン6により回収され、イナートガス500dを用い
た粒子流量調整部10d を通して粒子402 が流動層3Aへ供
給される。流動層3Aは、炉底から分散板31を通して供給
された空気201 と水蒸気300 により流動化される。流動
層3Aでは、チャーは燃焼反応により速やかにガスと灰分
に転換され、それに対して石灰石中のCaS はゆっくりと
CaSO4 に転換されるので、流動層3Aの流動化粒子は、脱
硫剤が主体となる。
The limestone containing CaS produced in the desulfurization furnace 2 is
Similar to the char 101, the hoppers 70b, 72b, 74b, the valves 71b, 73b and the rotary feeder 75b are used to supply the oxidizing furnace 3. In the oxidation furnace 3, a fluidized bed is formed mainly by the desulfurizing agent. The particles 402 are collected by the char 101, the limestone 401, and the cyclone 6, and the particles 402 are supplied to the fluidized bed 3A through the particle flow rate adjusting unit 10d using the inert gas 500d. The fluidized bed 3A is fluidized by the air 201 and the steam 300 supplied from the furnace bottom through the dispersion plate 31. In the fluidized bed 3A, char is rapidly converted into gas and ash by the combustion reaction, whereas CaS in limestone is slowly converted.
Since it is converted to CaSO 4 , the fluidized particles in the fluidized bed 3A mainly contain the desulfurizing agent.

【0028】酸化炉3のフリーボードには流体202 を流
す熱交換器4が設置され、流動層3Aから舞い上がってく
る粒子およびガスの熱を吸収することにより流動層3Aの
温度をCaS をCaSO4 とする反応が生じ、副反応で生じた
SO2 をCaO と反応させてCaSO 4 とする反応が進行し、か
つ灰や脱硫剤が軟化してアグロメが生じない温度であ
る、850 〜1050℃の範囲に制御される。酸化炉3からサ
イクロン6へは、2本の配管で連結されており、一本は
酸化炉3の頂部すなわち熱交換器4の上部付近の位置か
ら、他方は熱交換器4の下部と同じ高さの位置から配管
が設置されている。これは、その配管の片方に取りつけ
られたバルブ8により、熱交換器4の上部からサイクロ
ン6へ移送する燃焼ガス600aと熱交換器4の下部からサ
イクロン6へ移送する燃焼ガス600bの量を調整すること
により、ガス化炉1に供給する燃焼ガス600dの温度を調
整するためである。酸化炉3からの燃焼ガスは合わさっ
て600cとなりサイクロン6へ流れる。
A fluid 202 flows through the freeboard of the oxidation furnace 3.
A heat exchanger 4 is installed and rises from the fluidized bed 3A.
Of the fluidized bed 3A by absorbing the heat of particles and gas
Temperature CaS and CaSOFourThe reaction that occurs occurs as a side reaction
SO2Reacts with CaO to cause CaSO FourThe reaction to
At a temperature at which the ash and desulfurization agent do not soften and agglomeration does not occur.
It is controlled within the range of 850-1050 ℃. From the oxidation furnace 3
Two pipes are connected to Icron 6, one of which is
A position near the top of the oxidation furnace 3, that is, near the top of the heat exchanger 4
And the other is piped from the same height as the bottom of the heat exchanger 4.
Is installed. This attaches to one of the pipes
Cyclone is applied from the top of the heat exchanger 4 by the valve 8 provided.
Combustion gas 600a transferred to the heat exchanger 6 and the heat from the bottom of the heat exchanger 4
Adjusting the amount of combustion gas 600b transferred to Icron 6.
Control the temperature of the combustion gas 600d supplied to the gasification furnace 1.
This is to adjust. Combustion gas from the oxidation furnace 3 is combined
It becomes 600c and flows to cyclone 6.

【0029】石炭中の灰および脱硫後の石灰石は酸化炉
3の炉底から、排出灰900 として、あるいはサイクロン
6の下部より排出灰901 として本装置外へ排出される。
以上、本発明を図示した実施例に基づいて具体的に説明
したが、本発明がこれらの実施例に限定されず特許請求
の範囲に示す本発明の範囲内で、その形状、構造に種々
の変更を加えてよいことはいうまでもない。
Ash in coal and limestone after desulfurization are discharged from the bottom of the oxidation furnace 3 as discharged ash 900 or as discharged ash 901 from the lower part of the cyclone 6 to the outside of the apparatus.
The present invention has been specifically described above based on the illustrated embodiments, but the present invention is not limited to these embodiments, and within the scope of the present invention set forth in the claims, various shapes and structures can be used. It goes without saying that changes may be made.

【0030】[0030]

【発明の効果】本発明による石炭ガス化装置において
は、ガス化炉からチャーの供給を受けてチャー中の未燃
分を酸化すると共に脱硫炉から脱硫剤の供給を受けて脱
硫剤中のCaS をCaSO4 へ転換し、これら酸化反応によっ
て生じた熱で流体を加熱する熱交換器を備え、燃焼ガス
を前記ガス化炉へ前記燃焼ガスとして供給する酸化炉を
用いているので、石炭ガス化炉から排出されるチャー
等、石炭の有する化学エネルギーを熱交換器で十分回収
することができる。例えば、本発明の石炭ガス化装置に
おける石炭ガス化炉をガスタービンコンバインドサイク
ル発電用の石炭ガス化炉として用い、酸化炉の熱交換器
に加圧空気を供給し、その加圧空気をガスタービンのガ
ス燃焼器へ供給するように構成することにより、石炭の
有する化学エネルギーを全量ガスタービンへ供給するガ
スの顕熱へ転換することが可能な石炭ガス化ガスタービ
ンコンバインドサイクル発電装置を構成することが可能
となり高効率発電を行うことができる。
In the coal gasifier according to the present invention, the char is supplied from the gasification furnace to oxidize the unburned components in the char, and the desulfurization agent is supplied from the desulfurization furnace to supply CaS in the desulfurization agent. To CaSO 4 , and equipped with a heat exchanger that heats the fluid with the heat generated by these oxidation reactions, since an oxidation furnace that supplies combustion gas to the gasification furnace as the combustion gas is used, coal gasification The chemical energy of coal such as char discharged from the furnace can be sufficiently recovered by the heat exchanger. For example, the coal gasifier in the coal gasifier of the present invention is used as a coal gasifier for gas turbine combined cycle power generation, pressurized air is supplied to the heat exchanger of the oxidation furnace, and the pressurized air is used in the gas turbine. A coal gasification gas turbine combined cycle power generator capable of converting all the chemical energy of coal into sensible heat of the gas to be supplied to the gas turbine by being configured to be supplied to the gas combustor of It becomes possible to perform high-efficiency power generation.

【0031】また、本発明による石炭ガス化装置では、
石灰石の供給を受け同石灰石を流動化用の粒子としガス
化炉から供給される石炭ガス化ガスを流動化用のガスと
して流動層を形成し同石炭ガス化ガス中の硫黄化合物を
CaS として固定する脱硫炉を採用しているので石炭ガス
化炉の発生する石炭ガス化ガスをこの脱硫炉における石
灰石の流動層に通すことにより、ガス化ガス中のH2S と
COS 濃度の和を、次の式の化学平衡濃度まで低減させる
ことが可能となる。
Further, in the coal gasifier according to the present invention,
The limestone is supplied and the limestone is used as fluidizing particles and the coal gasification gas supplied from the gasification furnace is used as the fluidizing gas to form a fluidized bed to remove the sulfur compounds in the coal gasification gas.
Since the desulfurization furnace that fixes as CaS is adopted, the coal gasification gas generated by the coal gasification furnace is passed through the fluidized bed of limestone in this desulfurization furnace to generate H 2 S in the gasification gas.
It is possible to reduce the sum of COS concentrations to the chemical equilibrium concentration of the following formula.

【0032】[0032]

【数3】 [Equation 3]

【0033】上記反応のH2S の化学平衡濃度と水蒸気濃
度の関係は図2に示したとおりである。上記に加え、本
発明に基づいて、脱硫炉の流動層内に内部分散板を配設
して同流動層内の粒子の動きを制限し同流動層を上段流
動層と下段流動層に分割し上段流動層には熱交換器を配
設して、800 °〜900 ℃に保つと共に、下段流動層には
石炭ガス化炉から石炭ガス化ガスを供給して900 °〜10
00℃に保つようにすれば、石炭ガス化ガス中の硫黄化合
物を効果的にCaS として固定して除去できるものとな
る。
The relationship between the chemical equilibrium concentration of H 2 S and the water vapor concentration in the above reaction is as shown in FIG. In addition to the above, according to the present invention, an internal dispersion plate is arranged in the fluidized bed of the desulfurization furnace to limit the movement of particles in the fluidized bed to divide the fluidized bed into an upper fluidized bed and a lower fluidized bed. A heat exchanger is installed in the upper fluidized bed to keep the temperature at 800 ° C to 900 ° C, and the lower fluidized bed is supplied with coal gasification gas from the coal gasification furnace to 900 ° C to 10 ° C.
If the temperature is kept at 00 ° C, the sulfur compounds in the coal gasification gas can be effectively fixed and removed as CaS.

【0034】以上のとおり、本発明のシステム構成とす
ることにより、酸化炉で発生するSO 2 濃度を抑制するこ
とが可能となり、上述の石炭ガス化ガスのH2S 濃度の低
減が可能となる。以上のように本発明は、経済的で、か
つ、SOX , NOX , CO2 の排出量の少ない高効率な石炭ガ
ス化装置を提供することができる。
The system configuration of the present invention is as described above.
SO generated in the oxidation furnace 2To reduce the concentration
It becomes possible and H of coal gasification gas mentioned above2Low S concentration
It is possible to reduce. As described above, the present invention is economical and
One, SOX, NOX, CO2Efficient coal gas with low emissions
It is possible to provide a soot converting device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る石炭ガス化装置の構成
を示す機器配置図。
FIG. 1 is an equipment layout diagram showing a configuration of a coal gasifier according to an embodiment of the present invention.

【図2】脱硫後のH2S 濃度とガス化ガス中の水分濃度の
関係を示す線図。
FIG. 2 is a diagram showing the relationship between the H 2 S concentration after desulfurization and the water concentration in the gasification gas.

【図3】従来の流動層石炭ガス化炉を示す機器配置図。FIG. 3 is an equipment layout diagram showing a conventional fluidized bed coal gasification furnace.

【符号の説明】[Explanation of symbols]

1 ガス化炉 1A ガス化炉流動層 11 ガス化炉分散板 100 石炭 101 チャー 10a ガス化炉チャー用粒子流量
調整部 10b サイクロンチャー用粒子流
量調整部 10c 脱硫剤用粒子流量調整部 2 脱硫炉 2A 脱硫炉下部流動層 2B 脱硫炉上部流動層 21 脱硫炉分散板 22 内部分散板 23 熱交換器 200 , 201 空気 202 流体(空気又はスチーム) 203 空気 3 酸化炉 3A 酸化炉流動層 300 水蒸気 31 分散板 4 熱交換器 400 石灰石 401 脱硫炉で反応した石灰石 5 ガス化炉サイクロン 6 酸化炉サイクロン 500a,500b,500c,500d イナートガス 600a,600b,600c,600d 燃焼ガス 70a,70b,72a,72b,74a,74b ホッパ 71a,71b,73a,73b バルブ 75a ,75b ロータリーバルブ 76,77 粒子移送装置 700a,700b,700c,700d 石炭ガス化ガス 8 流量調整バルブ 9 下段ガス化炉 9A 下段ガス化炉流動層 900,901 排出灰
1 Gasification Furnace 1A Gasification Furnace Fluidized Bed 11 Gasification Furnace Dispersion Plate 100 Coal 101 Char 10a Gas Flow Furnace Char Particle Flow Rate Control Unit 10b Cyclone Char Particle Flow Rate Control Unit 10c Desulfurizing Agent Particle Flow Rate Control Unit 2 Desulfurization Furnace 2A Lower fluidized bed of desulfurization furnace 2B Upper fluidized bed of desulfurization furnace 21 Desulfurization furnace dispersion plate 22 Internal dispersion plate 23 Heat exchanger 200, 201 Air 202 Fluid (air or steam) 203 Air 3 Oxidation furnace 3A Oxidation furnace fluidized bed 300 Steam 31 Dispersion plate 4 Heat exchanger 400 Limestone 401 Limestone reacted in desulfurization furnace 5 Gasifier cyclone 6 Oxidation cyclone 500a, 500b, 500c, 500d Inert gas 600a, 600b, 600c, 600d Combustion gas 70a, 70b, 72a, 72b, 74a, 74b Hoppers 71a, 71b, 73a, 73b Valves 75a, 75b Rotary valves 76, 77 Particle transfer devices 700a, 700b, 700c, 700d Coal gasification gas 8 Flow control valve 9 Lower gasifier 9A Lower gasifier Fluidized bed 900,901 Exhaust ash

フロントページの続き (72)発明者 石神 重泰 東京都千代田区丸の内二丁目5番1号 三 菱重工業株式会社内 (72)発明者 一ノ瀬 利光 長崎市深堀町5丁目717番1号 三菱重工 業株式会社長崎研究所内Front page continued (72) Inventor Shigeyasu Ishigami 2-5-1, Marunouchi, Chiyoda-ku, Tokyo Sanryo Heavy Industries Co., Ltd. (72) Toshimitsu Ichinose 5-717-1, Fukahori-cho, Nagasaki-shi Mitsubishi Heavy Industries Stock Ltd. Company Nagasaki Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 石炭、空気及び燃焼ガスの供給を受けて
石炭及びその生成チャーを流動化粒子とし、前記燃焼ガ
スと空気を流動化用のガスとして流動層を形成し石炭を
石炭ガス化ガスとチャーへ転換するガス化炉、石灰石の
供給を受け同石灰石を流動化用の粒子とし、前記ガス化
炉1から供給される石炭ガス化ガスを流動化用のガスと
して流動層を形成し同石炭ガス化ガス中の硫黄化合物を
CaS として固定する脱硫炉、前記ガス化炉からチャーの
供給を受けてチャー中の未燃分を酸化すると共に前記脱
硫炉から脱硫剤の供給を受けて脱硫剤中のCaS をCaSO4
へ転換し、これら酸化反応によって生じた熱で流体を加
熱する熱交換器を備え、燃焼ガスを前記ガス化炉へ前記
燃焼ガスとして供給する酸化炉、前記ガス化炉と、前記
酸化炉に連結され同ガス化炉からチャーを受入れて同酸
化炉の圧力まで昇圧してチャーを同酸化炉に移送するチ
ャー移送装置、および前記脱硫炉と前記酸化炉に連結さ
れ同脱硫炉から脱硫剤を受入れて同酸化炉の圧力まで昇
圧して脱硫剤を同酸化炉に移送する脱硫剤移送装置を有
することを特徴とする石炭ガス化装置。
1. Coal, coal and gasification gas are formed by using coal, air and combustion gas as a fluidizing particle for coal and the char produced thereby to form a fluidized bed by using the combustion gas and air as fluidizing gas. And a liquefaction gas that is converted to char, and limestone is supplied to the limestone as fluidization particles, and the coal gasification gas supplied from the gasification furnace 1 is used as a fluidization gas to form a fluidized bed. Sulfur compounds in coal gasification gas
A desulfurization furnace that fixes as CaS, receives char from the gasification furnace to oxidize unburned matter in the char, and also receives desulfurization agent from the desulfurization furnace to supply CaS in the desulfurization agent to CaSO 4
And a heat exchanger that heats the fluid with the heat generated by these oxidation reactions, and supplies the combustion gas to the gasification furnace as the combustion gas, the gasification furnace, and the oxidation furnace. A char transfer device that receives char from the gasification furnace and raises the pressure to the oxidation furnace to transfer the char to the oxidation furnace, and a desulfurizing agent connected to the desulfurization furnace and the oxidation furnace to receive a desulfurizing agent from the desulfurization furnace A coal gasifier comprising a desulfurization agent transfer device for increasing the pressure to the oxidation furnace and transferring the desulfurization agent to the oxidation furnace.
【請求項2】 前記脱硫炉が前記石灰石の流動層を形成
させるガス分散板と、同流動層内に配設され同流動層内
の粒子の動きを制限し同流動層を上段流動層と下段流動
層に分割する内部分散板とを有し、前記上段流動層には
熱交換器が配設されて、同上段流動層の温度が 800°〜
900℃に保たれると共に前記石灰石が供給され、前記下
段流動層には前記ガス分散板を経て前記石炭ガス化炉か
ら石炭ガス化ガスが供給されて同下段流動層の温度が90
0 °〜1000℃に保たれていることを特徴とする請求項1
記載の石炭ガス化装置。
2. A gas dispersion plate in which the desulfurization furnace forms a fluidized bed of the limestone, and a fluidized bed disposed in the fluidized bed to limit the movement of particles in the fluidized bed so that the fluidized bed is in an upper fluidized bed and a lower fluidized bed. An internal dispersion plate divided into a fluidized bed, a heat exchanger is disposed in the upper fluidized bed, and the temperature of the upper fluidized bed is 800 °
The limestone is supplied while being maintained at 900 ° C., the lower fluidized bed is supplied with coal gasification gas from the coal gasification furnace through the gas dispersion plate, and the temperature of the lower fluidized bed is 90.
The temperature is maintained at 0 ° to 1000 ° C.
The coal gasifier described.
JP05053827A 1993-03-15 1993-03-15 Coal gasifier Expired - Lifetime JP3105687B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP05053827A JP3105687B2 (en) 1993-03-15 1993-03-15 Coal gasifier
FI941141A FI941141A (en) 1993-03-15 1994-03-10 Energy generator based on gasification of coal
DE69404187T DE69404187T2 (en) 1993-03-15 1994-03-14 Power plant with coal gasification
EP94103919A EP0616114B1 (en) 1993-03-15 1994-03-14 Coal gasification power generator
US08/375,520 US5517815A (en) 1993-03-15 1995-01-18 Coal gasification power generator
US08/594,407 US5765365A (en) 1993-03-15 1996-01-31 Coal gasification power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05053827A JP3105687B2 (en) 1993-03-15 1993-03-15 Coal gasifier

Publications (2)

Publication Number Publication Date
JPH06264073A true JPH06264073A (en) 1994-09-20
JP3105687B2 JP3105687B2 (en) 2000-11-06

Family

ID=12953635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05053827A Expired - Lifetime JP3105687B2 (en) 1993-03-15 1993-03-15 Coal gasifier

Country Status (1)

Country Link
JP (1) JP3105687B2 (en)

Also Published As

Publication number Publication date
JP3105687B2 (en) 2000-11-06

Similar Documents

Publication Publication Date Title
US5243922A (en) Advanced staged combustion system for power generation from coal
US3804606A (en) Apparatus and method for desulfurizing and completely gasifying coal
US6997118B2 (en) Pulse gasification and hot gas cleanup apparatus and process
JPH0466919B2 (en)
JPS62251428A (en) Method of operating gas turbine/steam turbine composite cycle
JP2009512755A (en) Gasification process and system with in-situ tar removal
JP4138032B2 (en) Carbonaceous material gasification method
US4590868A (en) Coal-fired combined plant
US5236354A (en) Power plant with efficient emission control for obtaining high turbine inlet temperature
EP0616114B1 (en) Coal gasification power generator
JP2020506983A (en) Total steam gasification for supercritical CO2 power cycle system
JPH03500420A (en) Purification of raw material gas
US5224338A (en) Gasifying combustion method and gasifying power generation method
US5765365A (en) Coal gasification power generator
US5163374A (en) Combustion process
US4470254A (en) Process and apparatus for coal combustion
GB2074890A (en) Fluidized Bed Combustors
JP3105687B2 (en) Coal gasifier
JP3122276B2 (en) Coal gasification power generation apparatus and operation method thereof
JP3332542B2 (en) Coal gasification power plant
WO2020066459A1 (en) Gas turbine device, gas turbine facility, and method for operating gasification facility and gas turbine device
JP3776603B2 (en) Oxidation furnace for coal gasification combined cycle system
JP2986901B2 (en) Working fluid supply method and combustion equipment
JP2726741B2 (en) Power generation method using bad fuel
JPS6229886A (en) Fluidized-bed reaction furnace and operating method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080901

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 13