JPH08213871A - Crystal vibrator and its manufacture - Google Patents

Crystal vibrator and its manufacture

Info

Publication number
JPH08213871A
JPH08213871A JP1689395A JP1689395A JPH08213871A JP H08213871 A JPH08213871 A JP H08213871A JP 1689395 A JP1689395 A JP 1689395A JP 1689395 A JP1689395 A JP 1689395A JP H08213871 A JPH08213871 A JP H08213871A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
thin film
mol
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1689395A
Other languages
Japanese (ja)
Other versions
JP3446368B2 (en
Inventor
Motoyuki Tanaka
素之 田中
Takahiro Imai
貴浩 今井
Naoharu Fujimori
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP01689395A priority Critical patent/JP3446368B2/en
Priority to US08/567,530 priority patent/US6028020A/en
Priority to DE69520196T priority patent/DE69520196T2/en
Priority to EP95119102A priority patent/EP0716167B1/en
Priority to KR1019950046693A priority patent/KR100353721B1/en
Publication of JPH08213871A publication Critical patent/JPH08213871A/en
Application granted granted Critical
Publication of JP3446368B2 publication Critical patent/JP3446368B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To reduce the cost and to allow the method to have provision for a higher frequency vibrator by manufacturing the vibrator with an optional film thickness and shape without the need for a large scale equipment like a hydrothermal synthesis. CONSTITUTION: A single crystal thin film crystal whose thickness is 5nm or over and 50μm or less manufactured by the sol gel method is used for a vibration section. The crystal vibrator is manufactured by forming an oxide single crystal film 2 using a GeO2 as a major component on the single crystal substrate 1, forming a single crystal thin film crystal 3 on the oxide single crystal film 2, solving the oxide single crystal film 2 in a water solution to exfoliate the single crystal thin film crystal 3 from the single crystal substrate 1 and the single crystal thin film crystal 3 is set as a vibration section.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低価格化及び高周波化
に対応した水晶振動子、及びその製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal unit that can be manufactured at low cost and high frequency, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】水晶は二酸化ケイ素の低温相(<573
℃)であるが、この水晶型構造の基本となる石英型の骨
格は870℃以下でなければ安定ではない。しかし、二
酸化ケイ素の融点はこれよりもはるかに高い1730℃
であり、この融点の近傍ではクリストバライト型結晶構
造が安定であるので、単純な高温処理では水晶を生成す
ることができないとされている。
Quartz is a low temperature phase of silicon dioxide (<573
However, the skeleton of the quartz mold which is the basis of this quartz crystal structure is not stable unless it is 870 ° C. or lower. However, the melting point of silicon dioxide is much higher than this, 1730 ° C.
Since the cristobalite type crystal structure is stable in the vicinity of this melting point, it is said that quartz cannot be generated by a simple high temperature treatment.

【0003】従来の水晶製造術としては、高温高圧下で
温度差を設けて二酸化ケイ素のアルカリ溶液から種結晶
上に水晶単結晶を成長させる水熱合成法しかなかった。
この方法による水晶の製造プロセスは、例えば「セラミ
ックス」15、(1980)、No.3、p.170〜1
75に記載されている。
As a conventional crystal manufacturing method, there has been only a hydrothermal synthesis method in which a crystal single crystal is grown on a seed crystal from an alkaline solution of silicon dioxide by providing a temperature difference under high temperature and high pressure.
The manufacturing process of the crystal by this method is described in “Ceramics” 15, (1980), No. 3, p. 170-1
75.

【0004】しかし、この水熱合成法では塊状の大型結
晶か若しくは粒状の粉末しか合成できないので、薄膜形
状が要求される製品にそのまま利用することは出来な
い。実際に、実装する際に薄膜化が要求される水晶振動
子は、この水熱合成法で製造された大型単結晶の中から
切り出し、加工して使用されている。
However, since this hydrothermal synthesis method can synthesize only bulky large crystals or granular powder, it cannot be used as it is for products requiring a thin film shape. Actually, a crystal resonator, which is required to be thinned at the time of mounting, is cut out from a large single crystal produced by this hydrothermal synthesis method, processed and used.

【0005】又、近年の通信周波数の高周波化に伴い、
振動子として用いる水晶を一層薄くすることが求めら
れ、例えば特開平5−327383号公報で示されてい
るように、水晶を半導体基板上に張り付けて研磨を行
い、水晶を薄膜に加工する技術が提案されている。しか
し、研磨等の加工による薄膜化では膜厚に限界があり、
かつコストが高くなる問題があった。
With the recent increase in communication frequency,
It is required to further reduce the thickness of the crystal used as the vibrator. For example, as disclosed in Japanese Patent Laid-Open No. 5-327383, there is a technique in which the crystal is attached to a semiconductor substrate and polished to process the crystal into a thin film. Proposed. However, there is a limit to the film thickness when thinned by processing such as polishing,
And there was a problem that the cost became high.

【0006】[0006]

【発明が解決しようとする課題】前記のごとく、従来の
水晶の製造法は水熱合成法であるが、高圧を実現するた
めの大がかりな装置が必要であり、巨大な装置で大型の
単結晶を育成しないとコストの低減が図れない。しか
も、この方法では薄膜等の任意の形状の水晶単結晶を形
成することは困難であるから、振動子とするためには塊
状の大型単結晶を薄膜化する必要があった。
As described above, the conventional crystal manufacturing method is a hydrothermal synthesis method, but it requires a large-scale apparatus for realizing high pressure, and is a huge apparatus and a large single crystal. The cost cannot be reduced unless it is cultivated. Moreover, since it is difficult to form a quartz single crystal having an arbitrary shape such as a thin film by this method, it is necessary to make a large bulk single crystal into a thin film in order to form a vibrator.

【0007】特に水晶振動子では近年の通信周波数の高
周波化に伴い、水晶をより薄くすることが要求されてい
る。しかし、従来の水熱合成法で製造した大型の単結晶
から薄い水晶を切り出す方法では、達成できる水晶の薄
さは実用上50μmが限界であった。
Particularly in the crystal unit, it is required to make the crystal thinner as the communication frequency becomes higher in recent years. However, with the conventional method of cutting a thin crystal from a large single crystal produced by the hydrothermal synthesis method, the practically possible limit of the crystal thinness is 50 μm.

【0008】本発明は、かかる従来の事情に鑑み、水熱
合成法のような大がかりな装置を必要とせず、任意の膜
厚と形状に製造でき、低価格化及び高周波化に対応した
水晶振動子、並びにその製造法を提供することを目的と
する。
In view of the above conventional circumstances, the present invention does not require a large-scale apparatus such as a hydrothermal synthesis method, can be manufactured to have an arbitrary film thickness and shape, and can be manufactured at a low cost and a high frequency is achieved by a crystal vibration. The purpose is to provide a child and a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】発明者らは、ケイ素のア
ルコキシドなどの原料を溶媒に希釈した溶液を単結晶基
板上に塗布した後、加熱によって結晶化するゾルゲル法
を利用して、原料、添加剤、焼成条件などを工夫するこ
とにより、5nm以上の任意の厚さ及び任意の形状の単
結晶薄膜水晶を合成する方法を見いだした。
Means for Solving the Problems The inventors have used a sol-gel method in which a solution obtained by diluting a raw material such as silicon alkoxide in a solvent is applied on a single crystal substrate and then crystallized by heating, The inventors have found a method of synthesizing a single crystal thin film crystal having an arbitrary thickness of 5 nm or more and an arbitrary shape by devising additives, firing conditions and the like.

【0010】本発明の水晶振動子の製造方法は、かかる
知見に基づいてなされたものであって、単結晶基板上に
ゾルゲル法により二酸化ゲルマニウムを主成分とする水
晶型結晶構造を有する酸化物単結晶膜を形成する工程
と、酸化物単結晶膜上にゾルゲル法により単結晶薄膜水
晶を形成する工程と、水溶液中で酸化物単結晶膜を溶解
することにより単結晶基板から単結晶薄膜水晶を剥離す
る工程と、得られた単結晶薄膜水晶を振動部として組み
込む工程とを備えたことを特徴とする。
The method of manufacturing a crystal unit according to the present invention is based on the above findings, and it is an oxide single crystal substrate having a crystal type crystal structure containing germanium dioxide as a main component on a single crystal substrate by a sol-gel method. A step of forming a crystal film, a step of forming a single crystal thin film crystal on the oxide single crystal film by a sol-gel method, and a step of forming the single crystal thin film crystal from the single crystal substrate by dissolving the oxide single crystal film in an aqueous solution. The method is characterized by comprising a step of peeling and a step of incorporating the obtained single crystal thin film quartz crystal as a vibrating section.

【0011】又、この水晶振動子の製造方法により得ら
れる本発明の水晶振動子は、ゾルゲル法により単結晶基
板上に形成された後に該単結晶基板から剥離された、厚
みが5nm以上50μm以下の単結晶薄膜水晶を、振動
部として用いたことを特徴とするものである。
The crystal resonator of the present invention obtained by this method for manufacturing a crystal resonator has a thickness of 5 nm or more and 50 μm or less, which is peeled from the single crystal substrate after being formed on the single crystal substrate by the sol-gel method. The single crystal thin film quartz crystal is used as the vibrating section.

【0012】[0012]

【作用】本発明において、単結晶薄膜水晶及び水晶振動
子の「水晶」とは、ケイ素(Si)とゲルマニウム(G
e)の含有量の合計が全金属含有量の70モル%以上で
あって、水晶型結晶構造を有する全ての酸化物を含む意
味で使用する。
In the present invention, the single crystal thin film crystal and the "crystal" of the crystal unit are silicon (Si) and germanium (G).
The total content of e) is 70 mol% or more of the total metal content, and it is used to include all oxides having a crystal structure.

【0013】ケイ素及びゲルマニウムは水晶型結晶構造
を有する酸化物を構成することのできる金属元素であ
り、ケイ素とゲルマニウムの含有量の合計が全金属含有
量の70モル%未満になると水晶型結晶構造の構成が弱
くなり、単結晶薄膜水晶の特性を著しく劣化させること
になる。よって、特性の優れた単結晶薄膜水晶を得るに
は、ケイ素とゲルマニウムの含有量の合計を全金属含有
量の70モル%以上、好ましくは90モル%以上とす
る。
Silicon and germanium are metal elements capable of forming an oxide having a crystal type crystal structure, and when the total content of silicon and germanium is less than 70 mol% of the total metal content, the crystal type crystal structure is used. Therefore, the structure becomes weak, and the characteristics of the single crystal thin film crystal are significantly deteriorated. Therefore, in order to obtain a single crystal thin film crystal having excellent characteristics, the total content of silicon and germanium is 70 mol% or more, preferably 90 mol% or more of the total metal content.

【0014】本発明のゾルゲル法による水晶振動子の製
造は以下の手順で行う。まず、基板に用いる単結晶を用
意する。この単結晶は、二酸化ケイ素や二酸化ゲルマニ
ウムを主成分とする水晶型結晶構造を有する酸化物の単
結晶が成長しやすいものである必要が有り、単結晶水晶
を用いることが最も好ましいが、サファイア、Mg0、
SrTi03、LiNb03、LiTa03等の酸化物単
結晶を用いることもできる。
The crystal oscillator according to the present invention is manufactured by the sol-gel method in the following procedure. First, a single crystal used for the substrate is prepared. This single crystal needs to be one in which a single crystal of an oxide having a crystal type crystal structure containing silicon dioxide or germanium dioxide as a main component is easy to grow, and it is most preferable to use single crystal quartz, but sapphire, Mg0,
It is also possible to use an oxide single crystal such as SrTiO 3 , LiNbO 3 , or LiTaO 3 .

【0015】第2に、ゲルマニウムのアルコキシドなど
溶媒に可溶なゲルマニウムの化合物を、アルコールなど
の溶媒で希釈した金属含有溶液に、必要に応じてリチウ
ム又は水若しくはアミンなどの添加、あるいは溶液の還
流を行い前駆体溶液を形成する。次に、この前駆体溶液
をスピンコートやディップコートにより、水晶やサファ
イアなどの単結晶基板上に塗布する。最後に、前駆体溶
液を塗布した基板を昇温処理し、溶媒などを蒸発させて
ゲル化及び固化させ、更に結晶化させ、二酸化ゲルマニ
ウムを主成分とする酸化物単結晶膜を形成させる。
Secondly, if necessary, lithium or water or amine is added to a metal-containing solution prepared by diluting a germanium compound soluble in a solvent such as germanium alkoxide with a solvent such as alcohol, or the solution is refluxed. To form a precursor solution. Next, this precursor solution is applied onto a single crystal substrate such as quartz or sapphire by spin coating or dip coating. Finally, the substrate coated with the precursor solution is heated to evaporate a solvent or the like to cause gelation and solidification and further crystallization to form an oxide single crystal film containing germanium dioxide as a main component.

【0016】第3に、ケイ素のアルコキシドなどの溶媒
に可溶なケイ素及び又はゲルマニウムの化合物を用い
て、前記二酸化ゲルマニウムの場合と同様の方法によ
り、酸化物単結晶膜の上に単結晶薄膜水晶を形成する。
Thirdly, by using a compound of silicon and / or germanium soluble in a solvent such as silicon alkoxide, a single crystal thin film crystal is formed on the oxide single crystal film by the same method as in the case of germanium dioxide. To form.

【0017】第4に、水晶振動子の形成に必要な単結晶
薄膜水晶の支持部を形成するため、単結晶薄膜水晶の上
に支持板を貼り付ける。支持板には表面が正常で平滑な
Siウェハーやガラス板が適しており、単結晶薄膜水晶
の上に圧着して加熱するだけで強固に接合できる。又、
酸化物単結晶膜の上にゾルゲル法の前駆体溶液を塗布し
た後、支持板を重ねて熱処理することで接合することも
でき、単結晶薄膜水晶の形成工程と支持板の接合工程を
同時に行うことができる。尚、支持部の形成は次の剥離
工程の後でも良いが、各工程での単結晶薄膜水晶の取り
扱いを容易にするためには、剥離工程前に支持部の形成
を行うことが好ましい。
Fourth, in order to form a support portion for the single crystal thin film crystal necessary for forming the crystal unit, a support plate is attached on the single crystal thin film crystal. A Si wafer or a glass plate having a normal surface and a smooth surface is suitable for the supporting plate, and it can be firmly bonded by simply pressing it on a single crystal thin film crystal and heating it. or,
After applying the sol-gel method precursor solution on the oxide single crystal film, the support plate can be overlaid and heat treated to perform the bonding, and the single crystal thin film crystal forming process and the support plate bonding process are performed at the same time. be able to. The supporting portion may be formed after the next peeling step, but it is preferable to form the supporting portion before the peeling step in order to facilitate the handling of the single crystal thin film crystal in each step.

【0018】第5に、二酸化ゲルマニウムを主成分とす
る酸化物単結晶膜を水溶液中で溶解し、少なくとも振動
部として用いる部分の単結晶薄膜水晶を単結晶基板から
剥離させる。水溶液は純水でも良いが、剥離の早さの点
から塩酸、王水、水酸化ナトリウム、水酸化カリウムを
適当な濃度に希釈したものが好ましい。
Fifth, an oxide single crystal film containing germanium dioxide as a main component is dissolved in an aqueous solution, and at least a portion of the single crystal thin film crystal used as the vibrating portion is separated from the single crystal substrate. Although the aqueous solution may be pure water, it is preferably diluted with hydrochloric acid, aqua regia, sodium hydroxide, or potassium hydroxide to an appropriate concentration from the viewpoint of peeling speed.

【0019】第6に、単結晶薄膜水晶の全面を支持して
いる支持板の一部をエッチングし、単結晶薄膜水晶の振
動部を形成する。又、単結晶薄膜水晶の一部が接着しな
いような構造の支持板を用いれば、剥離後の支持板のエ
ッチング工程を省略することができる。
Sixth, a part of the supporting plate supporting the entire surface of the single crystal thin film crystal is etched to form a vibrating portion of the single crystal thin film crystal. If a supporting plate having a structure in which a part of the single crystal thin film crystal is not adhered is used, the etching process of the supporting plate after peeling can be omitted.

【0020】第7に、単結晶薄膜水晶を酸性フッ化アン
モニウム水溶液などを用いてエッチングすることによ
り、水晶振動子の振動部の形状を調整する。得られた単
結晶薄膜水晶からなる振動部の両面に、蒸着法などによ
り電極を形成することにより、水晶振動子が得られる。
Seventh, the shape of the vibrating portion of the crystal unit is adjusted by etching the single crystal thin film crystal with an ammonium acid fluoride aqueous solution or the like. A crystal resonator is obtained by forming electrodes on both surfaces of the vibrating portion made of the obtained single crystal thin film crystal by a vapor deposition method or the like.

【0021】このように、ゾルゲル法によれば、二酸化
ゲルマニウムや二酸化ケイ素などを主成分とする結晶固
体の低温合成が可能となる。更に、溶液状態でコーティ
ングを行うため腑形性が高く、薄膜の形成が容易であ
る。又、膜厚は前駆体溶液の粘度、回転数、引き上げ速
度などのコーティングの条件で調整することができ、必
要な厚さが得られるまで塗布から結晶化までを繰り返せ
ば良い。
As described above, according to the sol-gel method, it is possible to synthesize a crystalline solid containing germanium dioxide or silicon dioxide as a main component at a low temperature. Furthermore, since the coating is performed in a solution state, it has a high degree of shape and is easy to form a thin film. The film thickness can be adjusted by the coating conditions such as the viscosity of the precursor solution, the number of revolutions, and the pulling rate, and the processes from coating to crystallization may be repeated until the required thickness is obtained.

【0022】単結晶薄膜水晶及び二酸化ゲルマニウムを
主成分とする酸化物単結晶膜の膜厚は、基板塗布面の平
滑性の問題から、均質で安定な特性を有する膜を形成す
るには5nm以上必要である。厚い膜はコーティングと
乾燥の過程を複数回繰り返すことによって形成すること
が可能であるが、各繰り返しの間に生じる欠陥、熱応
力、面粗度などの積み重なりから結晶性が劣化する可能
性があるので、安定な特性を得るためには膜厚が50μ
m以下であることが好ましい。
The thickness of the single crystal thin film quartz and the oxide single crystal film containing germanium dioxide as the main component is 5 nm or more for forming a film having a uniform and stable characteristic due to the problem of the smoothness of the coated surface of the substrate. is necessary. A thick film can be formed by repeating the coating and drying processes multiple times, but the crystallinity may deteriorate due to the stacking of defects, thermal stress, surface roughness, etc. that occur during each repetition. Therefore, to obtain stable characteristics, the film thickness should be 50μ.
m or less.

【0023】塗布した前駆体溶液は乾燥した後、500
〜1200℃の温度で加熱処理することにより、単結晶
基板上において結晶化してエピタキシャル成長し、単結
晶薄膜水晶又は水晶型結晶構造を有する酸化物単結晶薄
膜が形成される。加熱処理の温度が500℃未満では結
晶化が起こらず、1200℃を越えると高温相の別種の
結晶構造が形成される。最も好ましい加熱処理温度は8
00℃〜1000℃である。又、この加熱処理は酸素雰
囲気中又は水蒸気を含む酸素雰囲気中、若しくは大気中
又は水蒸気を含む大気中で行うことが好ましい。
After the applied precursor solution is dried, 500
By heat treatment at a temperature of up to 1200 ° C., crystallization and epitaxial growth are performed on the single crystal substrate to form a single crystal thin film crystal or an oxide single crystal thin film having a crystal type crystal structure. If the temperature of the heat treatment is less than 500 ° C., crystallization does not occur, and if it exceeds 1200 ° C., another type of crystal structure of the high temperature phase is formed. Most preferred heat treatment temperature is 8
The temperature is 00 ° C to 1000 ° C. This heat treatment is preferably performed in an oxygen atmosphere or an oxygen atmosphere containing water vapor, or in the air or in an atmosphere containing water vapor.

【0024】尚、ゾルゲル法の原料として用いる金属化
合物としては、Si(OCH3)4、Si(OC25)4、S
i(OC37)4、Ge(OCH3)4、Ge(OC25)4、G
e(OC37)4などの金属アルコキシド、Si(COCH
2COCH3)4などの金属アセチルアセテート、SiCl
4などの金属塩化物などが挙げられる。
The metal compounds used as raw materials for the sol-gel method include Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 and S.
i (OC 3 H 7 ) 4 , Ge (OCH 3 ) 4 , Ge (OC 2 H 5 ) 4 , G
e (OC 3 H 7 ) 4 and other metal alkoxides, Si (COCH
2 COCH 3 ) 4 etc. Metal acetyl acetate, SiCl
Examples include metal chlorides such as 4 .

【0025】一般に、水晶型結晶構造を有する酸化物単
結晶の圧電特性は、その結晶構造に起因している。従っ
て、これらの特性を充分に発揮させるためには、結晶の
すべての軸を揃えて結晶性の優れた単結晶を製造する必
要がある。本発明方法では、基板に単結晶基板を用い、
基板と薄膜との界面における結合を通して基板の結晶構
造を薄膜の結晶構造に反映させるエピタキシャル成長を
利用するので、結晶性の優れた単結晶薄膜を製造するこ
とができる。特に単結晶基板として水晶を使用すれば、
結晶構造、格子定数共に、成長する薄膜とほぼ一致して
いるので最も好ましく、基板面とする結晶方位もいずれ
の方位でも良いが、振動子の温度特性の点からAT面が
最も好ましい。
Generally, the piezoelectric characteristics of an oxide single crystal having a quartz crystal structure are due to the crystal structure. Therefore, in order to sufficiently exhibit these characteristics, it is necessary to align all the axes of the crystals to produce a single crystal having excellent crystallinity. In the method of the present invention, a single crystal substrate is used as the substrate,
Since the epitaxial growth in which the crystal structure of the substrate is reflected in the crystal structure of the thin film through the bond at the interface between the substrate and the thin film is used, a single crystal thin film having excellent crystallinity can be manufactured. Especially when using quartz as a single crystal substrate,
The crystal structure and the lattice constant are most preferable because they are almost the same as the growing thin film, and the crystal orientation for the substrate surface may be any orientation, but the AT surface is most preferable from the viewpoint of the temperature characteristics of the oscillator.

【0026】水晶型結晶構造は低温相であるため、単に
昇温処理を施しただけでは結晶化が起こらなかったり、
結晶化しても高温相の別種の結晶型になることがある。
ところが、Li、Na、Kなどアルカリ金属の添加によ
り、水晶型結晶構造が安定に存在する温度領域を広げる
効果が得られることが判った。従って、金属含有溶液中
にアルカリ金属を微量添加することにより、ゾルゲル法
による水晶の合成が一層容易になる。アルカリ金属の混
入量は少なすぎると効果がなく、多すぎると水晶の特性
を損なうことがあるため、金属含有溶液中の全金属元素
量に対して3×10-4モル%以上5モル%以下であるこ
とが好ましい。
Since the crystal type crystal structure is a low temperature phase, crystallization does not occur simply by performing a temperature rising treatment,
Even if it crystallizes, it may become a different crystal form of the high temperature phase.
However, it has been found that the addition of an alkali metal such as Li, Na or K has the effect of widening the temperature range in which the quartz crystal structure is stable. Therefore, by adding a trace amount of alkali metal to the metal-containing solution, the synthesis of quartz by the sol-gel method becomes easier. Mixing amount of the alkali metal has no too small effect, because it can impair too much the crystal characteristics, 3 × 10 -4 mol% to 5 mol% based on the total amount of metal element of the metal-containing solution Is preferred.

【0027】特にLiは、微量で水晶型結晶構造が安定
に存在する温度領域を広げることができるので好まし
い。又、Liはアルカリ金属類の中で最も原子半径が小
さいため、水晶の特性に与える影響は他の元素に比べて
小さい。更に、単結晶生成後に高圧電界を印加し、金属
イオンを拡散させて取り除く電解拡散処理も、Liは他
の元素に比べて効果的に行うことができる。よって、添
加するアルカリ金属元素としては、Liが最も好まし
い。Liの好ましい添加量は3×10-4モル%〜5モル
%である。3×10-4モル%未満になると水晶型結晶構
造を安定に存在できる温度領域を広げる効果が弱く、5
モル%を越えると水晶の特性の劣化が顕著になるからで
ある。
Particularly, Li is preferable because it can expand the temperature range in which the crystal structure of quartz crystal exists stably even in a small amount. Further, since Li has the smallest atomic radius among the alkali metals, the influence on the characteristics of quartz is smaller than that of other elements. Further, the electrolytic diffusion treatment of applying a high-voltage electric field to diffuse and remove the metal ions after the formation of the single crystal can be performed more effectively with Li than with other elements. Therefore, Li is most preferable as the alkali metal element to be added. The preferable addition amount of Li is 3 × 10 −4 mol% to 5 mol%. If it is less than 3 × 10 −4 mol%, the effect of widening the temperature range in which the quartz crystal structure can stably exist is weak.
This is because if it exceeds mol%, the characteristics of the crystal will be significantly deteriorated.

【0028】ただし、水晶型結晶構造を有する二酸化ゲ
ルマニウムは1033℃まで安定であるため、上記アル
カリ金属を添加しなくても、ゾルゲル法により安定して
水晶型結晶構造の二酸化ゲルマウムを形成することがで
きる。即ち、アルカリ金属添加の効果は、二酸化ケイ素
を主成分とする単結晶薄膜水晶の形成において顕著であ
る。よって、アルカリ金属を添加する時は、金属含有溶
液中のケイ素含有量が全金属元素含有量に対して50モ
ル%以上であることが好ましく、90モル%以上である
ことが更に好ましい。
However, since germanium dioxide having a crystal type crystal structure is stable up to 1033 ° C., it is possible to form germanium dioxide having a crystal type crystal structure stably by the sol-gel method without adding the above-mentioned alkali metal. it can. That is, the effect of adding an alkali metal is remarkable in the formation of a single crystal thin film crystal containing silicon dioxide as a main component. Therefore, when the alkali metal is added, the silicon content in the metal-containing solution is preferably 50 mol% or more, more preferably 90 mol% or more, based on the total metal element content.

【0029】このように、二酸化ゲルマニウムはゾルゲ
ウル法により安定して水晶型結晶構造を形成することが
できるので、ケイ素含有溶液に二酸化ゲルマニウムを添
加することによって、上記アルカリ金属を添加しなくて
も、水晶を合成することが容易になる。その場合、金属
含有溶液中のケイ素とゲルマニウムの含有量の合計が、
全金属含有量に対して70モル%以上であり、ケイ素に
対するゲルマニウムのモル比が0.01以上4以下とな
るように添加することが好ましい。Ge/Siのモル比
が0.01未満では水晶型結晶構造を安定化させる効果
が小さく、4を越えると二酸化ゲルマニウムの不安定性
が顕著になるからである。Ge/Siのモル比のより好
ましい範囲は0.2以上1.5以下である。
As described above, germanium dioxide can stably form a quartz crystal structure by the Zolgeul method. Therefore, by adding germanium dioxide to a silicon-containing solution, the above-mentioned alkali metal can be added. It becomes easy to synthesize a crystal. In that case, the total content of silicon and germanium in the metal-containing solution is
It is preferably 70 mol% or more with respect to the total metal content, and is added so that the molar ratio of germanium to silicon is 0.01 or more and 4 or less. This is because when the Ge / Si molar ratio is less than 0.01, the effect of stabilizing the quartz crystal structure is small, and when it exceeds 4, the instability of germanium dioxide becomes remarkable. A more preferable range of the Ge / Si molar ratio is 0.2 or more and 1.5 or less.

【0030】更に、ゾルゲル法によって固体の合成を行
うには、溶液のゲル化過程を制御する必要がある。ゲル
化が不十分な場合には熱処理過程で原料が蒸発してしま
うことがあり、逆にゲル化が進み過ぎると大きなゲル体
が集まるため、ゲル体間に隙間が生じたり結晶性に差が
生じたりして、緻密で良質な結晶膜の形成が困難になる
からである。
Furthermore, in order to synthesize a solid by the sol-gel method, it is necessary to control the gelation process of the solution. If the gelation is insufficient, the raw materials may evaporate during the heat treatment process. Conversely, if the gelation proceeds too much, large gel bodies will collect, resulting in gaps between the gel bodies and differences in crystallinity. If so, it becomes difficult to form a dense and high-quality crystal film.

【0031】ゲル化過程を制御する方法には、前駆体溶
液に各種添加剤を添加する方法がある。水の添加は、前
駆体溶液中の金属化合物を加水分解して活性の高い金属
水酸化物を形成し、金属水酸化物間の重縮合によりゲル
化を促進することができる。水の添加量は他の添加剤と
の組み合わせによって異なるが、適度なゲル化には金属
含有溶液中の全金属元素量に対して0.2モル当量以上
20モル当量以下の水を添加することが好ましい。0.
2モル当量未満だとゲル化の促進が弱く、熱処理の際に
原料が蒸発するため緻密な膜の形成が困難になる。又、
20モル当量を越えて水を添加するとゲル化が進みす
ぎ、均一に塗布することが困難になるので好ましくな
い。
As a method of controlling the gelation process, there is a method of adding various additives to the precursor solution. The addition of water can hydrolyze the metal compound in the precursor solution to form a highly active metal hydroxide, and promote gelation by polycondensation between the metal hydroxides. The amount of water added depends on the combination with other additives, but for proper gelation, add 0.2 to 20 molar equivalents of water to the total amount of metal elements in the metal-containing solution. Is preferred. 0.
If it is less than 2 molar equivalents, the gelation is weakly promoted, and the raw material is evaporated during the heat treatment, which makes it difficult to form a dense film. or,
If water is added in excess of 20 molar equivalents, gelation will proceed too much, making uniform coating difficult, which is not preferable.

【0032】逆に、ジエタノールアミン、ジイソプロパ
ノールアミン、トリエタノールアミン、又はジエチレン
グリコールの添加は、金属化合物との置換反応により金
属化合物の活性化を低くし、前駆体溶液を安定にする働
きがある。よって、これらの添加剤を添加することによ
りゲル化の進み過ぎを制御し、前駆体溶液の経時変化を
抑えることが可能である。添加量は他の添加剤との組み
合わせによって異なるが、金属含有溶液中の全金属元素
量に対して6モル当量以下添加することが好ましい。6
モル当量を越えて添加しても、添加の効果は6モル当量
以下と大きな差はなく、逆に炭素など不純物の混入生じ
ることになるからである。
On the contrary, the addition of diethanolamine, diisopropanolamine, triethanolamine or diethylene glycol has a function of lowering the activation of the metal compound by the substitution reaction with the metal compound and stabilizing the precursor solution. Therefore, by adding these additives, it is possible to control the excessive progress of gelation and suppress the change over time in the precursor solution. The addition amount varies depending on the combination with other additives, but it is preferable to add 6 molar equivalents or less with respect to the total amount of metal elements in the metal-containing solution. 6
This is because even if the addition is performed in excess of the molar equivalent amount, the effect of the addition is not significantly different from 6 molar equivalent or less, and conversely, impurities such as carbon are mixed.

【0033】又、上記したアルカリ金属、水、ジエタノ
ールアミンなどの添加剤は組み合わせて使用でき、それ
によりこれら添加剤の効果を更に高めることができる。
以上に記述した本発明方法により水晶振動子を形成すれ
ば、膜厚の制御が容易で、かつ単結晶基板の形状に応じ
て任意の形状の水晶振動子を安価に形成することができ
る。
The above-mentioned additives such as alkali metal, water and diethanolamine can be used in combination, whereby the effect of these additives can be further enhanced.
If the crystal oscillator is formed by the method of the present invention described above, it is possible to easily control the film thickness and inexpensively form the crystal oscillator having an arbitrary shape according to the shape of the single crystal substrate.

【0034】[0034]

【実施例】実施例1 金属アルコキシドを原料とするゾルゲル法により、本発
明の水晶振動子を製造した。まず、図1に示す単結晶基
板1として、鏡面研磨を施した水晶のAT面(2mm×
3mm)を用い、アセトンでの超音波洗浄、20重量%
塩酸への浸漬処理、純水洗浄、及び乾燥の順で前処理を
行った。
Example 1 A crystal resonator of the present invention was manufactured by a sol-gel method using a metal alkoxide as a raw material. First, as the single crystal substrate 1 shown in FIG. 1, the AT surface (2 mm ×
3mm), ultrasonic cleaning with acetone, 20% by weight
The pretreatment was performed in the order of immersion treatment in hydrochloric acid, washing with pure water, and drying.

【0035】次に、エタノール100ml中にGe(O
25)4を溶解してGe濃度約0.5モル/1のエタノ
ール溶液を作成し、水2.7gを添加した。この前駆体
溶液を、前記単結晶基板1の上に2000rpmでスピ
ンコートした後200℃で乾燥させ、更にスピンコート
と乾燥の過程を10回繰り返した。その後、酸素雰囲気
中において10℃/分の昇温速度で800℃まで昇温
し、800℃で2時間保持して結晶化を行い、図2に示
すように単結晶基板1上にGeO2を主成分とする水晶
型結晶構造の酸化物単結晶膜2を形成した。
Next, Ge (O) was added to 100 ml of ethanol.
C 2 H 5 ) 4 was dissolved to prepare an ethanol solution having a Ge concentration of about 0.5 mol / 1, and 2.7 g of water was added. The precursor solution was spin-coated on the single crystal substrate 1 at 2000 rpm, dried at 200 ° C., and the process of spin coating and drying was repeated 10 times. Then, in an oxygen atmosphere, the temperature is raised to 800 ° C. at a heating rate of 10 ° C./min, and kept at 800 ° C. for 2 hours to perform crystallization, and GeO 2 is deposited on the single crystal substrate 1 as shown in FIG. An oxide single crystal film 2 having a crystal type crystal structure as a main component was formed.

【0036】次に、単結晶薄膜水晶用の前駆体溶液とし
て、エタノール100ml中にSi(OC25)4を溶解
してSi濃度約0.5モル/lのエタノール溶液を作成
し、水を2.7g、ジエタノールアミンを5.257g、
LiOC25を0.026g(Siに対して1モル%)
を添加した。この前駆体溶液を、前記酸化物単結晶膜2
上に2000rpmでスピンコートした後200℃で乾
燥させ、更にスピンコートと乾燥の過程を60回繰り返
した。その後、酸素雰囲気中において10℃/分の昇温
速度で850℃まで昇温し、850℃で2時間保持する
ことにより、図3に示すように単結晶薄膜水晶3を形成
した。
Next, as a precursor solution for a single crystal thin film crystal, Si (OC 2 H 5 ) 4 was dissolved in 100 ml of ethanol to prepare an ethanol solution having a Si concentration of about 0.5 mol / l, and water was added. 2.7 g, diethanolamine 5.257 g,
0.026 g of LiOC 2 H 5 (1 mol% relative to Si)
Was added. This precursor solution is added to the oxide single crystal film 2
The above was spin-coated at 2000 rpm, dried at 200 ° C., and the process of spin-coating and drying was repeated 60 times. Then, the temperature was raised to 850 ° C. at a temperature rising rate of 10 ° C./min in an oxygen atmosphere, and the temperature was kept at 850 ° C. for 2 hours to form a single crystal thin film crystal 3 as shown in FIG.

【0037】この単結晶薄膜水晶3上に、図4に示すよ
うに鏡面研磨した単結晶Siウェハー(2mm×3m
m)の支持板4を載せて荷重を加え、乾燥空気中500
℃で10分間加熱して接着した。支持板4に接着した試
料を、20重量%の塩酸水溶液中で3時間処理したとこ
ろ、GeO2を主成分とする酸化物単結晶膜2が溶解
し、図5に示すごとく単結晶薄膜水晶3が単結晶基板1
から剥離した。得られた単結晶薄膜水晶3をX線回析に
より評価した結果、良好な結晶性を有する単結晶薄膜水
晶のAT板が得られたことが分かり、またその厚みは
9.8μmであった。
On this single crystal thin film crystal 3, a mirror-polished single crystal Si wafer (2 mm × 3 m) as shown in FIG.
m) The support plate 4 is placed, a load is applied, and it is 500 in dry air.
It adhered by heating at 10 degreeC for 10 minutes. When the sample adhered to the support plate 4 was treated in a 20 wt% hydrochloric acid aqueous solution for 3 hours, the oxide single crystal film 2 containing GeO 2 as a main component was dissolved, and as shown in FIG. Single crystal substrate 1
Peeled off. As a result of evaluating the obtained single crystal thin film crystal 3 by X-ray diffraction, it was found that an AT plate of the single crystal thin film crystal having good crystallinity was obtained, and its thickness was 9.8 μm.

【0038】更に、図6に示すように、この単結晶薄膜
水晶3の中央部分(1mm×1.5mm)が露出するよ
うに、支持板4を水酸化カリウム水溶液でエッチングし
た後、図7に示すように単結晶薄膜水晶3の一部を酸性
フッ化アンモニウム水溶液でエッチングして、1mm×
0.5mmの振動部を形成し、最後に図8及び図9に示
すように支持板4の両側より振動部に銀を蒸着して電極
5を形成した。以上の方法で形成された水晶振動子6
は、基本振動数が172MHzであった。
Further, as shown in FIG. 6, the supporting plate 4 was etched with an aqueous solution of potassium hydroxide so that the central portion (1 mm × 1.5 mm) of the single crystal thin film crystal 3 was exposed, and then, as shown in FIG. As shown, a portion of the single crystal thin film crystal 3 is etched with an ammonium acid fluoride aqueous solution to form a 1 mm ×
A vibrating portion having a thickness of 0.5 mm was formed, and finally, as shown in FIGS. 8 and 9, silver was vapor-deposited on the vibrating portion from both sides of the support plate 4 to form the electrode 5. Crystal unit 6 formed by the above method
Had a fundamental frequency of 172 MHz.

【0039】実施例2 単結晶薄膜水晶を形成するまでは前記実施例1と同様に
行った。得られた単結晶薄膜水晶上に、水晶形成用の前
駆体溶液を1度塗布し、その上に支持板として単結晶薄
膜水晶の中心部分(1mm×1mm)が接触しないよう
に穴のあいた石英ガラス(2mm×3mm)を載せて、
200度℃で乾燥させた後、酸素雰囲気中において10
℃/分の昇温速度で950℃まで昇温し、950℃で2
時間保持することにより、前駆体溶液の固化による単結
晶薄膜水晶の形成と同時に、これに支持板を接着した。
Example 2 The same procedure as in Example 1 was performed until the single crystal thin film crystal was formed. On the obtained single crystal thin film crystal, the precursor solution for forming the crystal is applied once, and as a supporting plate, quartz with a hole so that the central part (1 mm x 1 mm) of the single crystal thin film crystal does not come into contact Place the glass (2mm x 3mm),
After drying at 200 ° C, 10 in an oxygen atmosphere
The temperature is raised to 950 ° C at a heating rate of ° C / min, and 2
By holding for a period of time, the support plate was adhered to the single crystal thin film crystal at the same time when the precursor solution was solidified.

【0040】支持板に接着した試料を、5M水酸化ナト
リウム溶液中で2時間煮沸処理したところ、GeO2
主成分とする酸化物単結晶膜が溶解し、単結晶薄膜水晶
が単結晶基板から剥離した。得られた単結晶薄膜水晶を
X線回析により評価した結果、良好な結晶性を有する単
結晶薄膜水晶のAT板が得られたことが分かり、その厚
みは10μmであった。
When the sample adhered to the support plate was boiled in 5M sodium hydroxide solution for 2 hours, the oxide single crystal film containing GeO 2 as a main component was dissolved, and the single crystal thin film crystal was removed from the single crystal substrate. Peeled off. As a result of evaluating the obtained single crystal thin film crystal by X-ray diffraction, it was found that an AT plate of the single crystal thin film crystal having good crystallinity was obtained, and its thickness was 10 μm.

【0041】更に、単結晶薄膜水晶の一部を実施例1と
同様に酸性フッ化アンモニウム水溶液でエッチングし、
1mm×0.5mmの振動部を形成した。最後に、シリ
コン支持板の両側より振動部に銀を蒸着して電極を形成
した。以上の方法で形成された水晶振動子は、基本振動
数が165MHzであった。
Further, a portion of the single crystal thin film crystal was etched with an ammonium acid fluoride aqueous solution in the same manner as in Example 1,
A vibrating part of 1 mm × 0.5 mm was formed. Finally, silver was vapor-deposited from both sides of the silicon support plate on the vibrating portion to form electrodes. The crystal unit formed by the above method had a fundamental frequency of 165 MHz.

【0042】実施例3 GeO2を主成分とする酸化物単結晶膜を形成するまで
は前記実施例1と同様に行った。次に、単結晶薄膜水晶
用の前駆体溶液として、エタノール100ml中にSi
(OCH3)4とGe(OC25)4を溶解し、ケイ素とゲル
マニウムのモル比が1で両元素の濃度が0.5モル/l
のエタノール溶液を作成し、更に水を2.7g添加して
前駆体溶液を調整した。
Example 3 The same procedure as in Example 1 was performed until an oxide single crystal film containing GeO 2 as a main component was formed. Next, as a precursor solution for a single crystal thin film crystal, Si was added to 100 ml of ethanol.
(OCH 3 ) 4 and Ge (OC 2 H 5 ) 4 are dissolved, the molar ratio of silicon and germanium is 1, and the concentration of both elements is 0.5 mol / l.
Of ethanol solution was prepared, and 2.7 g of water was further added to prepare a precursor solution.

【0043】この前駆体溶液を、前記酸化物単結晶膜上
に2000rpmでスピンコートした後、更にスピンコ
ートと乾燥の過程を60回繰り返した。その上に支持板
として単結晶薄膜水晶の中心部(1mm×1mm)が接
触しないように穴のあいた石英ガラス(2mm×3m
m)を載せ、200℃で乾燥させた後、酸素雰囲気中に
おいて10℃/分の昇温速度で950℃まで昇温し、9
50℃で2時間保持することにより、単結晶薄膜水晶の
形成と同時に支持板を接着した。
The precursor solution was spin-coated on the oxide single crystal film at 2000 rpm, and then spin coating and drying were repeated 60 times. A quartz glass (2 mm × 3 m) with a hole so that the central part (1 mm × 1 mm) of the single crystal thin film crystal as a supporting plate does not come in contact therewith
m), and dried at 200 ° C., then heated to 950 ° C. at a temperature rising rate of 10 ° C./min in an oxygen atmosphere,
By holding at 50 ° C. for 2 hours, the support plate was bonded simultaneously with the formation of the single crystal thin film crystal.

【0044】支持板に接着した試料を、5M水酸化ナト
リウム溶液中で2時間煮沸処理したところ、GeO2
主成分とする酸化物単結晶膜が溶解し、単結晶薄膜水晶
が単結晶基板から剥離した。得られた単結晶薄膜水晶を
X線回析により評価した結果、良好な結晶性を有する単
結晶薄膜水晶のAT板が得られたことが分かり、その厚
みは11μmであった。
When the sample adhered to the supporting plate was boiled for 2 hours in a 5M sodium hydroxide solution, the oxide single crystal film containing GeO 2 as a main component was dissolved, and the single crystal thin film crystal was removed from the single crystal substrate. Peeled off. As a result of evaluating the obtained single crystal thin film crystal by X-ray diffraction, it was found that an AT plate of the single crystal thin film crystal having good crystallinity was obtained, and its thickness was 11 μm.

【0045】更に、この単結晶薄膜水晶の一部を酸性フ
ッ化アンモニウム水溶液でエッチングし、1mm×0.
5mmの振動部を形成した。最後に、シリコン支持板の
両側より振動部に銀を蒸着して電極を形成した。以上の
方法で形成された水晶振動子は、基本振動数が154M
Hzであった。
Further, a part of this single crystal thin film crystal was etched with an ammonium acid fluoride aqueous solution, and 1 mm × 0.1 mm.
A 5 mm vibrating section was formed. Finally, silver was vapor-deposited from both sides of the silicon support plate on the vibrating portion to form electrodes. The crystal unit formed by the above method has a fundamental frequency of 154M.
It was Hz.

【0046】[0046]

【発明の効果】本発明によれば、振動部の厚みが5nm
以上50μm以下の任意の厚さで、高周波化に伴う一層
の薄膜化の要求に対応可能で、かつ任意の形状の水晶振
動子を形成でき、大がかりな装置を用いないゾルゲル法
により安価に提供することができる。
According to the present invention, the vibrating portion has a thickness of 5 nm.
With a thickness of 50 μm or less, it is possible to meet the demand for further thinning due to higher frequencies, and to form a quartz resonator of any shape, and to provide it inexpensively by the sol-gel method without using a large-scale device. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】水晶振動子の製造に用いる単結晶基板の断面図
である。
FIG. 1 is a cross-sectional view of a single crystal substrate used for manufacturing a crystal unit.

【図2】実施例1の製造工程に従って、単結晶基板上に
GeO2を主成分とする酸化物単結晶膜を形成した状態
の断面図である。
2 is a cross-sectional view of a state in which an oxide single crystal film containing GeO 2 as a main component is formed on a single crystal substrate according to the manufacturing process of Example 1. FIG.

【図3】実施例1の製造工程に従って、酸化物単結晶膜
上に単結晶薄膜水晶を形成した状態の断面図である。
FIG. 3 is a cross-sectional view of a state in which a single crystal thin film crystal is formed on an oxide single crystal film according to the manufacturing process of Example 1.

【図4】実施例1の製造工程に従って、単結晶薄膜水晶
に支持板を接着した状態の断面図である。
FIG. 4 is a cross-sectional view showing a state in which a support plate is bonded to a single crystal thin film crystal according to the manufacturing process of Example 1.

【図5】実施例1の製造工程に従って、単結晶薄膜水晶
を単結晶基板から剥離した状態の断面図である。
5 is a cross-sectional view of a state in which a single crystal thin film crystal is separated from a single crystal substrate according to the manufacturing process of Example 1. FIG.

【図6】実施例1の製造工程に従って、単結晶薄膜水晶
に接着した支持板の一部分を除去した状態の断面図であ
る。
FIG. 6 is a cross-sectional view showing a state in which a part of the support plate adhered to the single crystal thin film crystal is removed according to the manufacturing process of Example 1.

【図7】実施例1の製造工程に従って、単結晶薄膜水晶
の一部を除去して振動部を形成した状態の断面図であ
る。
FIG. 7 is a cross-sectional view showing a state where a vibrating portion is formed by removing a part of the single crystal thin film crystal according to the manufacturing process of the first embodiment.

【図8】実施例1の製造工程に従って、振動部に電極を
形成して製造された水晶振動子の断面図である。
FIG. 8 is a cross-sectional view of a crystal resonator manufactured by forming electrodes on a vibrating portion according to the manufacturing process of Example 1.

【図9】図8の水晶振動子の平面図である。9 is a plan view of the crystal unit shown in FIG. 8. FIG.

【符号の説明】[Explanation of symbols]

1 単結晶基板 2 酸化物単結晶膜 3 単結晶薄膜水晶 4 支持板 5 電極 6 水晶振動子 1 Single Crystal Substrate 2 Oxide Single Crystal Film 3 Single Crystal Thin Film Crystal 4 Support Plate 5 Electrode 6 Crystal Resonator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 41/08 41/24 H03H 3/02 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 41/08 41/24 H03H 3/02 B

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 水晶振動子の振動部として、ゾルゲル法
により単結晶基板上に形成された後に該単結晶基板から
剥離された、厚みが5nm以上50μm以下の単結晶薄
膜水晶を用いた水晶振動子。
1. A crystal vibration using a single crystal thin film crystal having a thickness of 5 nm or more and 50 μm or less, which is formed on a single crystal substrate by a sol-gel method and then peeled from the single crystal substrate, as a vibrating portion of the crystal resonator. Child.
【請求項2】 単結晶薄膜水晶は、全金属元素量に対し
て50モル%以上のケイ素と、3×10-4モル%以上5
モル%以下のリチウムを含有することを特徴とする、請
求項1に記載の水晶振動子。
2. The single crystal thin film crystal comprises 50 mol% or more of silicon and 3 × 10 −4 mol% or more of 5 with respect to the total amount of metal elements.
The crystal resonator according to claim 1, wherein the crystal resonator contains mol% or less of lithium.
【請求項3】 単結晶薄膜水晶は、全金属元素量に対し
て合計で70モル%以上のケイ素とゲルマニウムを含有
し、ケイ素に対するゲルマニウムのモル比が0.01以
上4以下であることを特徴とする、請求項1に記載の水
晶振動子。
3. The single crystal thin film crystal contains silicon and germanium in a total amount of 70 mol% or more with respect to the total amount of metal elements, and the molar ratio of germanium to silicon is 0.01 or more and 4 or less. The crystal resonator according to claim 1, wherein
【請求項4】 単結晶基板上にゾルゲル法により二酸化
ゲルマニウムを主成分とする水晶型結晶構造を有する酸
化物単結晶膜を形成する工程と、酸化物単結晶膜上にゾ
ルゲル法により単結晶薄膜水晶を形成する工程と、水溶
液中で酸化物単結晶膜を溶解することにより単結晶基板
から単結晶薄膜水晶を剥離する工程と、得られた単結晶
薄膜水晶を振動部として組み込む工程とを備えたことを
特徴とする水晶振動子の製造方法。
4. A step of forming an oxide single crystal film having a crystal type crystal structure containing germanium dioxide as a main component on a single crystal substrate by a sol-gel method, and a single crystal thin film on the oxide single crystal film by a sol-gel method. It comprises a step of forming a crystal, a step of separating the single crystal thin film crystal from the single crystal substrate by dissolving the oxide single crystal film in an aqueous solution, and a step of incorporating the obtained single crystal thin film crystal as a vibrating section. A method for manufacturing a crystal unit, which is characterized in that
【請求項5】 単結晶基板が水晶であることを特徴とす
る、請求項4に記載の水晶振動子の製造方法。
5. The method for manufacturing a crystal unit according to claim 4, wherein the single crystal substrate is crystal.
【請求項6】 ゾルゲル法による単結晶薄膜水晶の形成
時に、ケイ素及び/又はゲルマニウムを含む金属含有溶
液に、全金属元素量に対して0.2モル当量以上20モ
ル当量以下の水を添加して調整した前駆体溶液を用いる
ことを特徴とする、請求項4又は5に記載の水晶振動子
の製造方法。
6. When forming a single crystal thin film crystal by the sol-gel method, 0.2 mol equivalent or more and 20 mol equivalent or less of water is added to a metal-containing solution containing silicon and / or germanium with respect to the total amount of metal elements. The method for producing a crystal resonator according to claim 4, wherein a precursor solution prepared by the above method is used.
【請求項7】 ゾルゲル法による単結晶薄膜水晶の形成
時に、ケイ素及び/又はゲルマニウムを含む金属含有溶
液に、ジエタノールアミン、ジイソプロパノールアミ
ン、トリエタノールアミン、ジエチレングリコールの少
なくとも1種を、全金属元素量に対して6モル当量以下
添加して調整した前駆体溶液を用いることを特徴とす
る、請求項4〜6のいずれかに記載の水晶振動子の製造
方法。
7. When forming a single crystal thin film crystal by the sol-gel method, at least one of diethanolamine, diisopropanolamine, triethanolamine and diethylene glycol is added to a metal-containing solution containing silicon and / or germanium in a total amount of metal elements. The method for producing a crystal resonator according to any one of claims 4 to 6, wherein a precursor solution prepared by adding 6 molar equivalents or less is used.
【請求項8】 ゾルゲル法による単結晶薄膜水晶の形成
時に、ケイ素及び/又はゲルマニウムを含む金属含有溶
液に、全金属元素量に対して3×10-4モル%以上5モ
ル%以下のリチウムを添加して調整した前駆体溶液を用
いることを特徴とする、請求項4〜7のいずれかに記載
の水晶振動子の製造方法。
8. When forming a single crystal thin film crystal by the sol-gel method, 3 × 10 −4 mol% or more and 5 mol% or less of lithium is added to a metal-containing solution containing silicon and / or germanium with respect to the total amount of metal elements. The method for producing a crystal resonator according to claim 4, wherein a precursor solution added and adjusted is used.
【請求項9】 ゾルゲル法による単結晶薄膜水晶の形成
時に、ケイ素とゲルマニウムの含有量の合計が全金属元
素量に対して70モル%以上で、ケイ素に対するゲルマ
ニウムのモル比が0.01以上4以下である金属含有溶
液を用いることを特徴とする請求項4〜7のいずれかに
記載の水晶振動子の製造方法。
9. When forming a single crystal thin film crystal by the sol-gel method, the total content of silicon and germanium is 70 mol% or more with respect to the total amount of metallic elements, and the molar ratio of germanium to silicon is 0.01 or more 4. The method for producing a crystal resonator according to any one of claims 4 to 7, wherein the following metal-containing solution is used.
【請求項10】 ゾルゲル法による単結晶薄膜水晶の形
成時に、前駆体溶液を500℃以上1200℃以下で熱
処理することにより結晶化させることを特徴とする、請
求項4〜9のいずれかに記載の水晶振動子の製造法。
10. The method according to claim 4, wherein when the single crystal thin film crystal is formed by the sol-gel method, the precursor solution is crystallized by heat treatment at 500 ° C. or more and 1200 ° C. or less. Manufacturing method of crystal oscillator.
【請求項11】 単結晶薄膜水晶表面の全部又は一部に
支持板を接合し、単結晶薄膜水晶を単結晶基板から剥離
した後、単結晶薄膜水晶と支持板又は単結晶薄膜水晶を
エッチングして振動部を形成し、振動部に電極を形成す
ることを特徴とする、請求項4に記載の水晶振動子の製
造方法。
11. A support plate is bonded to all or part of the surface of the single crystal thin film crystal, the single crystal thin film crystal is separated from the single crystal substrate, and then the single crystal thin film crystal and the support plate or the single crystal thin film crystal are etched. The method for manufacturing a crystal resonator according to claim 4, wherein the vibrating portion is formed by forming an electrode on the vibrating portion.
JP01689395A 1994-12-05 1995-02-03 Quartz crystal resonator and manufacturing method thereof Expired - Lifetime JP3446368B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP01689395A JP3446368B2 (en) 1995-02-03 1995-02-03 Quartz crystal resonator and manufacturing method thereof
US08/567,530 US6028020A (en) 1994-12-05 1995-12-05 Single crystal quartz thin film and preparation thereof
DE69520196T DE69520196T2 (en) 1994-12-05 1995-12-05 Single-crystal thin film made of quartz and process for its production
EP95119102A EP0716167B1 (en) 1994-12-05 1995-12-05 Single crystal quartz thin film and preparation thereof
KR1019950046693A KR100353721B1 (en) 1994-12-05 1995-12-05 Monocrystalline Crystal Thin Film and Its Manufacturing Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01689395A JP3446368B2 (en) 1995-02-03 1995-02-03 Quartz crystal resonator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08213871A true JPH08213871A (en) 1996-08-20
JP3446368B2 JP3446368B2 (en) 2003-09-16

Family

ID=11928845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01689395A Expired - Lifetime JP3446368B2 (en) 1994-12-05 1995-02-03 Quartz crystal resonator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3446368B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326894A (en) * 2001-04-27 2002-11-12 Sumitomo Special Metals Co Ltd Quartz film and manufacturing method of the same
JP2005295042A (en) * 2004-03-31 2005-10-20 Kyocera Kinseki Corp Method of manufacturing high-frequency crystal vibration plate
KR100588398B1 (en) * 2002-03-28 2006-06-12 가부시키가이샤 휴모 라보라토리 Method for Manufacturing Crystal Oscillator
JP2006339749A (en) * 2005-05-31 2006-12-14 Kyocera Kinseki Corp Quartz vibrator and method of manufacturing the same
JP2007150223A (en) * 2005-11-04 2007-06-14 Tokyo Univ Of Agriculture & Technology Functional substrate, method for manufacturing the same and peeling layer removing method
JP2012235162A (en) * 2005-11-04 2012-11-29 Tokyo Univ Of Agriculture & Technology Functional substrate and manufacturing method therefor
JP2015522519A (en) * 2012-07-23 2015-08-06 サントレ ナティオナル ド ラ ルシェルシェ シアンティフィク Method for producing an epitaxial alpha-quartz layer on a solid support, the resulting material and its use
US10186674B2 (en) 2015-10-22 2019-01-22 Nlt Technologies, Ltd. Thin-film device having barrier film and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326894A (en) * 2001-04-27 2002-11-12 Sumitomo Special Metals Co Ltd Quartz film and manufacturing method of the same
KR100588398B1 (en) * 2002-03-28 2006-06-12 가부시키가이샤 휴모 라보라토리 Method for Manufacturing Crystal Oscillator
JP2005295042A (en) * 2004-03-31 2005-10-20 Kyocera Kinseki Corp Method of manufacturing high-frequency crystal vibration plate
JP4567357B2 (en) * 2004-03-31 2010-10-20 京セラキンセキ株式会社 Method for manufacturing quartz diaphragm
JP2006339749A (en) * 2005-05-31 2006-12-14 Kyocera Kinseki Corp Quartz vibrator and method of manufacturing the same
JP4599231B2 (en) * 2005-05-31 2010-12-15 京セラキンセキ株式会社 Quartz crystal manufacturing method and crystal resonator
JP2007150223A (en) * 2005-11-04 2007-06-14 Tokyo Univ Of Agriculture & Technology Functional substrate, method for manufacturing the same and peeling layer removing method
JP2012235162A (en) * 2005-11-04 2012-11-29 Tokyo Univ Of Agriculture & Technology Functional substrate and manufacturing method therefor
JP2015522519A (en) * 2012-07-23 2015-08-06 サントレ ナティオナル ド ラ ルシェルシェ シアンティフィク Method for producing an epitaxial alpha-quartz layer on a solid support, the resulting material and its use
US10053795B2 (en) 2012-07-23 2018-08-21 Centre National De La Recherche Scientifique Process for preparing an epitaxial alpha-quartz layer on a solid support, material obtained and uses thereof
US10186674B2 (en) 2015-10-22 2019-01-22 Nlt Technologies, Ltd. Thin-film device having barrier film and manufacturing method thereof

Also Published As

Publication number Publication date
JP3446368B2 (en) 2003-09-16

Similar Documents

Publication Publication Date Title
JP3446368B2 (en) Quartz crystal resonator and manufacturing method thereof
CA2153848C (en) Oxide thin film having quartz crystal structure and process for producing the same
JP3528282B2 (en) Manufacturing method of single crystal thin film quartz
US3341361A (en) Process for providing a silicon sheet
US6028020A (en) Single crystal quartz thin film and preparation thereof
JP3689934B2 (en) Oxide thin film having quartz crystal structure and method for producing the same
JP3800635B2 (en) Oriented oxide thin film and vibrator and manufacturing method thereof
JPH09315897A (en) Single crystal oxide thin film having rock crystal type crystal structure and its production
CN112701033B (en) Preparation method of composite substrate, composite substrate and composite film
JPH0329037B2 (en)
JPH08225398A (en) Oxide thin film having rock crystal structure and its production
JPH11130451A (en) Quartz glass jig for semiconductor heat treatment apparatus
CN113463199B (en) High-quality single crystal aluminum nitride film and preparation method and application thereof
JPS6175614A (en) Manufacture of thin film piezoelectric vibrator
JP2845432B2 (en) Method for producing lithium tetraborate single crystal substrate
US4169755A (en) Growth of crystalline rods of gallium arsenide in a crucible of specially treated fibrous silicon dioxide
JPH06183879A (en) Production of single crystal thin film by liquid-phase epitaxy
JP2002326894A (en) Quartz film and manufacturing method of the same
JPS6165507A (en) Manufacture of thin film piezoelectric vibrator
JP4351478B2 (en) Method for making dielectric thin film
JP2640615B2 (en) Method for manufacturing piezoelectric crystal
JPS6279616A (en) Manufacture of silicon film
JPS58223344A (en) Manufacture of substrate for semiconductor device
JPH0244749A (en) Dielectric isolation substrate and manufacture thereof
JPH04311029A (en) Manufacture of semiconductor thin film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090704

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100704

Year of fee payment: 7