JPH0626238B2 - Bonding method for semiconductor device substrate - Google Patents

Bonding method for semiconductor device substrate

Info

Publication number
JPH0626238B2
JPH0626238B2 JP10837986A JP10837986A JPH0626238B2 JP H0626238 B2 JPH0626238 B2 JP H0626238B2 JP 10837986 A JP10837986 A JP 10837986A JP 10837986 A JP10837986 A JP 10837986A JP H0626238 B2 JPH0626238 B2 JP H0626238B2
Authority
JP
Japan
Prior art keywords
substrate
substrates
semiconductor device
bonding method
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10837986A
Other languages
Japanese (ja)
Other versions
JPS62264651A (en
Inventor
厚 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP10837986A priority Critical patent/JPH0626238B2/en
Publication of JPS62264651A publication Critical patent/JPS62264651A/en
Publication of JPH0626238B2 publication Critical patent/JPH0626238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体デバイス用基板の接着方法に関し、時
に多層構造デバイス用基板の製作に好適な半導体デバイ
ス用基板の接着方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for adhering a substrate for a semiconductor device, and sometimes to a method for adhering a substrate for a semiconductor device, which is suitable for manufacturing a substrate for a multilayer structure device.

〔従来の技術及び発明が解決しようとする問題点〕[Problems to be Solved by Prior Art and Invention]

この種従来の基板接着方法としては、低融点ガラスによ
る融着やポリイミド樹脂等の有機材料による接着が主た
る方法であったが、低融点ガラスは軟化点(通常800
℃以下)以上の温度で有機材料は融点(通常600℃以
下)以上の温度で夫々物理的に不安定な状態となるた
め、何れも接着強度が著しく低下するという問題があっ
た。そのため、接着工程の後にエピタキシャル成長,拡
散,熱処理等1000℃以上の温度を必要とする多層構
造デバイスの製造工程に用いることができなかった。即
ち、従来の基板接着方法では、i)半導体基板と半導体
基板(金属基板又は絶縁体基板でも良い)を接着した後
研摩することいわゆるリバースエピタキシャル法で製作
され、その後素子形成の際に高温下に置かれるSOI
(Semiconductor on Insulator)基板や、ii)特性の異
なる二種の半導体基板を接着することにより製作され、
その後素子形成の際に高温下に置かれるOEIC(Opto
electricalIC)用基板や、iii)光スイッチ等を組み
込んだ基板を多層に接着することにより製作され、その
後回路形成の際に高温下に置かれる三次元光回路(平面
状の光情報の処理が可能な回路)用基板等の多層構造デ
バイス用基板の製作は不可能であった。
As a conventional method for adhering substrates of this kind, fusion with a low melting point glass or adhesion with an organic material such as a polyimide resin has been a main method, but the low melting point glass has a softening point (usually 800).
Since the organic material becomes physically unstable at temperatures above the melting point (usually below 600 ° C.) at temperatures above (° C.) and above, there is a problem in that the adhesive strength is significantly reduced in both cases. Therefore, it cannot be used in a manufacturing process of a multi-layer structure device that requires a temperature of 1000 ° C. or higher such as epitaxial growth, diffusion, and heat treatment after the bonding process. That is, in the conventional substrate bonding method, i) a semiconductor substrate and a semiconductor substrate (which may be a metal substrate or an insulating substrate) are bonded together and then polished, which is a so-called reverse epitaxial method. SOI placed
(Semiconductor on Insulator) substrate or ii) It is manufactured by bonding two kinds of semiconductor substrates with different characteristics,
After that, the OEIC (Opto placed under high temperature at the time of element formation
A three-dimensional optical circuit (planar optical information can be processed) that is manufactured by bonding a substrate for electrical IC) and iii) a substrate incorporating an optical switch etc. in multiple layers and then placed under high temperature when forming the circuit. It has been impossible to manufacture a substrate for a multi-layered structure device such as a substrate for a circuit).

本発明は、上記問題点に鑑み、多層構造デバイス用基板
の製作を可能にした、半導体デバイス用基板の接着方法
を提供することを目的とする。
In view of the above problems, it is an object of the present invention to provide a method for adhering a substrate for a semiconductor device, which enables production of a substrate for a multi-layered structure device.

〔問題点を解決するための手段及び作用〕[Means and Actions for Solving Problems]

本発明による半導体デバイス用基板の接着方法は、Si,
Al,Ti,Pbの選択された何れかを含む金属アルコキシド
を加水分解した金属酸化物ゾル又はこれをゲル化させた
液状物を用い、複数の基板間に該液状物を介在させて相
互に貼り合わせ、その後、これらの貼り合わせた基板群
500℃以上の高温処理を施して、各基板の相互間に高
耐熱性接着層を形成するようにしたものである。
The method for adhering a semiconductor device substrate according to the present invention is
A metal oxide sol obtained by hydrolyzing a metal alkoxide containing any one of Al, Ti, and Pb, or a liquid substance obtained by gelling the same is used, and the liquid substances are interposed between a plurality of substrates to attach them to each other. Then, a group of these bonded substrates is subjected to a high temperature treatment at 500 ° C. or higher to form a high heat resistant adhesive layer between the substrates.

以下にその工程を示す。The steps are shown below.

(1) 金属アルコキシドM(OR)n (但し、MはS
i,Al,Ti,Pbであり、RはCH,C
であり、nは1,2,3‥‥である。)をアル
コール等の溶媒中で加水分解したゾル状態の溶液を製造
する。或はシリカゾル,アルミナゾルの市販の金属酸化
物ゾルを用意しても良い。
(1) Metal alkoxide M (OR) n (where M is S
i, Al, Ti, Pb, R is CH 2 , C 2 H 5 ,
C 3 H 7 , and n is 1, 2, 3, ... ) Is hydrolyzed in a solvent such as alcohol to prepare a sol-state solution. Alternatively, a commercially available metal oxide sol such as silica sol or alumina sol may be prepared.

(2) 溶液を接着すべき基板面に塗布する。溶液を単に
滴下しても、ハケ,ローラー等を利用しても良いが、均
一に塗布するためには、スプレー法,スピンコート法或
は両者の併用が望ましい。
(2) Apply the solution to the surface of the substrate to be bonded. The solution may be simply dropped, or a brush, a roller or the like may be used, but in order to apply the solution uniformly, a spray method, a spin coating method or a combination of both methods is preferable.

(3) 溶液を150℃未満で放置し、脱水縮合反応及び
脱媒を進行させ、半ゲル化する。この工程で溶液を予め
半乾燥,半脱媒し、更に生成ゲル内の細孔径を小さくし
ておくことは、接着後の熱処理工程を容易にする。しか
し、これは接着のための必須条件では無い。又、低温,
長時間であるほど良いが、実用上は60℃,30分間で
半ゲル化を行えば良い。150℃以上の温度でゲル化す
ると、細孔径が大きくなり、後述の焼結処理条件では十
分な焼結が行われない。
(3) The solution is left at a temperature of less than 150 ° C. to proceed with dehydration condensation reaction and desolvation to semi-gelate. In this step, the solution is semi-dried and semi-desorbed in advance, and the pore size in the produced gel is made small to facilitate the heat treatment step after adhesion. However, this is not a prerequisite for bonding. Also, low temperature,
The longer the time, the better, but practically it is sufficient to carry out the semi-gelation at 60 ° C. for 30 minutes. When gelled at a temperature of 150 ° C. or higher, the pore size becomes large, and sufficient sintering cannot be performed under the sintering treatment conditions described later.

(4) 基板同志を貼り合わせ、1kg/cm2以上で加圧しな
がら、150℃以上に加温し、接着層のゲルを脱水縮合
させ、同時に両基板間に架橋を形成する。150℃以上
に昇温するのは、残存有機物の分解のピークが150℃
以上に存在するため、これを経験させることにより工程
(3)で除去できなかった残存有機物を分解除去するため
と、脱水縮合反応により生成した水分の蒸発を促すため
である。これら、残存物,生成物の除去は、後の接着層
のクラックの低減に効果がある。脱水縮合反応そのもの
は室温から徐々に進行し、500℃までにほぼ終了す
る。
(4) The substrates are adhered to each other and heated to 150 ° C. or more while applying a pressure of 1 kg / cm 2 or more to dehydrate and condense the gel of the adhesive layer and simultaneously form a bridge between both substrates. When the temperature is raised to 150 ° C or higher, the decomposition peak of residual organic matter is 150 ° C.
Since it exists above, by experiencing this process
This is for the purpose of decomposing and removing the residual organic substances that could not be removed in (3) and for promoting the evaporation of the water generated by the dehydration condensation reaction. Removal of these residues and products is effective in reducing cracks in the adhesive layer later. The dehydration condensation reaction itself gradually progresses from room temperature to almost 500 ° C.

(5) 仮接着した基板を高温中で熱処理し、無孔化のた
めの焼結を行う。処理温度は500℃以上であり、時間
は2時間である。500℃以下では無孔化が不完全で強
度が不足する。この工程の効果は、接着層を強固で安定
なものとすることである。
(5) The temporarily bonded substrates are heat-treated at a high temperature to sinter to make them non-porous. The processing temperature is 500 ° C. or higher and the time is 2 hours. If the temperature is 500 ° C. or lower, the non-pore formation is incomplete and the strength is insufficient. The effect of this step is to make the adhesive layer strong and stable.

以上の5工程をもって高耐熱性の接着層を有する多層構
造デバイス用基板が形成される。
A substrate for a multilayer structure device having a highly heat resistant adhesive layer is formed by the above 5 steps.

尚、単に金属アルコキシドを出発物質として金属酸化物
を合成する方法はいわゆるゾル−ゲル法としてこれまで
に広く行われているが、接着面内に密封された状況下で
金属酸化物を接着層として形成した例はこれまでには無
い。
Incidentally, a method of simply synthesizing a metal oxide using a metal alkoxide as a starting material has been widely performed as a so-called sol-gel method until now, but the metal oxide is used as an adhesive layer under the condition of being sealed in an adhesive surface. There is no example of forming it.

又、金属酸化物ゾルを使用する場合には上記(2)から以
降同様に処理すれば良い。更に、三枚以上の基板を接着
する場合には各接着面に金属酸化物ゾルを塗布し、以後
は同じ方法で処理すれば良い。
When a metal oxide sol is used, the same treatment as in (2) above may be performed. Further, when three or more substrates are adhered, a metal oxide sol may be applied to each adhering surface, and thereafter the same treatment may be performed.

〔実施例1〕 テトラエトキシシランを塩酸を触媒として加水分解した
溶液を接着剤として直径50mmのシリコン単結晶基板同
志を接着した例について述べる。図面は加圧加熱工程の
プログラム図である。各工程の条件は以下の通りであ
る。
[Example 1] An example will be described in which a solution of tetraethoxysilane hydrolyzed with hydrochloric acid as a catalyst is used as an adhesive to bond silicon single crystal substrates having a diameter of 50 mm. The drawing is a program diagram of the pressure heating process. The conditions of each step are as follows.

工程(1)−−テトラエトキシシラン100に対し容量比
でエタノール75,水75,1規定塩酸0.5を混合
し、撹拌する。エトキシシラン100に対して75以下
の水では後工程でクラックを生じ易い。水75に対し7
5以下のエタノールでは混合液が二相分離を起こす。テ
トラエトキシシランに対して上記以上の水,エタノール
を加えても反応は可能だが、後の乾燥工程により多くの
時間を要する。塩酸は必須では無い。
Step (1) Ethanol 75, water 75, and 1N hydrochloric acid 0.5 were mixed in a volume ratio to 100-tetraethoxysilane and stirred. If the water content is 75 or less relative to 100 parts of ethoxysilane, cracks are likely to occur in the subsequent process. 7 for 75 water
With ethanol of 5 or less, the mixed solution undergoes two-phase separation. The reaction is possible even if water and ethanol above the above are added to tetraethoxysilane, but more time is required for the subsequent drying step. Hydrochloric acid is not essential.

工程(2)−−溶液をスピナーにより基板面に塗布する。
例えば、スピナー回転数5000rpm で15秒間回転さ
せた場合、2000Å以下の塗布層を均一に形成するこ
とができる。
Step (2)-The solution is applied to the substrate surface by a spinner.
For example, when the spinner is rotated at 5000 rpm for 15 seconds, a coating layer of 2000 Å or less can be uniformly formed.

工程(3)−−基板を100℃で15分間熱処理する。Step (3)-The substrate is heat-treated at 100 ° C. for 15 minutes.

工程(4)−−3kg/cm2の圧力を加えつつ280℃で30
分間熱処理する。
Step (4)-30 at 280 ° C. while applying pressure of −3 kg / cm 2.
Heat treat for minutes.

工程(5)−−800℃で30分間熱処理する。Step (5): Heat treatment is performed at −800 ° C. for 30 minutes.

この例の場合、装着層は石英ガラスとなり、シリコンの
融点直下まで基板の接着状態を保持する。
In the case of this example, the mounting layer is made of quartz glass, and the bonded state of the substrate is maintained up to just below the melting point of silicon.

〔実施例2〕 工程(1)−−アルミニウムi−ブトキシド100に対
し、容量比でエタノール75,水60,1規定塩酸0.
5を混合し、撹拌する。
[Example 2] Step (1) -Ethanol 75, water 60, 1N hydrochloric acid 0.1% by volume ratio to 100 parts of aluminum i-butoxide.
Mix 5 and stir.

工程(2)−−実施例1の(2)に同じ。Step (2)-same as (2) of Example 1.

工程(3)−−実施例1の(3)に同じ。Step (3) -same as (3) of Example 1.

工程(4)−−実施例1の(4)に同じ。Step (4)-same as (4) of Example 1.

工程(5)−−実施例1の(5)に同じ。Step (5)-same as (5) of Example 1.

この場合、接着層はアルミナとなり、やはりシリコンの
融点直下まで接着状態を保持する。
In this case, the adhesive layer is alumina, and the adhesive state is maintained just below the melting point of silicon.

上記と同様の方法によってシリコン単結晶基板と石英基
板の接着又はシリコン単結晶基板とヒ化カリウム基板,
ニオブ酸リチウム基板の接着も行うことができる。
Adhesion of a silicon single crystal substrate and a quartz substrate or a silicon single crystal substrate and a potassium arsenide substrate by the same method as above,
Lithium niobate substrates can also be bonded.

〔発明の効果〕〔The invention's effect〕

上述の如く、本発明による半導体デバイス用基板の接着
方法によれば、高耐熱性接着層を有する多層構造デバイ
ス用基板の製作が可能となり、その結果従来の単一構造
基板に対して用いられていた1000℃以上の高温を要
する素子製作技術がそのまま多層構造基板に用いること
が可能となり、SOI,OEIC,三次元光回路等の種
々の多機能素子の製作が可能となるという利点がある。
As described above, the method for adhering a substrate for a semiconductor device according to the present invention makes it possible to manufacture a substrate for a multilayer structure device having a high heat resistant adhesive layer, and as a result, it is used for a conventional single structure substrate. The element manufacturing technology that requires a high temperature of 1000 ° C. or higher can be used as it is for the multilayer structure substrate, and there is an advantage that various multifunctional elements such as SOI, OEIC, and three-dimensional optical circuit can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明方法の一実施例の加圧加熱工程のプログラ
ム図である。
The drawing is a program diagram of the pressure heating process of one embodiment of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Si,Al,Ti,Pbの選択された何れかを含む
金属アルコキシドを加水分解した金属酸化物ゾル,又は
これをゲル化させた液状物を用い、複数の基板間に該液
状物を介在させて相互に貼り合わせ、その後、これらの
貼り合わせた基板群に500℃以上の高温処理を施し
て、各基板の相互間に高耐熱性接着層を形成するように
した半導体デバイス用基板の接着方法。
1. A metal oxide sol obtained by hydrolyzing a metal alkoxide containing any one of Si, Al, Ti, and Pb, or a liquid material obtained by gelling the metal oxide sol, and using the liquid material between a plurality of substrates. For a semiconductor device in which objects are bonded to each other and then a group of these bonded substrates is subjected to a high temperature treatment of 500 ° C. or higher to form a high heat resistant adhesive layer between the substrates. Substrate bonding method.
JP10837986A 1986-05-12 1986-05-12 Bonding method for semiconductor device substrate Expired - Lifetime JPH0626238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10837986A JPH0626238B2 (en) 1986-05-12 1986-05-12 Bonding method for semiconductor device substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10837986A JPH0626238B2 (en) 1986-05-12 1986-05-12 Bonding method for semiconductor device substrate

Publications (2)

Publication Number Publication Date
JPS62264651A JPS62264651A (en) 1987-11-17
JPH0626238B2 true JPH0626238B2 (en) 1994-04-06

Family

ID=14483277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10837986A Expired - Lifetime JPH0626238B2 (en) 1986-05-12 1986-05-12 Bonding method for semiconductor device substrate

Country Status (1)

Country Link
JP (1) JPH0626238B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4750065B2 (en) * 1995-04-06 2011-08-17 Sumco Techxiv株式会社 Manufacturing method of bonded semiconductor wafer
JP2015147866A (en) * 2014-02-06 2015-08-20 株式会社ニコン Joining method, device, and joining apparatus

Also Published As

Publication number Publication date
JPS62264651A (en) 1987-11-17

Similar Documents

Publication Publication Date Title
JP3385972B2 (en) Manufacturing method of bonded wafer and bonded wafer
US5863830A (en) Process for the production of a structure having a thin semiconductor film on a substrate
JP2857802B2 (en) Method of connecting two objects together
JPH05146755A (en) Method for coating ground with silica precursor
JPH08505010A (en) Method for producing single crystal silicon island on quartz substrate
JPH06268183A (en) Manufacture of semiconductor device
JPH07297377A (en) Semiconductor device and manufacture thereof
JPH0626238B2 (en) Bonding method for semiconductor device substrate
JP3431454B2 (en) Method for manufacturing semiconductor device
JPH07283382A (en) Method of pasting silicon substrates
JPH0613456A (en) Manufacture of semiconductor device
CN111902927A (en) Layer transfer method
JP2576163B2 (en) Plate bonding method
JPH08213871A (en) Crystal vibrator and its manufacture
JPS61201432A (en) Manufacture of ic silicon dye composite body having hot meltadhesive on silicon base
JP3846657B2 (en) Bonded substrate and manufacturing method thereof
JPH0479209A (en) Manufacture of soi substrate
JPH01305534A (en) Manufacture of semiconductor substrate
JPS6046036A (en) Manufacture of semiconductor device
JP2754819B2 (en) Method for manufacturing dielectric-separated semiconductor substrate
JP2583764B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH01217940A (en) Manufacture of semiconductor substrate
JP2581531B2 (en) Method for manufacturing semiconductor device
JP3165735B2 (en) Semiconductor substrate manufacturing method
JPS62287648A (en) Si bonding method