JPH06262195A - Deep layer aeration tank - Google Patents
Deep layer aeration tankInfo
- Publication number
- JPH06262195A JPH06262195A JP5049418A JP4941893A JPH06262195A JP H06262195 A JPH06262195 A JP H06262195A JP 5049418 A JP5049418 A JP 5049418A JP 4941893 A JP4941893 A JP 4941893A JP H06262195 A JPH06262195 A JP H06262195A
- Authority
- JP
- Japan
- Prior art keywords
- aeration
- tank
- downward
- tube
- deep
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、有機性廃液中の有機物
や窒素を好気性微生物を用いて酸化分解処理する深層ば
っ気槽において酸素の供給を効率よく行える深層ばっ気
槽に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deep aeration tank capable of efficiently supplying oxygen in a deep aeration tank in which organic substances and nitrogen contained in an organic waste liquid are oxidatively decomposed by using aerobic microorganisms.
【0002】[0002]
【従来の技術】有機物や窒素を含む廃液を生物学的に処
理するばっ気槽については、用地の有効利用のために、
従来の水深が浅いばっ気槽に換えて地中深く掘り下げて
処理液の収容量を多くできる深層ばっ気槽が提案されて
いる。この従来の深層ばっ気槽における深層部への酸素
の供給手段は、槽の中間水位(例えば水深5m程度)に
散気板や水中機械式ばっ気機を配置して、循環水流を作
るためのチューブやバッフル板を設けられたものが知ら
れている。このような従来の方式は空気を効率よく溶解
できないので、これを改善するための手段の一例として
特開平3−137993号公報に開示されたものが提案
されている。このほかに、槽内にドラフトチューブを設
けてこのドラフトチューブ内に散気管を配するとともに
撹拌羽根を配して供給空気を細かく拡散すると同時に水
流に乗せて深部に押し込むようにして循環水流をつくる
方式も知られている。2. Description of the Related Art Regarding aeration tanks for biologically treating waste liquid containing organic substances and nitrogen, in order to effectively use the site,
A deep aeration tank has been proposed, which can replace a conventional aeration tank with a shallow water depth and can dig deep into the ground to increase the amount of treatment liquid stored. The conventional means for supplying oxygen to the deep layer in the deep aeration tank is to arrange a diffuser plate or a submersible mechanical aerator at an intermediate water level (for example, a water depth of about 5 m) to create a circulating water flow. A device provided with a tube or a baffle plate is known. Since such a conventional system cannot dissolve air efficiently, the one disclosed in JP-A-3-137993 has been proposed as an example of a means for improving this. In addition to this, a draft tube is installed in the tank, an air diffuser is placed in this draft tube, and stirring blades are placed to finely diffuse the supply air and at the same time put it on the water flow and push it into the deep part to create a circulating water flow. The scheme is also known.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、従来法
の深層ばっ気槽で用いられている散気方式では送り込ま
れた空気が短絡して槽上部で大気に開放されやすく、空
気と液との接触時間が短くて酸素の溶解効率が20%程
度に過ぎない。また、従来法より酸素の溶解効率を改善
するために考案された前述の公開公報による方式では、
酸素の供給手段としてコンプレッサーなどを使用すると
効率が悪く運転コストが高くなり経済的に難点がある。
また、ドラフトチューブ内で撹拌羽根を回転させる方式
では当然のことながら運転コストが高くなることが避け
られない。However, in the air diffusion method used in the conventional deep aeration tank, the sent air is short-circuited and is easily released to the atmosphere in the upper part of the tank, and the contact between air and liquid is caused. The time is short and the dissolution efficiency of oxygen is only about 20%. Further, in the method according to the above-mentioned publication, which was devised to improve the dissolution efficiency of oxygen as compared with the conventional method,
If a compressor or the like is used as a means for supplying oxygen, the efficiency is poor and the operating cost is high, which is economically difficult.
In addition, the method of rotating the stirring blade in the draft tube inevitably raises the operating cost.
【0004】本発明ではこのような問題点を解決して、
液に対する酸素の溶解効率を大きくするために、水中機
械式ばっ気機や水中ポンプと散気器との組合せによる酸
素供給揚水手段の揚水力を利用して槽内に設ける下向き
チューブ内での下向き水流を散気気泡の上昇速度より早
く保持できるようにして、深層部まで気泡を送り込んで
酸素の溶解効率を高く維持できて経済性を高め得る深層
ばっ気槽を提供することを目的としている。The present invention solves these problems and
In order to increase the dissolution efficiency of oxygen to the liquid, the submerged mechanical aerator or the combination of the submersible pump with the submersible oxygen supply pump is used in the tank by using the pumping power of the pumping means. It is an object of the present invention to provide a deep aeration tank capable of maintaining the water flow faster than the ascending speed of diffused bubbles and feeding the bubbles to the deep layer to maintain a high oxygen dissolution efficiency and improving the economical efficiency.
【0005】[0005]
【課題を解決するための手段】このような目的を達成す
るために構成される本発明の深層ばっ気槽は、ばっ気槽
の内部に深層部に達する下向きチューブと、槽内の少な
くとも中層部から上に設けられる酸素供給揚水手段を備
えるばっ気部と、前記下向きチューブと前記ばっ気部と
に仕切られた部分以外が反応部とされる反応槽と、この
反応槽と前記ばっ気部との間に潜り堰を上層部に設けて
そのばっ気部の下部に通じるサクションチューブが設け
られていることを特徴とする。The deep aeration tank of the present invention configured to achieve such an object comprises a downward tube reaching the deep portion inside the aeration tank, and at least a middle layer portion in the tank. From the aeration part provided with oxygen supply pumping means provided above, a reaction tank other than the part partitioned by the downward tube and the aeration part, and the reaction tank and the aeration part. A submerged weir is provided in the upper part of the space, and a suction tube communicating with the lower part of the aeration part is provided.
【0006】[0006]
【作用】このように構成される本発明の深層ばっ気槽
は、ばっ気部に設けられる酸素供給揚水手段による揚水
力を利用して隣接する下向きチューブ内の下向き流速を
気泡の上昇速度より早く保持できるように流路を形成し
て深層部に気泡を送り込むことで、従来散気された空気
が短い時間で大気放出されていたのを動力を新たに付加
することなく有効に利用できて酸素の溶解効率を高く維
持できるようになり、運転コストを高めずに能率よく処
理できる。In the deep aeration tank of the present invention constructed as described above, the downward flow velocity in the adjacent downward tube is made faster than the ascending velocity of bubbles by utilizing the pumping power of the oxygen supply pumping means provided in the aeration part. By forming a flow path so that it can be retained and sending bubbles to the deep layer, it is possible to effectively use the previously diffused air that was released to the atmosphere in a short time without adding additional power and oxygen. It becomes possible to maintain high dissolution efficiency, and efficient treatment can be achieved without increasing operating costs.
【0007】[0007]
【実施例】次に、本発明の深層ばっ気槽について、その
一実施例を図面を参照しつつ説明する。まず、図1に示
されるのは本発明の深層ばっ気槽を得るための実験装置
を示すフローシートである。この装置は幅510mm,高
さ5000mm,厚さ120mmの水槽1で、この水槽1の
内部を図中に示されている寸法割合で三つの区画に分割
されて、ばっ気室2,下向きチューブ3とこれら二つの
区画より深くされてこれらの区画の下側に通じるL形の
区画4とに形成されている。そのばっ気室2内には散気
器5を配し、上部が大気に開放されてそのばっ気室2の
下側に繋がる区画4からは循環ポンプ6を介して前記ば
っ気室2に繋がれ、このばっ気室2内に設けられた散気
器5に水槽1の外部からばっ気ブロワ7によって加圧さ
れた空気を供給するとともに、循環ポンプ6の駆動によ
る水流によってばっ気室2上部に発生する水頭を利用し
て、下向きチューブ3内で発生させた下向き水流の流速
を用いてばっ気室2内での気泡の一部を区画4内底部へ
送るようにされている。なお、ばっ気室2及び下向きチ
ューブ3の上部連通部とL形に形成された区画4の上部
とは仕切られて閉鎖され、それぞれにガス出口が設けら
れ、これら各ガス出口を介して湿式ガスメータ7a,7
b,7cに繋がれている。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the deep aeration tank of the present invention will be described below with reference to the drawings. First, FIG. 1 is a flow sheet showing an experimental apparatus for obtaining the deep aeration tank of the present invention. This device is a water tank 1 having a width of 510 mm, a height of 5000 mm, and a thickness of 120 mm, and the inside of this water tank 1 is divided into three compartments at the size ratios shown in the figure, and an aeration chamber 2 and a downward tube 3 are provided. And an L-shaped compartment 4 which is deeper than these two compartments and communicates with the lower side of these compartments. An air diffuser 5 is arranged in the aeration chamber 2, and an upper portion of the aeration chamber 2 is connected to the aeration chamber 2 via a circulation pump 6 from a compartment 4 which is open to the atmosphere and is connected to the lower side of the aeration chamber 2. Then, air pressurized by the aeration blower 7 is supplied from the outside of the water tank 1 to the diffuser 5 provided in the aeration chamber 2, and the upper portion of the aeration chamber 2 is driven by the water flow driven by the circulation pump 6. Utilizing the water head generated in the above, the flow velocity of the downward water flow generated in the downward tube 3 is used to send a part of the bubbles in the aeration chamber 2 to the inner bottom of the compartment 4. The upper communication portion of the aeration chamber 2 and the downward tube 3 and the upper portion of the L-shaped compartment 4 are partitioned and closed, and gas outlets are provided in each of them, and a wet gas meter is provided through each of these gas outlets. 7a, 7
It is connected to b and 7c.
【0008】この実験装置では、循環ポンプ6に繋がれ
る管路に設けられた流量計8によって循環水量を計測す
るとともに、送気量,大気放出空気量及び水槽内底部
(区画4の内底部)へ送られた空気量をそれぞれ湿式ガ
スメータ7a,7b,7c(符号7aは送気量測定用の
ガスメータ、7bは大気放出される量を測定するガスメ
ータ、7cは再利用される空気量の測定をするガスメー
タである)で測定した。この実験装置を用いての実験結
果は図2のグラフ図で表される。In this experimental apparatus, the flow rate of water is measured by a flow meter 8 provided in a pipe connected to the circulation pump 6, and the amount of air supplied, the amount of air released to the atmosphere, and the inner bottom of the water tank (inner bottom of compartment 4). The amount of air sent to the wet gas meters 7a, 7b, 7c (reference numeral 7a is a gas meter for measuring the amount of air sent, 7b is a gas meter for measuring the amount released to the atmosphere, and 7c is the amount of air recycled). Gas meter). The experimental results using this experimental apparatus are shown in the graph of FIG.
【0009】前記実験装置において下向きチューブ3内
の流速を種々(0.25m/sec,0.3m/se
c,0.35m/sec,0.4m/sec)換えて空
気吸い込み率(水流によって底部に送られる気泡容積/
散気器への供給空気量)とガス空塔速度(散気器供給空
気量/ばっき室断面積)との関係を確かめる実験を行っ
た。この結果、下向きチューブ3内の下向き流速が0.
3m/sec以上で、下向き流速が速くなるにつれて空
気吸い込み率が増加する。そして、標準的気泡径(2〜
4mm径)の場合、下向きチューブ3内流速が0.4m/
secの条件において空気吸い込み率が25%以上得ら
れることが判った。また、空気吸い込み率はガス空塔速
度が増加するにつれて増加する傾向にあるが、ある時点
から増加傾向が徐々に減少し、下向きチューブ3内下向
き流速でガス空塔速度0.007NL/m2 ・secに
おいて限界値となった。したがって、下向きチューブ3
内の下向き流速を高めてばっ気室2内に散気器5から放
散された空気の気泡の一部を引き込んで区画4の内底部
に送り込み、その区画4内を気泡が上昇する時間を長め
て水中に溶解する率を高められることが確認できた。In the above experimental apparatus, the flow velocity in the downward tube 3 was varied (0.25 m / sec, 0.3 m / se).
c, 0.35 m / sec, 0.4 m / sec) and the air intake rate (volume of bubbles sent to the bottom by water flow /
An experiment was conducted to confirm the relationship between the air supply rate to the diffuser) and the gas superficial velocity (air supply rate to the diffuser / cross-sectional area of the chamber). As a result, the downward flow velocity in the downward tube 3 is 0.
At 3 m / sec or more, the air suction rate increases as the downward flow velocity increases. Then, the standard bubble diameter (2-
4 mm diameter), the flow velocity in the downward tube 3 is 0.4 m /
It was found that an air suction rate of 25% or more can be obtained under the condition of sec. Further, the air suction rate tends to increase as the gas superficial velocity increases, but the increasing tendency gradually decreases from a certain point, and the gas superficial velocity 0.007 NL / m 2 · sec at the downward flow velocity in the downward tube 3. Became the limit value. Therefore, the downward tube 3
The downward flow velocity in the inside is increased to draw in a part of the air bubbles of the air diffused from the diffuser 5 into the aeration chamber 2 and send the air to the inner bottom of the compartment 4 to increase the time for the bubbles to rise in the compartment 4. It has been confirmed that the rate of dissolution in water can be increased.
【0010】そこで、本発明者らは前述の実験に基づい
て種々研究の結果、図3で示される深層ばっ気槽を得た
のである。この図3において、深層ばっ気槽10はその
内部を長さ方向(図面上で左右の方向)の一方に片寄せ
て設けた仕切り壁12により下向きチューブ11が形成
され、この下向きチューブ11の上部に隣接してばっ気
部13が設けられ、このばっ気部13の前記下向きチュ
ーブ11と反対の位置にサクションチューブ14がその
ばっ気部13の底部に吸い込み口19を介して連通する
ようにして他の部分と隔壁15によって区画されて設け
られる。これら下向きチューブ11,ばっ気部13およ
びサクションチューブ14以外の槽内部が反応槽16と
なるように構成されている。Therefore, the present inventors have obtained the deep aeration tank shown in FIG. 3 as a result of various studies based on the above-mentioned experiments. In FIG. 3, the deep aeration tank 10 has a downwardly facing tube 11 formed by a partition wall 12 provided by shifting the inside of the deeply aerated tank 10 to one side in the lengthwise direction (left and right direction in the drawing). An aeration portion 13 is provided adjacent to the suction tube 14 and a suction tube 14 is provided at a position opposite to the downward tube 11 of the aeration portion 13 so as to communicate with a bottom portion of the aeration portion 13 through a suction port 19. It is provided by being partitioned by the other part and the partition wall 15. The inside of the tank other than the downward tube 11, the aeration portion 13 and the suction tube 14 is configured to be a reaction tank 16.
【0011】ばっ気部13の上部と下向きチューブ11
の上部は連通するように仕切り壁12の頂部を標準水位
より適宜寸法低くされている。また、下向きチューブ1
1の下端部は反応槽16の底部と連通されている。さら
に、ばっ気部13と反応槽16の上部とは仕切り壁17
によって完全に遮断されている。そして、反応槽16の
上部とばっ気部13の底部とを連結するサクションチュ
ーブ14の反応槽16上部側は、標準水位から適宜寸法
低くされた潜り堰18で連通されている。The upper part of the aeration part 13 and the downward tube 11
The upper portion of the partition wall 12 is appropriately dimensioned lower than the standard water level so that the partition wall 12 communicates. Also, the downward tube 1
The lower end of 1 communicates with the bottom of the reaction tank 16. Further, the aeration part 13 and the upper part of the reaction tank 16 are separated by a partition wall 17
Completely blocked by. The suction tube 14 connecting the upper part of the reaction tank 16 and the bottom of the aeration part 13 is connected to the upper part of the reaction tank 16 by a submerged weir 18 whose size is appropriately lowered from the standard water level.
【0012】このような断面構造にされた深層ばっ気槽
10には、そのばっ気部13内底部(例えば水深4〜5
m)に酸素供給揚水手段20(例えば公知の水中機械式
ばっ気機または水中ポンプと散気器との組合せ)を設置
して、この酸素供給揚水手段20に槽上部から圧縮空気
を空気管21によって供給されるようになされている。
なお、前記酸素供給揚水手段20に例えば水中ポンプと
散気器との組合せを採用する場合も、その水中ポンプに
は揚水で下向きチューブ11内での下向き水流の流速が
0.4m/sec程度になる能力のものを採用すること
が好ましい。In the deep aeration tank 10 having such a cross-sectional structure, the inner bottom portion of the aeration portion 13 (for example, water depth 4-5).
m) is provided with an oxygen supply pumping means 20 (for example, a known submersible mechanical aerator or a combination of an underwater pump and a diffuser), and compressed air is supplied from the upper part of the tank to the oxygen supply pumping means 20 by an air pipe 21. It is designed to be powered by.
Even when a combination of a submersible pump and an air diffuser is adopted for the oxygen supply pumping means 20, the submersible pump has a downward water flow velocity of about 0.4 m / sec in the downward tube 11 when pumping water. It is preferable to adopt one having the following ability.
【0013】このように構成された本発明の深層ばっ気
槽10では、酸素供給揚水手段20を運転して従来の水
深が浅いばっ気槽と同様に液中に酸素を溶解させる。こ
の際、酸素供給揚水手段20の作動による揚水力と散気
された気泡の揚力とによって、下向きチューブ11内に
下向きの水流を生じさせるとともにその流速を高め、こ
の水流によってばっ気部13で浮上して来る散気された
気泡の一部を強制的に下向きチューブ11内を通って槽
底部へ移送させて反応槽16内に送り出す。すると、こ
の反応槽16内に送り出される気泡を含んだ液は流速が
低下して水深の深い位置から送り込まれた気泡がゆっく
りと上昇する間に酸素を液中に溶解させて、その酸素の
溶解率を高めることができる。In the deep aeration tank 10 of the present invention thus constructed, the oxygen supply pumping means 20 is operated to dissolve oxygen in the liquid as in the conventional aeration tank having a shallow water depth. At this time, the pumping force by the operation of the oxygen supply pumping means 20 and the lift of the diffused bubbles cause a downward water flow in the downward tube 11 and increase its flow velocity, and the water flow causes the air to float at the aeration portion 13. A part of the air bubbles thus diffused is forcibly transferred through the downward tube 11 to the bottom of the tank and sent out into the reaction tank 16. Then, the liquid containing the bubbles sent into the reaction tank 16 has a low flow velocity, and while the bubbles sent from the deep water position slowly rise, the oxygen is dissolved in the liquid to dissolve the oxygen. The rate can be increased.
【0014】そして、ばっ気部13には前述の酸素供給
揚水手段20の作動によってこのばっ気部13の底部に
開口された吸い込み口19から反応槽16側の液がサク
ションチューブ14を経て吸い込まれ、この反応槽16
内の液が順次汲み上げられて下向きチューブ11を通り
反応槽16の底部に送られて循環される。また、前記反
応槽16の上部に発生するスカムは潜り堰18部分でそ
のサクションチューブ14によって吸引される水流によ
り上層部に停滞せず吸引除去されることになる。Then, the liquid in the reaction tank 16 side is sucked into the aeration part 13 through the suction tube 14 from the suction port 19 opened at the bottom of the aeration part 13 by the operation of the oxygen supply pumping means 20 described above. , This reaction tank 16
The liquid inside is sequentially pumped up, passed through the downward tube 11 and sent to the bottom of the reaction tank 16 for circulation. Further, the scum generated in the upper portion of the reaction tank 16 is removed by suction at the submerged weir 18 portion without stagnation in the upper layer due to the water flow sucked by the suction tube 14.
【0015】このように構成された深層ばっ気槽10
は、従来の散気装置による酸素利用効率(約20%)に
加えて従来大気に放散されていた約80%の酸素を含ん
だ気泡の25%以上を新たなエネルギーを加えることな
く深層ばっ気槽の底部に送ることで酸素溶解効率を30
%以上に高めることが可能になる。したがって、深層で
あるにも係わらず液中に存在する微生物の呼吸及び代謝
に必要な酸素を補給させ、有機物などの酸化分解処理を
促進させることになる。The deep aeration tank 10 thus constructed
In addition to the oxygen utilization efficiency (about 20%) by the conventional air diffuser, 25% or more of the bubbles containing about 80% oxygen that was diffused into the atmosphere in the past were deeply aerated without adding new energy. Oxygen dissolution efficiency of 30 by sending to the bottom of the tank
It becomes possible to raise it to more than%. Therefore, oxygen necessary for respiration and metabolism of the microorganisms existing in the liquid, even though it is in a deep layer, is replenished to accelerate the oxidative decomposition treatment of organic substances and the like.
【0016】[0016]
【発明の効果】上述のように本発明によれば、従来の散
気方式をそのまま利用して新たにエネルギーを付加する
ことなく酸素供給揚水手段の揚力を利用して気泡を深層
ばっ気槽の底部に送り込むことで酸素溶解効率をより高
めることができ、運転コストの低減に役立て得る。As described above, according to the present invention, the conventional aeration method is used as it is, and the lift force of the oxygen supply pumping means is used to add bubbles to the deep aeration tank without adding new energy. By feeding it to the bottom, the oxygen dissolution efficiency can be further increased, which can be useful for reducing the operating cost.
【図1】本発明の深層ばっ気槽を得るための実験装置を
示すフローシート図である。FIG. 1 is a flow sheet diagram showing an experimental apparatus for obtaining a deep layer aeration tank of the present invention.
【図2】本発明の実験におけるばっ気槽のガス空塔速度
と空気吸い込み率との関係をグラフに示した図である。FIG. 2 is a graph showing the relationship between the gas superficial velocity of the aeration tank and the air suction rate in the experiment of the present invention.
【図3】本発明を実施するための深層ばっ気槽の断面構
造を示す図である。FIG. 3 is a view showing a sectional structure of a deep layer aeration tank for carrying out the present invention.
10 深層ばっ気槽 11 下向きチューブ 12,17 仕切り壁 13 ばっ気部 14 サクションチューブ 15 隔壁 16 反応槽 20 酸素供給揚水手段 10 Deep Aeration Tank 11 Downward Tube 12,17 Partition Wall 13 Aeration Part 14 Suction Tube 15 Partition Wall 16 Reaction Tank 20 Oxygen Supply Pumping Means
Claims (1)
チューブと、槽内の少なくとも中層部から上に設けられ
る酸素供給揚水手段を備えるばっ気部と、前記下向きチ
ューブと前記ばっ気部とに仕切られた部分以外が反応部
とされる反応槽と、この反応槽と前記ばっ気部との間に
潜り堰を上層部に設けてそのばっ気部の下部に通じるサ
クションチューブが設けられていることを特徴とする深
層ばっ気槽。1. A downward tube reaching a deep layer inside an aeration tank, an aeration section provided with an oxygen supply pumping means provided above at least a middle layer section in the tank, the downward tube and the aeration section. A reaction tank having a reaction part other than the part partitioned by, and a suction tube that communicates with the lower part of the aeration part by providing a submerged weir in the upper part between the reaction tank and the aeration part. A deep aeration tank characterized by the presence of
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5049418A JPH06262195A (en) | 1993-03-10 | 1993-03-10 | Deep layer aeration tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5049418A JPH06262195A (en) | 1993-03-10 | 1993-03-10 | Deep layer aeration tank |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06262195A true JPH06262195A (en) | 1994-09-20 |
Family
ID=12830529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5049418A Pending JPH06262195A (en) | 1993-03-10 | 1993-03-10 | Deep layer aeration tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06262195A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010535627A (en) * | 2007-08-15 | 2010-11-25 | ユナイテッド・ユーティリティーズ・ピーエルシー | Method and apparatus for aeration |
CN109502736A (en) * | 2018-12-29 | 2019-03-22 | 佛山市弘峻水处理设备有限公司 | A kind of aeration system in creek biochemistry pollution treatment technology |
-
1993
- 1993-03-10 JP JP5049418A patent/JPH06262195A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010535627A (en) * | 2007-08-15 | 2010-11-25 | ユナイテッド・ユーティリティーズ・ピーエルシー | Method and apparatus for aeration |
CN109502736A (en) * | 2018-12-29 | 2019-03-22 | 佛山市弘峻水处理设备有限公司 | A kind of aeration system in creek biochemistry pollution treatment technology |
CN109502736B (en) * | 2018-12-29 | 2024-04-30 | 佛山市弘峻水处理设备有限公司 | Oxygenation system in river surge biochemical pollution control technology |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4732682A (en) | Aeration apparatus and method | |
US6273402B1 (en) | Submersible in-situ oxygenator | |
CN101132848A (en) | The mixers and the submersibel aerators with using these mixers | |
JP2011011098A (en) | Water purification apparatus | |
EP2188223B1 (en) | Method and apparatus for aeration | |
CN111807501A (en) | Continuous high-concentration ozone oxidation sewage treatment device and sewage treatment method thereof | |
GB1382445A (en) | Method and apparatus for dissolving a gas in a liquid | |
US20150008191A1 (en) | Low-turbulent aerator and aeration method | |
US4879046A (en) | Local water cleaning method for use in consecutive water areas | |
JP2014144450A (en) | Aerator outfitted with a hydraulic power generator | |
JPH06262195A (en) | Deep layer aeration tank | |
JP2009022847A (en) | Aeration mixing and circulation equipment | |
KR100469327B1 (en) | Submersible Aerator with the Function of Air Priming, Intermittent Aeration, Deoderization and Mixing | |
KR100617018B1 (en) | Deep aeration tank with upward aeration facilities | |
CA1122727A (en) | Waste water aeration tank | |
JPH01104396A (en) | Depth aeration device for water storage pond or the like | |
JP4451991B2 (en) | Aeration equipment | |
JPH0952098A (en) | Purifying apparatus of lakes and marshes | |
US3976575A (en) | Liquid aeration device | |
FI59777C (en) | FOERFARANDE FOER FOERBAETTRANDE AV DET EKOLOGISKA TILLSTAONDET FOER EN TERMISKT AVLAGRAD VATTENBASSAENG | |
JPH06269793A (en) | Aeration treatment method for sewage and device therefor | |
JPH1015580A (en) | Float type water area purifying apparatus | |
JPS638472Y2 (en) | ||
JP2000140881A (en) | Oxygen dissolution device | |
CN214218328U (en) | Pulse air stripping mixer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020806 |