JPH06262198A - Water quality management method and water quality management chart for circulating water course system - Google Patents

Water quality management method and water quality management chart for circulating water course system

Info

Publication number
JPH06262198A
JPH06262198A JP20658192A JP20658192A JPH06262198A JP H06262198 A JPH06262198 A JP H06262198A JP 20658192 A JP20658192 A JP 20658192A JP 20658192 A JP20658192 A JP 20658192A JP H06262198 A JPH06262198 A JP H06262198A
Authority
JP
Japan
Prior art keywords
water
water quality
concentration
ion
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20658192A
Other languages
Japanese (ja)
Other versions
JP3119318B2 (en
Inventor
Takeo Oe
武男 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NETSUKOO KK
Nippon Zoki Pharmaceutical Co Ltd
Original Assignee
NETSUKOO KK
Nippon Zoki Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NETSUKOO KK, Nippon Zoki Pharmaceutical Co Ltd filed Critical NETSUKOO KK
Priority to JP20658192A priority Critical patent/JP3119318B2/en
Publication of JPH06262198A publication Critical patent/JPH06262198A/en
Application granted granted Critical
Publication of JP3119318B2 publication Critical patent/JP3119318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To quantitatively recognize the ease (generation intensity) of rust and scale so that the operation of a water treating device can efficiently be made by managing water quality with the concns. of various kinds of ions in a circulating water course system and the fluctuation coefft. of the concentration multiple of a solute concn. as the index. CONSTITUTION:The measured values (a) of the concns. of various kinds of the ions and the solute in the circulating water course system entailing condensation of water and the measured values (b) of the various kinds of the ions and the solute in feed water to the circulating water course system are contrasted by each of the same kinds. The water quality is managed by defining the ratio of a standard deviation S at the concentration multiple X1 to the average concentration multiplex X which is the mean value of the concentration multiplex X1, i.e., fluctuation coefft. CV as an index if the ratio a/b of the measured values (a) to the measured values (b) is defined as the concentration multiplex X1 as the index. A vibrating magnetic field and electric field generator is used in such a manner that the fluctuation coefft. does not exceed 20%. This device is constituted by housing a 1/2 wavelength wire antenna 1 within a steel pipe 2, both ends 4, 4' of which are formed as an inlet and outlet for the water and connecting a high-frequency power source 3 to this antenna 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は循環水路系の水質管理方
法及び水質管理表に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality control method and a water quality control table for a circulating water channel system.

【0002】[0002]

【従来の技術】水の濃縮を伴う循環水路系、例えば冷却
塔からの冷却水をポンプ送りで熱交換器に送り、さらに
冷却塔へ循環する循環水路、軟水器から給水タンクを経
てポンプ送りで蒸気ボイラーに給水するボイラー系統ラ
イン、あるいは水の濃縮を伴わない非循環水路系、例え
ば単に受水槽から高置き貯水槽に水をポンプ送りし、各
階へ給水する高層ビル等での飲料水給水ライン等では、
水を送るライン内、又は熱交換器、ボイラー、冷却塔、
給水管等の内部での錆および/又はスケールの発生が常
に問題とされてきた。
2. Description of the Related Art A circulating water channel system accompanied by water concentration, for example, cooling water from a cooling tower is pumped to a heat exchanger, and further circulating water channel to the cooling tower is pumped from a water softener through a water supply tank. Boiler system line that supplies water to the steam boiler, or non-circulating channel system that does not involve water concentration, for example, a drinking water supply line in a high-rise building that simply pumps water from a receiving tank to a high-level storage tank to supply water to each floor. Etc.,
In the line that sends water, or in heat exchangers, boilers, cooling towers,
Generation of rust and / or scale inside the water supply pipe has always been a problem.

【0003】特に、冷却塔−熱交換器循環系統ライン及
びボイラー系統ラインなどの循環水路系では、循環水が
水の蒸発に伴い濃縮されるため、各種イオン濃度及び溶
質濃度が高くなって錆・スケールが一層発生し易い。J
IS−B8223は、ボイラの錆・スケール発生を防止
するため、「ボイラの給水及びボイラ水の水質」と題し
て、所謂蒸気循環ボイラの水質管理について詳細に規定
している。これによれば、給水及びボイラ水中の各種成
分(イオン及び溶質)の上(又は上下)限濃度が定めら
れ、例えば丸ボイラのボイラ水については、伝熱面蒸発
率が30kg/m2・hのものでは、電気伝導率は60
00(μs/cm)以下、Mアルカリ度は100〜80
0と規定されている。
Particularly, in a circulating water channel system such as a cooling tower-heat exchanger circulating system line and a boiler system line, circulating water is concentrated as water evaporates, so that various ion concentrations and solute concentrations are increased and rust and Scale is more likely to occur. J
IS-B8223 stipulates in detail the water quality control of a so-called steam circulation boiler, entitled "Water quality of boiler feed water and boiler water quality", in order to prevent rust and scale generation of the boiler. According to this, the upper (or upper and lower) limit concentrations of various components (ions and solutes) in feed water and boiler water are determined. For example, for boiler water of a round boiler, the heat transfer surface evaporation rate is 30 kg / m 2 · h. The electrical conductivity of 60
00 (μs / cm) or less, M alkalinity is 100 to 80
It is defined as 0.

【0004】前記JIS規定を遵守すれば錆・スケール
を一応抑制できるが、各成分を完全に規定範囲に収める
のは容易でない。すなわち、ある成分が規定範囲から外
れている場合、これを規定範囲に収めるため、一般に各
種の防錆剤、スケール分散剤、清缶剤等が使用される
が、例えば薬剤Aを使用して成分aを規定範囲に収める
と、別の成分bが規定範囲から外れる場合もあり、その
場合は成分bを規定範囲に収めるためにさらに薬剤Bを
投入せざるを得ないなど、総じて薬剤の使用が統一性お
よび論理性に欠け、薬剤使用量が多くなりがちである。
このように投入薬剤の種類と量の管理は一般的に難し
く、ランニングコストも高くつき、また飲料水などでは
保健上の理由からも薬剤多用には問題がある。
Although rust and scale can be temporarily suppressed if the JIS standards are complied with, it is not easy to completely contain each component within the specified range. That is, when a certain component is out of the specified range, various rust preventives, scale dispersants, clear cans and the like are generally used to keep it within the specified range. When a is contained in the specified range, another component b may be out of the specified range. In that case, in order to keep the component b in the specified range, further injection of the drug B is unavoidable. It lacks uniformity and logic, and tends to increase drug usage.
As described above, it is generally difficult to control the type and amount of the input drug, the running cost is high, and there is a problem in using a large amount of the drug for health reasons, such as drinking water.

【0005】一方、循環水路系では新規給水を抑制して
濃縮倍数をある程度高目に維持する方がエネルギー効率
ないし熱効率の点で好ましいが、従来の水質管理方法で
は、錆・スケールの発生の点で、濃縮倍数をどの程度ま
で上げても心配ないかどうかを判断するための尺度ない
し指標が全く存在せず、専ら冷却装置又はボイラー等の
運転操作員の経験と勘に頼って新規給水の時期と給水量
を決めていた。
On the other hand, in the circulating water system, it is preferable from the viewpoint of energy efficiency or thermal efficiency to suppress new water supply and maintain the concentration factor at a high level to some extent, but in the conventional water quality control method, rust and scale are generated. Therefore, there is no scale or index for judging whether or not there is no concern about increasing the concentration factor, and the timing of new water supply depends solely on the experience and intuition of the operator such as the cooling device or boiler. And decided the amount of water supply.

【0006】[0006]

【発明が解決しようとする課題】JIS-B8223に規定され
た錆・スケールを防止するための規制範囲は、個々の成
分毎についての規制範囲であって、各成分の総和に対す
るいわゆる全体規制値なるものが存在しない。この全体
規制値を見出すことができれば、錆・スケールの発生強
度について定量的な判断が可能になり、この判断に基づ
き、循環水路系に投入すべき薬剤の種類、量に関して、
あるいは循環水路系に対する新規給水の時期と給水量に
関して、従来よりも統一的かつ論理的な運用ができるは
ずである。
[Problems to be Solved by the Invention] The regulation range for preventing rust and scale specified in JIS-B8223 is the regulation range for each individual component, which is the so-called total regulation value for the sum of each component. There is no such thing. If this overall regulation value can be found, it will be possible to make a quantitative judgment on the strength of rust / scale generation, and based on this judgment, regarding the type and amount of chemicals to be added to the circulating water system,
Alternatively, it should be possible to operate more uniformly and logically than before regarding the timing of new water supply and the amount of water supply to the circulating water system.

【0007】本発明の目的はこの錆・スケールの発生強
度を示す指標ないし全体規制値を求め、循環水路系の水
質管理に役立てることにある。
An object of the present invention is to obtain an index indicating the rust and scale generation strength or an overall regulation value, and use it for water quality control of a circulating water channel system.

【0008】[0008]

【課題を解決するための手段】本発明は、水の濃縮を伴
う循環水路系内の各種イオン及び溶質濃度の測定値a
と、前記循環水路系に対する給水中の各種イオン及び溶
質濃度の測定値bとを、同一種類ごとに対比し、前記測
定値aの測定値bに対する割合a/bを濃縮倍数Xiとし
たとき、前記濃縮倍数Xiの平均値Xバーに対する、前
記濃縮倍数Xiの標準偏差Sの割合、すなわち変動係数
CVを指標として水質を管理する循環水路系の水質管理
方法を提供する。
According to the present invention, a measured value a of various ion and solute concentrations in a circulation channel system accompanied by water concentration is obtained.
And the measured values b of various ion and solute concentrations in the feed water for the circulating water channel system are compared for each same type, and the ratio a / b of the measured value a to the measured value b is the concentration factor X i. Provided is a water quality management method for a circulating water channel system, which manages water quality using the ratio of the standard deviation S of the concentration factor X i to the average value X bar of the concentration factor X i , that is, the variation coefficient CV as an index.

【0009】また本発明は、前記測定値aと測定値bを
同種イオン及び溶質毎に隣接して列挙すると共に、測定
値aに濃縮倍数Xiを付記し、かつ前記濃縮倍数Xiと対
比可能な位置に平均濃縮倍数Xバーを表示してなる水質
管理表を提供する。
[0009] The present invention is a measured value b and the measured value a with enumerating adjacent to each allogeneic ions and solutes, are indicated by the concentrated multiple X i to the measured value a, and with the concentrated multiple X i contrasted Provide a water quality control table that displays the average concentration multiple X bar at possible positions.

【0010】[0010]

【作用】変動係数は、平均濃縮倍数(Xバー)に対する
各イオン及び溶質の濃縮倍数のバラツキの度合いを示す
ものであり、変動係数が大きいということは、イオンや
溶質が相互に反応し、析出し、あるいは蒸気中に混入す
る量が大きいことを示す。従って変動係数を求め、これ
を指標とすることにより、循環水路系内の現象ないし変
化に関して的確な情報把握が可能となり、錆、スケール
の発生を未然に防止することができる。
The coefficient of variation indicates the degree of variation in the concentration factor of each ion and solute with respect to the average concentration factor (X bar). A large coefficient of variation means that ions and solutes react with each other and precipitate. Or indicates that a large amount is mixed in the steam. Therefore, by obtaining the coefficient of variation and using it as an index, it becomes possible to accurately grasp information regarding phenomena or changes in the circulating water channel system, and prevent rust and scale from occurring.

【0011】また、本発明の水質管理表を使用すること
により、各イオン及び溶質の濃縮倍数が平均濃縮倍数
(Xバー)からプラス・マイナスでどの程度外れている
かが簡単に分かるので、異常濃縮成分又は異常希釈成分
を一目で見付けることができ、異常成分に対応した水質
改善対策を迅速、的確にとることができる。この水質管
理表は前記水質管理方法と共に使用することにより、そ
の実用価値を最大限に発揮するものである。
Further, by using the water quality control table of the present invention, it is possible to easily see how much the concentration factor of each ion and solute deviates from the average concentration factor (X bar) by plus or minus. The component or abnormal diluted component can be found at a glance, and water quality improvement measures corresponding to the abnormal component can be taken promptly and accurately. This water quality control table maximizes its practical value by using it together with the above water quality control method.

【0012】[0012]

【実施例】本発明者は、JISで規定する循環水路系の
水質管理方法が、イオン濃度及び溶質濃度を上(上下)
限規定するだけで、個々の濃度値は実際の錆・スケール
の発生しやすさ(発生強度)を示す指標となり得ないこ
とに鑑み、各濃度値を給水の濃度値と比較することを着
想した。すなわち循環水路系中のイオン濃度及び溶質濃
度が、給水の対応イオン濃度及び溶質濃度と比較して、
何倍(濃縮倍数)になっているかを見るのである。
[Example] The present inventor has found that the water quality control method for a circulating water channel system specified in JIS raises the ion concentration and the solute concentration (up and down).
Since the individual concentration values cannot be used as an index to show the susceptibility (occurrence intensity) of actual rust and scale only by limiting the limit, the idea was to compare each concentration value with the concentration value of the water supply. . That is, the ion concentration and solute concentration in the circulating water system, compared with the corresponding ion concentration and solute concentration of the feed water,
See how many times (concentration factor) it is.

【0013】濃縮倍数は、循環水路系の水が理想の状態
で濃縮されたとすると、すなわち水系のイオンや溶質が
相互に反応もせず、析出もせず、また蒸気中に混入もし
なければ、全てのイオン、溶質(成分)について同じ倍
数になる筈である。しかし、現実には濃縮倍数は成分に
より大きなバラツキが見られる。従って逆にこのバラツ
キがあるということは、何らかの事象が循環水路系内で
起こっていることを示すものといえる。本発明者はこの
ことから濃縮倍数が水質管理のポイントになることを着
想し、水質管理方法として具体化したのである。
If the water in the circulating water channel is concentrated in an ideal state, that is, if the ions and solutes in the water channel do not react with each other, do not precipitate, and do not mix in the steam, It should be the same multiple for ions and solutes (components). However, in reality, the concentration factor varies greatly depending on the component. Therefore, conversely, the fact that there is this variation can be said to indicate that some event is occurring in the circulation channel system. Based on this, the present inventor has conceived that the concentration multiple becomes a key point for water quality control, and has embodied it as a water quality control method.

【0014】循環水路系内で生じている事象を正確に把
握するには、データに基づく統計的手法が欠かせないの
であるが、従来のJISの水質管理方法では、統計的方
法を全く採用できなかった。この点濃縮倍数は統計処理
に好適であり、以下に説明する如く、水質管理に関して
的確な判断を下すための情報が得られる。
A statistical method based on data is indispensable for accurately grasping the events occurring in the circulating water channel system, but in the conventional water quality management method of JIS, the statistical method cannot be adopted at all. There wasn't. This point concentration multiple is suitable for statistical processing, and as will be described below, information for making an accurate judgment regarding water quality management can be obtained.

【0015】本発明では、冷却塔−熱交換器系統ライン
やボイラー系統ラインなどの、水の濃縮を伴う循環水路
系内の各種イオン濃度および溶質濃度の測定値aと、前
記循環水路系に対する給水中の各種イオン濃度および溶
質濃度の測定値bとを測定する。 変動係数の安定性及
び信頼性のため、測定対象はなるべく多種類であること
が望ましいが、例えば以下の7成分の濃度を測定するこ
とが推奨される。
In the present invention, measured values a of various ion concentrations and solute concentrations in a circulating water channel system accompanied by water concentration, such as a cooling tower-heat exchanger system line and a boiler system line, and water supply to the circulating water channel system. The measured values b of various ion concentrations and solute concentrations therein are measured. For stability and reliability of the coefficient of variation, it is desirable to measure as many kinds as possible, but it is recommended to measure, for example, the concentrations of the following 7 components.

【0016】(1)軟水器を使用しない循環水路系の場
合 導電率,塩素イオン,硫酸イオン,Mアルカリ
度,全硬度,ケイ酸イオン,蒸発残留物
(1) In the case of a circulating water channel system that does not use a water softener: conductivity, chloride ion, sulfate ion, M alkalinity, total hardness, silicate ion, evaporation residue

【0017】(2)軟水器を使用した循環水路系の場合 導電率,塩素イオン,硫酸イオン,Mアルカリ
度,ナトリュウムイオン,ケイ酸イオン,蒸発残
留物
(2) In the case of a circulating water channel system using a water softener Conductivity, chloride ion, sulfate ion, M alkalinity, sodium ion, silicate ion, evaporation residue

【0018】前記(2)の場合、全硬度の代わりに
ナトリュウムイオンを測定する。これは軟水器を使用す
る場合は全硬度を測定する意味がないのと、イオン交換
樹脂にナトリュウムが含まれているからそのイオン濃度
を監視する必要があるからである。
In the case of the above (2), sodium ion is measured instead of the total hardness. This is because it is meaningless to measure the total hardness when using a water softener, and because the ion exchange resin contains sodium, it is necessary to monitor the ion concentration.

【0019】なお、硫酸イオン及びナトリュウムイオン
は従来のJISでは水質管理上の対象とされてなかった
が、本発明者はこれらが錆・スケールの発生に密接な関
係があることを見出し、測定対象として加えた。
Although the sulfate ion and the sodium ion were not targeted for water quality control in the conventional JIS, the present inventor found that they were closely related to the generation of rust and scale, and the measurement target Added as.

【0020】測定値aと測定値bとを得ると、次にa/
b(=濃縮倍数Xi)を計算する。
When the measured value a and the measured value b are obtained, next, a /
Calculate b (= concentration factor X i ).

【0021】ここで各成分の濃縮倍数を以下のように表
すと、 成分 濃縮倍数 成分 濃縮倍数 導電率 X1 全硬度 X5 塩素イオン X2 (Naイオン X5) 硫酸イオン X3 ケイ酸イオン X6 Mアルカリ度 X4 蒸発残留物 X7 濃縮倍数だけを見てもある程度の水質判断は可能である
が、平均濃縮倍数と変動係数を算出することにより飛躍
的に確実、便利な水質判断が可能となる。
Here, the concentration factor of each component is expressed as follows: Component concentration factor Component concentration factor Conductivity X1 Total hardness X5 Chloride ion X2 (Na ion X5) Sulfate ion X3 Silicate ion X6 M Alkalinity X4 Evaporation Although it is possible to judge the water quality to some extent only by looking at the residue X7 concentration factor, by calculating the average concentration factor and the coefficient of variation, it is possible to make a drastically reliable and convenient water quality judgment.

【0022】変動係数を求めるには、先ず標準偏差
(S)を下式により求める。
To obtain the coefficient of variation, the standard deviation (S) is first obtained by the following equation.

【0023】 S=√{Σ(Xi−Xバー)2/(7−1)} (但
し、i=1,2,3,4,5,6,7) (Xバーは
平均濃縮倍数を表す。)
S = √ {Σ (X i −X bar) 2 / (7-1)} (where i = 1, 2, 3, 4, 5, 6, 7) (X bar is the average concentration multiple) Represents.)

【0024】変動係数(CV%)は、 CV%=(S/Xバー)×100% により求められる。The coefficient of variation (CV%) is obtained by CV% = (S / X bar) × 100%.

【0025】変動係数は平均濃縮倍数(Xバー)に対す
る各濃縮倍数のバラツキの度合いを示すものであり、変
動係数が大きいということは、イオンや溶質が相互に反
応し、析出し、あるいは蒸気中に混入する量が大きいこ
とを示す。従って変動係数を求めることにより、錆、ス
ケールの発生しやすさ(発生強度)について的確な情報
把握が可能となる。
The coefficient of variation indicates the degree of variation of each concentration factor with respect to the average concentration factor (X bar). A large coefficient of variation means that ions and solutes react with each other and precipitate, or in vapor. Indicates that a large amount is mixed in. Therefore, by obtaining the coefficient of variation, it is possible to accurately grasp information about the susceptibility (occurrence intensity) of rust and scale.

【0026】本発明者は多くの実験例から、(S/Xバ
ー)×100%で表される変動係数(CV%)が10%
以下のとき冷却水の管理はベストの状態にあり、スケー
ル、腐食、スライムの発生がないこと、少なくとも約2
0%以内ならば許容され得ることを見出し、水質管理上
の有力な基準になり得ることを見出した。
The present inventor has found that the coefficient of variation (CV%) expressed by (S / X bar) × 100% is 10% from many experimental examples.
Cooling water management is at its best when: no scale, corrosion or slime formation, at least about 2
It was found that 0% or less was acceptable, and it was found to be a strong standard for water quality management.

【0027】本発明の水質管理方法は、単に錆・スケー
ルの発生を防止するに止まらず、エネルギー効率を高め
る上でも有効である。すなわち、変動係数が20%以内
であれば循環水路系で錆・スケールの発生が防止される
から、変動係数の自然増大を睨みながら、あるいは磁場
電子場装置等により変動係数を積極的に抑制しつつ、変
動係数が約20%の範囲内で、平均濃縮倍数が最大限に
なるまで新規給水なしでボイラーや冷却装置等を運転す
ることにより、ボイラーや冷却装置等のエネルギー効率
が高まり、節水にも役立つ。実験によると、濃縮倍数を
5倍にすると使用水量を1/10以下にできることが確
認された。
The water quality control method of the present invention is effective not only for preventing the formation of rust and scale, but also for improving energy efficiency. That is, if the coefficient of variation is within 20%, rust and scale are prevented from being generated in the circulating water channel system, so that the coefficient of variation is actively suppressed while observing the natural increase of the coefficient of variation or by a magnetic field electron field device or the like. While the coefficient of variation is within the range of about 20%, the energy efficiency of the boiler and the cooling device is improved by operating the boiler and the cooling device without new water supply until the average concentration multiple becomes maximum, thus saving water. Is also useful. According to the experiment, it was confirmed that the amount of water used can be reduced to 1/10 or less by increasing the concentration factor by 5.

【0028】さらに平均濃縮倍数が高いと系内での鉄分
の溶出が抑制され、変動係数を低位に安定させるのに有
効であることも分かった。
It was also found that when the average concentration multiple is high, the elution of iron in the system is suppressed, and it is effective in stabilizing the coefficient of variation at a low level.

【0029】なお、錆・スケールの発生しにくい良好な
水質にも拘らず、濃縮倍数を測定する際の測定誤差ない
しエラー等により変動係数が20%を越えることもあ
る。この場合は、各濃縮倍数を検討することにより異常
値が容易に判明するので、その異常値を除いて計算し直
すことが可能である。例えば以下の実施例2では、硫酸
イオンの濃縮倍数10.0が平均濃縮倍数7.41に比
べて異常に高いことが分かる。このような単独の異常値
は理論的に説明不可能であるから、何らかの要因(例え
ば付近に重油焚きの煙突があればその排煙の影響)で硫
酸イオンが系に混入したものと考えられる。従ってこの
異常値を除外して計算し直すことにより正しい変動係数
を得ることができる。
The coefficient of variation may exceed 20% due to a measurement error or an error when measuring the concentration multiple, despite the good water quality in which rust and scale are unlikely to occur. In this case, an abnormal value can be easily found by examining each enrichment factor, and therefore the abnormal value can be removed and recalculated. For example, in Example 2 below, it is found that the concentration factor of sulfate ion 10.0 is abnormally higher than the average concentration factor of 7.41. Since such a single abnormal value is theoretically unexplainable, it is considered that sulfate ions are mixed into the system due to some factor (for example, the effect of exhaust gas from a heavy oil-fired chimney in the vicinity). Therefore, a correct coefficient of variation can be obtained by excluding this abnormal value and recalculating.

【0030】また各濃縮倍数を対比し子細に検討すれ
ば、平均濃縮倍数からの±で隔たりが大きい異常値につ
いて、これが測定誤差やエラーによるものか、あるいは
他の理由によるものか等が判明するので、循環水路系の
水質判断と水質改善対策が飛躍的に確実となる。
Further, if each concentration factor is compared and examined in detail, it is clarified whether or not an abnormal value having a large deviation from the average concentration factor by ± is caused by a measurement error, an error, or another reason. Therefore, the judgment of water quality in the circulation channel system and measures for water quality improvement will be dramatically ensured.

【0031】表1および表2に、変動係数が20%以下
と以上の各場合について実験を行なった結果を示す。同
表より明らかなように、変動係数が20%を越えた場合
は錆・スケールの発生が認められたが、20%以下に制
御した場合は殆ど認められなかった。
Tables 1 and 2 show the results of experiments conducted in each case where the coefficient of variation is 20% or less and above. As is clear from the table, when the coefficient of variation exceeds 20%, the generation of rust and scale was observed, but when controlled to 20% or less, it was hardly observed.

【0032】なお、表1および表2の実施例1および2
では、変動係数を20%以下に制御するため後述の線状
アンテナを具備した振動磁界電界場発生装置を用いてい
る。変動係数を抑制するためにはこの他に、公知の清缶
剤の使用、又は新規給水による濃縮倍数の低下など各種
方法を採用可能である。
Examples 1 and 2 of Tables 1 and 2
In order to control the coefficient of variation to 20% or less, an oscillating magnetic field electric field generator equipped with a linear antenna described later is used. In addition to this, in order to suppress the coefficient of variation, it is possible to employ various methods such as the use of a known boiler can or a reduction of the concentration factor by new water supply.

【0033】(実施例1および比較例1)実施例1では
変動係数が20パーセントを越えないように図1(B)
に示す振動磁界電界場発生装置を使用する。この装置は
直径10cmの鋼管2内に、直径3mm、長さ約500
mmステンレス線の1/2波長線アンテナ1を収容し、
このアンテナ1に、鋼管中央外側部に設けられた約30
0MHz高周波電源3を接続し、鋼管2の両端4,4’
を水の出入口としたものである。
(Example 1 and Comparative Example 1) In Example 1, the coefficient of variation does not exceed 20% as shown in FIG.
The oscillating magnetic field electric field generator shown in is used. This device has a diameter of 3 mm and a length of about 500 in a steel tube 2 with a diameter of 10 cm.
A 1/2 wavelength line antenna 1 of mm stainless steel wire is accommodated,
This antenna 1 has about 30
Connected to 0MHz high frequency power supply 3, both ends of steel pipe 2, 4, 4 '
Is the entrance and exit of water.

【0034】振動磁界電界場により変動係数が抑制され
る理論付けは必ずしも明確ではないが、本発明者は次の
ような仮説を立てた。すなわち、ケイ酸SiH4の固有
振動数は2191ν/cm、又は914ν/cmであ
り、ケイ酸を振動磁界電界場の中に置くと、共振理論に
基づきケイ素のM電子核の4つの電子が活性化し、シロ
キサン結合(−Si−O−Si−)が二次元、三次元と
なって重合し、この重合体が各種の無機、有機イオンと
結合して対応成分の溶解度を高め変動係数を低下させる
のである。
Although the theory that the coefficient of variation is suppressed by the oscillating magnetic field is not always clear, the present inventor has made the following hypothesis. That is, SiH 4 has a natural frequency of 2191 ν / cm or 914 ν / cm, and when silicic acid is placed in an oscillating magnetic field field, four electrons of silicon M electron nuclei are activated based on the resonance theory. The siloxane bond (—Si—O—Si—) polymerizes in a two-dimensional or three-dimensional manner, and this polymer combines with various inorganic and organic ions to increase the solubility of the corresponding component and reduce the coefficient of variation. Of.

【0035】実施例1では図3に示す如く、ボイラー1
3の給水系において振動磁界電界場発生装置15を給水
タンク11に付設し、同タンク11内の水をポンプ送り
でこの装置15内に循環させた。供給水としては表1に
記載した組成の軟水を用い、また振動磁界電界場発生装
置には1Wの電力を出力させ、線状アンテナの電流を1
0mAとし、同装置内の処理水の流量を15m3/時と
した。
In the first embodiment, as shown in FIG.
In the water supply system of No. 3, the oscillating magnetic field electric field generator 15 was attached to the water supply tank 11, and the water in the tank 11 was pumped to circulate in the apparatus 15. As the supply water, soft water having the composition shown in Table 1 was used, and 1 W of electric power was output to the oscillating magnetic field electric field generator, and the current of the linear antenna was 1
The flow rate of the treated water in the device was set to 0 mA and the flow rate to the treated water was set to 15 m 3 / hour.

【0036】当初150μs/cmであった軟水の導電
率が1960μs/cmとなるまでボイラー給水運転を
続け、その時点で給水タンク内の水をサンプリングし分
析した結果を表1に示した。
The boiler water supply operation was continued until the electric conductivity of the soft water, which was initially 150 μs / cm, became 1960 μs / cm, at which point the water in the water supply tank was sampled and analyzed. The results are shown in Table 1.

【0037】なお、比較例として、実施例と同様、但し
振動磁界電界場発生装置15を用いず、代わりに市販の
清缶剤を用い、導電率1710μs/cmまでボイラー
給水運転を続け、サンプリングした水の分析結果を水質
管理表1に示した。
As a comparative example, similar to the example, except that the oscillating magnetic field electric field generator 15 was not used, a commercially available boiler agent was used instead, and the boiler water supply operation was continued up to the conductivity of 1710 μs / cm for sampling. The results of water analysis are shown in Table 1 for water quality management.

【0038】[0038]

【表1】 [Table 1]

【0039】導電率を目安としてボイラー運転を続け、
6ヵ月後にボイラー、配管内の錆、スケールの発生状態
を調べたところ、実施例1の場合には殆ど認めるべき錆
およびスケールの発生がなく、比較例1の場合にはかな
りの錆およびスケールが認められた。比較例1では平均
濃縮倍数10.04に比べて硫酸イオンの濃縮倍数1.
0が極端に低く、これが変動係数の増大をきたし、又、
ケイ酸イオンの濃縮倍数の差がシリカ系の固いスケール
となって缶内に発生したと考えられる。
Continue the boiler operation with the conductivity as a guide,
After 6 months, the state of generation of rust and scale in the boiler and piping was examined, and in the case of Example 1, almost no rust and scale were observed, but in the case of Comparative Example 1, considerable rust and scale were found. Admitted. In Comparative Example 1, the concentration factor of sulfate ion was 1.40 as compared with the average concentration factor of 10.04.
0 is extremely low, which causes an increase in the coefficient of variation, and
It is considered that the difference in concentration factor of silicate ions was generated in the can as a silica-based hard scale.

【0040】このように本発明の水質管理表によれば、
濃縮倍数が異常に高いもの又は低いものが一目で分かる
から、異常な濃度のイオン及び溶質に対応した水質改善
対策を迅速かつ的確にとることができる。
Thus, according to the water quality control table of the present invention,
It is possible to see at a glance what the concentration factor is abnormally high or low, and therefore it is possible to take swiftly and appropriately measures for improving the water quality corresponding to the ions and solutes having abnormal concentrations.

【0041】なお、前記表1中の各パラメータ測定は、
JISKO101に準拠し、phはガラス電極法、塩素
イオンはイオン電極法、硫酸イオンはクロム酸バリウム
法、Mアルカリ度は酸消費量法、Naイオンはイオン電
極法、ケイ酸イオンは全シリカ、蒸発残留物は重量法で
測定した。
The measurement of each parameter in Table 1 is as follows.
According to JISKO101, ph is glass electrode method, chlorine ion is ion electrode method, sulfate ion is barium chromate method, M alkalinity is acid consumption method, Na ion is ion electrode method, silicate ion is all silica, evaporation The residue was measured gravimetrically.

【0042】(実施例2および比較例2) 実施例1で
用いられたものと同じ線状アンテナによる振動磁界電界
場発生装置(出力電力1W、線状アンテナ電流10m
A、約300MHz)を第2図の循環冷却水系統ライン
で9の位置、即ち熱交換器7と冷却塔下部5との間に位
置させた。補給水として表2に記載した組成の工業用水
(軟水器不使用)を用い、導電率を目安に運転を行なっ
た。なお、本発明装置9内の流量は50m3/時に設定
された。他方、比較のために、本発明装置を用いず、同
様の運転を平行的に実施した。水の導電率が約830μ
s/cm程度に達した段階で両者の循環水をサンプリン
グし分析した結果を水質管理表2に示した。
(Example 2 and Comparative Example 2) An oscillating magnetic field field generator using the same linear antenna as that used in Example 1 (output power 1 W, linear antenna current 10 m)
(A, about 300 MHz) was located at position 9 in the circulating cooling water system line in FIG. 2, that is, between the heat exchanger 7 and the cooling tower lower part 5. Industrial water having a composition shown in Table 2 (no water softener) was used as make-up water, and the operation was performed with the conductivity as a guide. The flow rate in the device 9 of the present invention is set to 50 m 3 / hour.
Was done. On the other hand, for comparison, the same operation was performed in parallel without using the device of the present invention. Water conductivity is about 830μ
The water quality control table 2 shows the results of sampling and analysis of the circulating water of both when it reached about s / cm.

【0043】[0043]

【表2】 [Table 2]

【0044】実施例2では変動係数は20%より幾分大
であったが(硫酸イオンの濃縮倍数が異常に高いことか
ら、空気中の排ガスの影響があったと思われる。)、錆
・スケール発生防止に対しかなりの効果が認められた。
なお硫酸イオン濃度が平均値に近い通常の環境下で実施
した場合、同じような導電率を示した段階で、本発明装
置を用いた時の平均濃縮倍数は7.05、標準偏差1.
16、変動係数は16.4%であった。
In Example 2, the coefficient of variation was somewhat higher than 20% (it is considered that the exhaust gas in the air had an influence because the concentration factor of sulfate ion was abnormally high). A considerable effect was observed for the prevention of occurrence.
In addition, when it is carried out in a normal environment in which the sulfate ion concentration is close to the average value, the average concentration factor when the device of the present invention is used is 7.05 and the standard deviation is 1.
16, the coefficient of variation was 16.4%.

【0045】なお、外部からのSOxの混入を少なくす
るには濃縮倍数が3以下が望ましい。
The concentration factor is preferably 3 or less in order to reduce the mixture of SOx from the outside.

【0046】振動磁界電界場は、図1に示す如く、望ま
しくはステンレス、鋼導線又は銅導線で所定の長さ、即
ち250mmあるいは500mmおよび1000mmの
線状アンテナ1を、鋼管2内に収納し、これに約300
Mhz(波長約1m)の高周波電源を接続し、電源の出
力電力を0.5〜1Wとし、線状アンテナ電流を10m
Aとすることにより与えられる。被処理水は前記鋼管2
に設けられた出入口4,4’を通じ一方向へ流される。
As shown in FIG. 1, the oscillating magnetic field electric field is preferably made of stainless steel, steel conductor or copper conductor, and the linear antenna 1 having a predetermined length, that is, 250 mm or 500 mm and 1000 mm is accommodated in the steel pipe 2. About 300
High frequency power supply of Mhz (wavelength about 1m) is connected, output power of the power supply is 0.5 to 1W, linear antenna current is 10m.
It is given as A. The water to be treated is the steel pipe 2
It is made to flow in one direction through the entrances and exits 4 and 4'provided in.

【0047】なお、水の誘電率や防水絶縁コート(例え
ばポリエチレン)の誘電率により波長短縮率が与えら
れ、実際のアンテナの長さは短くなる。
The wavelength shortening rate is given by the permittivity of water and the permittivity of the waterproof insulating coat (for example, polyethylene), and the actual length of the antenna is shortened.

【0048】被処理水の導入流量は0.2〜200m3
/時の範囲内に選択される。なお鋼管の直径は水の処理
量、流量によるが、通常5〜20cm程度である。かく
することにより、線状アンテナから3mの距離において
500μV/m以下の電界強度が与えられ、有効な水処
理が可能であり、かつ電波法に抵触することのない、最
適な振動磁界電界場が与えられる。
The introduction flow rate of the water to be treated is 0.2 to 200 m 3
It is selected within the range of / hour. The diameter of the steel pipe depends on the amount of water treated and the flow rate, but is usually about 5 to 20 cm. By doing so, an electric field strength of 500 μV / m or less is given at a distance of 3 m from the linear antenna, effective water treatment is possible, and an optimum oscillating magnetic field field that does not conflict with the Radio Law is obtained. Given.

【0049】[0049]

【発明の効果】本発明は前記の如く、循環水路系の各種
イオン濃度および溶質濃度の濃縮倍数の変動係数を指標
として水質を管理するので、錆・スケールの発生しやす
さ(発生強度)を定量的に把握することが初めて可能に
なり、各種水処理装置の効率的かつ的確な運転を可能に
し、また清缶剤についてはその使用量を必要最低限にで
き、またボイラー等への給水については給水時期と給水
量を的確に把握でき、従って錆・スケールの発生を効果
的かつ確実に防止することができ、ボイラーや冷却装置
等の寿命を大幅に向上させることができる。
As described above, according to the present invention, the water quality is controlled by using the coefficient of variation of the concentration multiple of the various ion concentrations and the solute concentration in the circulating water channel as an index, so that the susceptibility to rust and scale (generation strength) is determined. For the first time, it becomes possible to quantitatively grasp, enabling efficient and accurate operation of various water treatment devices, minimizing the amount of use of boiler cans, and supplying water to boilers, etc. Can accurately grasp the water supply timing and water supply amount, and therefore can effectively and surely prevent the generation of rust and scale, and can significantly improve the life of the boiler and the cooling device.

【0050】また変動係数が所定値以下であることを確
認しつつ、新規給水なしで平均濃縮倍数を安心して上限
値まで増大させることができるから、ボイラーおよび冷
却装置等のエネルギー効率を格段に高めることができ、
また大幅な節水が可能になる。
Also, while confirming that the coefficient of variation is less than or equal to the predetermined value, the average concentration factor can be safely increased to the upper limit value without new water supply, so that the energy efficiency of the boiler and the cooling device is remarkably improved. It is possible,
In addition, significant water savings will be possible.

【0051】また本発明の水質管理表を使用することに
より、濃縮倍数が平均濃縮倍数からプラス又はマイナス
方向に異常に離れているイオン及び溶質が一目で分かる
から、異常成分に対応した水質改善対策を迅速かつ的確
にとることができる。
Further, by using the water quality control table of the present invention, it is possible to see at a glance the ions and solutes whose concentration factor is abnormally separated from the average concentration factor in the plus or minus direction. Can be taken quickly and accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は1/4波長アンテナを用いた装置、
(B)は1/2波長アンテナを用いた装置、(C)は1
波長アンテナを用いた装置。
FIG. 1A is a device using a quarter-wave antenna,
(B) is a device using a 1/2 wavelength antenna, (C) is 1
A device that uses a wavelength antenna.

【図2】循環冷却水系に本発明をを適用した場合の水路
経路図。
FIG. 2 is a water route diagram when the present invention is applied to a circulating cooling water system.

【図3】蒸気ボイラーの給水系に本発明を適用した場合
の水路経路図。
FIG. 3 is a water channel diagram when the present invention is applied to a water supply system of a steam boiler.

【符号の説明】[Explanation of symbols]

1…アンテナ 3…高周波電源 7…熱交換器 8…冷却塔上部 10…軟水器 11…給水タンク 13…蒸気ボイラー 14…ポンプ 1 ... Antenna 3 ... High frequency power supply 7 ... Heat exchanger 8 ... Cooling tower upper part 10 ... Water softener 11 ... Water tank 13 ... Steam boiler 14 ... Pump

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水の濃縮を伴う循環水路系内の各種イオ
ン及び溶質濃度の測定値aと、前記循環水路系に対する
給水中の各種イオン及び溶質濃度の測定値bとを、同一
種類ごとに対比し、前記測定値aの測定値bに対する割
合a/bを濃縮倍数Xiとしたとき、前記濃縮倍数Xi
平均値である平均濃縮倍数Xバーに対する、前記濃縮倍
数Xiの標準偏差Sの割合、すなわち変動係数CVを指
標として水質を管理する循環水路系の水質管理方法。
1. A measurement value a of various ions and solute concentrations in a circulating water channel system accompanied by water concentration and a measurement value b of various ions and solute concentrations in feed water to the circulation water channel system, for each same type. contrast, and when the ratio a / b for the measured value b of the measurement values a and concentration multiple X i, with respect to the average concentration multiple X bar the is an average value of the concentration multiples X i, the standard deviation of the concentration multiples X i A water quality management method for a circulation channel system, which manages water quality using the ratio of S, that is, the coefficient of variation CV as an index.
【請求項2】 変動係数CV=約20%を基準として水
質を管理する請求項1記載の循環水路系の水質管理方
法。
2. The water quality control method for a circulating water channel system according to claim 1, wherein the water quality is controlled on the basis of the coefficient of variation CV = about 20%.
【請求項3】 前記測定値aおよびbが、導電率、塩素
イオン、硫酸イオン、Mアルカリ度、全硬度、ケイ酸イ
オン、蒸発残留物の測定値を含む請求項1または2記載
の水質管理方法。
3. The water quality control according to claim 1, wherein the measured values a and b include measured values of conductivity, chloride ion, sulfate ion, M alkalinity, total hardness, silicate ion, and evaporation residue. Method.
【請求項4】 前記測定値aおよびbが、導電率、塩素
イオン、硫酸イオン、Mアルカリ度、ケイ酸イオン、蒸
発残留物、ナトリュウムイオンの測定値を含む請求項1
または2記載の水質管理方法。
4. The measured values a and b include measured values of conductivity, chlorine ion, sulfate ion, M alkalinity, silicate ion, evaporation residue, and sodium ion.
Or the water quality management method described in 2.
【請求項5】 前記測定値aと測定値bを同種イオン及
び溶質毎に隣接して列挙すると共に、測定値aに濃縮倍
数Xiを付記し、かつ前記濃縮倍数Xiと対比可能な位置
に平均濃縮倍数Xバーを表示してなる水質管理表。
And wherein said measurement values a measured value b with enumerating adjacent to each allogeneic ions and solutes, are indicated by the concentrated multiple X i to the measured value a, and can be compared position and the concentrated multiple X i A water quality management table in which the average concentration factor X bar is displayed on the.
【請求項6】 前記濃縮倍数Xi及び平均濃縮倍数Xバ
ーと対比可能な位置に前 記変動係数CVを表示してな
る請求項5記載の水質管理表。
6. The water quality management table according to claim 5, wherein the coefficient of variation CV is displayed at a position where it can be compared with the concentration multiple X i and the average concentration multiple X bar.
JP20658192A 1989-11-21 1992-08-03 Water quality management method and water quality management table for circulation waterway system Expired - Fee Related JP3119318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20658192A JP3119318B2 (en) 1989-11-21 1992-08-03 Water quality management method and water quality management table for circulation waterway system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-304482 1989-11-21
JP30448289 1989-11-21
JP20658192A JP3119318B2 (en) 1989-11-21 1992-08-03 Water quality management method and water quality management table for circulation waterway system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP31672890A Division JPH0671588B2 (en) 1989-11-21 1990-11-20 Method and apparatus for activating silicic acid in water

Publications (2)

Publication Number Publication Date
JPH06262198A true JPH06262198A (en) 1994-09-20
JP3119318B2 JP3119318B2 (en) 2000-12-18

Family

ID=26515730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20658192A Expired - Fee Related JP3119318B2 (en) 1989-11-21 1992-08-03 Water quality management method and water quality management table for circulation waterway system

Country Status (1)

Country Link
JP (1) JP3119318B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU743770B2 (en) * 1998-01-22 2002-02-07 Akzo Nobel N.V. Stab and bullet proof protective clothing
JP2003181492A (en) * 2001-12-20 2003-07-02 Miura Co Ltd Method for suppressing scaling and method for suppressing scaling in boiler
CN1297496C (en) * 2004-07-12 2007-01-31 兰州盛源科技有限责任公司 High frequency electronic scale removal and scale inhibition method and apparatus
JP2008212762A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Method and system for using industrial water
WO2015159710A1 (en) * 2014-04-18 2015-10-22 栗田工業株式会社 Concentration-factor measurement device, concentration-factor measurement method, and water-quality-index-value measurement method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU743770B2 (en) * 1998-01-22 2002-02-07 Akzo Nobel N.V. Stab and bullet proof protective clothing
JP2003181492A (en) * 2001-12-20 2003-07-02 Miura Co Ltd Method for suppressing scaling and method for suppressing scaling in boiler
CN1297496C (en) * 2004-07-12 2007-01-31 兰州盛源科技有限责任公司 High frequency electronic scale removal and scale inhibition method and apparatus
JP2008212762A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Method and system for using industrial water
WO2015159710A1 (en) * 2014-04-18 2015-10-22 栗田工業株式会社 Concentration-factor measurement device, concentration-factor measurement method, and water-quality-index-value measurement method
JP2015205236A (en) * 2014-04-18 2015-11-19 栗田工業株式会社 Device and method for concentration magnification measurement and water quality index measurement method
US10041924B2 (en) 2014-04-18 2018-08-07 Kurita Water Industries Ltd. Concentration-factor measurement device and method

Also Published As

Publication number Publication date
JP3119318B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
US4172786A (en) Ozonation of cooling tower waters
US20040013563A1 (en) Cooling tower maintenance
CA2403274C (en) Use of control matrix for cooling water systems control
JPH06262198A (en) Water quality management method and water quality management chart for circulating water course system
CN1163418C (en) Ultra-purity water producing apparatus by high temperature process and chemical liquid preparing system including the same
JPH01119391A (en) Biocide water treatment method through which copper corrosion is reduced
CN102553857B (en) Method for removing deposited sludge
CN106745844A (en) A kind of antisludging agent of industrial cooling circulating water system and preparation method thereof
JP2009030817A (en) Blow control method in boiler water system
JP2002296268A (en) Method of evaluating water quality, and system for controlling water quality
TW514626B (en) Apparatus for manufacturing high-temperature extra-pure water and chemical processing apparatus having the same
Panigrahi et al. Boiler Water Treatment
JP2002372396A (en) Method and system for treating water of circulating cooling water system
JP6728546B2 (en) Wastewater treatment method, wastewater treatment system
KR20110119518A (en) Operation management device for a vaporization device, fresh water generator provided with the operation management device, and operation management method and fresh water-generating method for vaporization devices
JP3685384B2 (en) Slime prevention method
KR20030033902A (en) Method for monitoring of impurities in water with high sensitivity and apparatus using the same
JP7193921B2 (en) Pure water production equipment
JP2004025036A (en) System and method for controlling concentration of water treating chemicals
CN104386795B (en) Electric-generator internal cooling water, application thereof and method for cooling electric generator
KR100397313B1 (en) High temperature ultra-pure water production apparatus
JP6126841B2 (en) Scale adhesion prevention method and scale adhesion prevention agent
JP4139857B2 (en) Water treatment method
JP4557324B2 (en) Method for producing anti-corrosion water
JP2004012162A (en) Method for suppressing corrosion of steam generator for nuclear reactor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000829

LAPS Cancellation because of no payment of annual fees