JPH06260693A - Manufacture of superconducting element - Google Patents

Manufacture of superconducting element

Info

Publication number
JPH06260693A
JPH06260693A JP5043675A JP4367593A JPH06260693A JP H06260693 A JPH06260693 A JP H06260693A JP 5043675 A JP5043675 A JP 5043675A JP 4367593 A JP4367593 A JP 4367593A JP H06260693 A JPH06260693 A JP H06260693A
Authority
JP
Japan
Prior art keywords
crystal
axis
substrate
oxide superconductor
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5043675A
Other languages
Japanese (ja)
Other versions
JP2778892B2 (en
Inventor
Jiro Yoshida
二朗 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5043675A priority Critical patent/JP2778892B2/en
Publication of JPH06260693A publication Critical patent/JPH06260693A/en
Application granted granted Critical
Publication of JP2778892B2 publication Critical patent/JP2778892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a superconducting element in which a crack, etc., is prevented in an oxide superconductor thin film having a c-axis in parallel with a board surface and its laminated structure and which is realized with excellent surface flatness. CONSTITUTION:After an oxide material having a cubic or tetragonal crystalline structure is cut out substantially in parallel with a crystal surface having its tetrad symmetry, the material is polished at an angle to the tetrad symmetrical crystalline surface along a direction of two equivalent crystalline main axes included in the tetrad symmetrical crystalline surface and perpendicular to each other. Thus, a board 1 having a screenlike atomic steps 2 on a surface is manufactured. Then, an oxide superconductor thin film 3 of Y-Ba-Cu-O is so formed on the surface having the steps of the board 1 by so orienting that an a-axis or a b-axis of unit lattice becomes substantially perpendicular to the board surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体薄膜を
利用した超電導素子の製造方法に係り、特に大きい超電
導電流を流せる方向を基板と垂直方向に設定した積層型
の超電導素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a superconducting element using an oxide superconductor thin film, and more particularly to a method of manufacturing a laminated superconducting element in which a direction in which a large superconducting current can flow is set in a direction perpendicular to a substrate. Regarding

【0002】[0002]

【従来の技術】超電導素子としては、従来から、Pbある
いはNb等の金属超電導体を用いて、超電導電子対がトン
ネルできる程度の薄い絶縁層を挟み込んだ積層構造のト
ンネル型ジョセフソン接合素子等が知られている。この
ような従来のトンネル型ジョセフソン素子は、液体ヘリ
ウム温度に近い極低温での動作が必要とされている。ま
た、トンネル型ジョセフソン接合に特有なヒステリシス
を持つ電流−電圧特性を示すために、回路構成が複雑に
なる等の問題を有しており、広く実用に供されるまでに
は至っていない。
2. Description of the Related Art Conventionally, as a superconducting element, a tunnel-type Josephson junction element or the like having a laminated structure in which a metal superconductor such as Pb or Nb is used and a thin insulating layer capable of tunneling a superconducting conductor pair is sandwiched is used. Are known. Such a conventional tunnel type Josephson element is required to operate at an extremely low temperature close to the temperature of liquid helium. Further, since the tunnel-type Josephson junction exhibits a current-voltage characteristic having a hysteresis peculiar to the tunnel type Josephson junction, there is a problem that the circuit configuration becomes complicated, and it has not been widely put to practical use.

【0003】一方、金属超電導体を用いた、ヒステリシ
ス特性を持たないジョセフソン接合素子として、金属超
電導体からなる主電極間を、これと積層した薄い金属に
よって接続した、いわゆるブリッジ型接合の開発も進め
られている。しかし、このようなブリッジ型接合は、上
述したトンネル型接合の場合と同様に、液体ヘリウム温
度に近い極低温での動作が必要であると共に、ブリッジ
部の抵抗が小さく、かつ金属超電導体の超電導ギャップ
自体も小さいために、大きな出力電圧を得ることが困難
であった。
On the other hand, as a Josephson junction element using a metal superconductor and having no hysteresis characteristic, a so-called bridge type junction in which main electrodes made of a metal superconductor are connected by a thin metal laminated on the main electrodes is also developed. It is being advanced. However, such a bridge-type junction needs to operate at an extremely low temperature close to the temperature of liquid helium, has a small resistance in the bridge portion, and has a superconducting property of a metal superconductor, as in the case of the tunnel-type junction described above. Since the gap itself is small, it is difficult to obtain a large output voltage.

【0004】このような状況の下で、最近、液体窒素温
度以上の高温で超電導特性を示す酸化物超電導材料が発
見され、大きな注目を集めている。酸化物超電導体は、
超電導ギャップの大きさが従来の金属超電導体に比べて
1桁以上大きく、また金属的伝導から絶縁体までの広範
囲の特性を示す酸化物材料と積層し得る可能性を有して
いる。このような酸化物超電導体を用いて、積層型のト
ンネルジョセフソン接合、あるいは出力電圧の大きな、
ヒステリシスを持たないSNS(超電導体/常電導体/
超電導体)型接合を作製することが可能になれば、上述
した従来の金属超電導体を用いて構成したジョセフソン
接合に比べ、少なくとも極低温動作の必要がなくなり、
またさらに大きい出力電圧が得られることから、広範囲
な応用が期待される。
Under these circumstances, an oxide superconducting material which exhibits superconducting properties at a temperature higher than the liquid nitrogen temperature has recently been discovered and has been attracting a great deal of attention. The oxide superconductor is
The size of the superconducting gap is larger than that of conventional metal superconductors.
It has a possibility to be laminated with an oxide material that is larger than one digit and has a wide range of properties from metallic conduction to insulators. Using such an oxide superconductor, a stacked tunnel Josephson junction or a high output voltage,
SNS without hysteresis (superconductor / normal conductor /
If it becomes possible to fabricate a (superconductor) type junction, at least cryogenic operation will be unnecessary as compared with the Josephson junction configured using the above-mentioned conventional metal superconductor,
Moreover, since a larger output voltage can be obtained, a wide range of applications are expected.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、酸化物
超電導体はその特性に大きな異方性を持ち、コヒーレン
ス長の短いc軸方向を基板に垂直とした積層構造では、
実用上十分な超電導電流を積層界面を通して流すことが
できないという本質的な問題を有している。一方、酸化
物超電導体のc軸を基板と平行とし、これと平行な界面
を持つ積層構造では、酸化物超電導体固有のc軸方向の
熱膨脹率が異常に大きいという性質により、高温での製
膜後の冷却時に、基板結晶との間に大きな歪みを生じ、
酸化物超電導体薄膜にクラックが生じ易いという問題が
ある。
However, the oxide superconductor has a large anisotropy in its characteristics, and in the laminated structure in which the c-axis direction having a short coherence length is perpendicular to the substrate,
There is an essential problem that a superconducting current that is practically sufficient cannot flow through the laminated interface. On the other hand, in a laminated structure in which the c-axis of the oxide superconductor is parallel to the substrate and an interface parallel to this is provided, the oxide superconductor has a characteristic that the coefficient of thermal expansion in the c-axis direction is unusually large, so When cooling after the film, a large strain occurs with the substrate crystal,
There is a problem that cracks easily occur in the oxide superconductor thin film.

【0006】換言すると、臨界温度の高い酸化物超電導
体を用いたジョセフソン接合の開発は、産業上大きな効
果をもたらすものと期待されているが、実用に供するた
めの安定した積層構造の製造方法の開発が課題とされて
いた。
In other words, the development of the Josephson junction using an oxide superconductor having a high critical temperature is expected to bring a great industrial effect, but it is a method for producing a stable laminated structure for practical use. Had been a challenge.

【0007】本発明は、このような課題に対処するため
になされたもので、c軸が基板面と平行となる酸化物超
電導体薄膜ならびにその積層構造を、クラック等の発生
を防止し、かつ表面平坦性に優れた形で実現でき、その
結果として、制御性に優れ、大きい出力電圧を有する、
ジョセフソン接合をはじめとする各種の超電導素子を再
現性よく製造することを可能にした超電導素子の製造方
法を提供することを目的としている。
The present invention has been made in order to solve such a problem, and prevents the generation of cracks and the like in the oxide superconductor thin film and its laminated structure in which the c-axis is parallel to the substrate surface. It can be realized in a form with excellent surface flatness, resulting in excellent controllability and a large output voltage.
It is an object of the present invention to provide a method for manufacturing a superconducting element that enables various superconducting elements including Josephson junctions to be manufactured with good reproducibility.

【0008】[0008]

【課題を解決するための手段】本発明の超電導素子の製
造方法は、立方晶または正方晶の結晶構造を有する酸化
物材料を、その 4回対称を有する結晶面に対してほぼ平
行に切り出した後、前記 4回対称結晶面に含まれ、互い
に直交する等価な 2つの結晶主軸の方向に沿って、それ
ぞれ前記 4回対称結晶面に対して角度を成して研磨する
ことにより、表面に網目状の原子ステップを有する基板
を作製する工程と、前記基板の網目状原子ステップを設
けた表面に、RE-AE-Cu-O系(ただし、REは希土類元素か
ら選ばれる少なくとも 1種の元素を、AEはアルカリ土類
元素から選ばれる少なくとも 1種の元素を示す)の酸化
物超電導体薄膜を、その単位格子のa軸またはb軸が前
記基板表面とほぼ垂直になるように配向させて形成する
工程とを有することを特徴としている。
According to the method for manufacturing a superconducting element of the present invention, an oxide material having a cubic or tetragonal crystal structure is cut out substantially parallel to a crystal plane having 4-fold symmetry. After that, by polishing along the directions of two equivalent crystal principal axes that are included in the 4-fold symmetry crystal plane and are orthogonal to each other, polishing is performed at an angle with respect to the 4-fold symmetry crystal plane. Of the substrate having the atomic steps in the form of a RE-AE-Cu-O system (where RE is at least one element selected from rare earth elements) , AE is at least one element selected from alkaline earth elements), and is formed by orienting an oxide superconductor thin film of (a) or (b) axis of its unit cell to be substantially perpendicular to the substrate surface. And a step of It is.

【0009】本発明の超電導素子の製造方法において
は、まず立方晶または正方晶の結晶構造を有する酸化物
基板の表面に、網目状の原子ステップ、すなわち互いに
直交する結晶格子間隔に近い段差を持ったミクロな階段
状構造を形成する。この網目状原子ステップは、まず基
板材料として、立方晶または正方晶の対称性を有する結
晶構造の酸化物材料を用い、その 4回対称を有する結晶
面とほぼ平行な主面を持つように切り出す。次いで、上
記 4回対称結晶面に含まれ、互いに直交する等価な 2つ
の結晶主軸の方向に沿って、それぞれ 4回対称結晶面と
角度を成すように各方向に研磨する。
In the method for manufacturing a superconducting element of the present invention, first, a mesh-like atomic step, that is, a step close to a crystal lattice interval orthogonal to each other is formed on the surface of an oxide substrate having a cubic or tetragonal crystal structure. To form a micro stepped structure. In this reticulated atomic step, an oxide material having a crystal structure with cubic or tetragonal symmetry is first used as a substrate material, and it is cut out so as to have a principal plane substantially parallel to the crystal plane with 4-fold symmetry. . Then, along the directions of two equivalent crystal principal axes included in the above-mentioned four-fold symmetry crystal plane and orthogonal to each other, polishing is performed in each direction so as to form an angle with each of the four-fold symmetry crystal plane.

【0010】具体的には、まず 4回対称結晶面に含まれ
る 1つの結晶主軸に沿って、 4回対称結晶面と角度を成
すように研磨する。この第1段階の研磨により、基板面
には当該結晶主軸方向にミクロな階段状構造が形成され
る。次に、他方の結晶主軸に沿って、同様に 4回対称結
晶面と角度を成すように研磨する。この第2段階の研磨
は、第1段階の研磨によるマクロに見た場合の研磨面を
基準面として実施する。この第2段階の研磨により、先
に形成された階段状構造の各面に対して、当該結晶主軸
方向にミクロな階段状構造が形成される。これらによ
り、基板面には網目状の原子ステップが形成される。
Specifically, first, polishing is performed along one crystal principal axis included in the 4-fold symmetry crystal plane so as to form an angle with the 4-fold symmetry crystal plane. By this first-step polishing, a micro-stepped structure is formed on the substrate surface in the crystal principal axis direction. Next, along the other major axis of the crystal, it is similarly polished so as to form an angle with the 4-fold symmetric crystal plane. The second-stage polishing is performed with the polished surface as seen as a macro in the first-stage polishing as a reference surface. By this second-step polishing, a micro step structure is formed in the crystal principal axis direction on each surface of the step structure that was previously formed. As a result, mesh-like atomic steps are formed on the substrate surface.

【0011】この基板面(研磨面)に形成された原子ス
テップと原子ステップの間には、それぞれ 4回対称面が
露出しているため、上記基板面にRE-AE-Cu-O系の酸化物
超電導体薄膜を製膜すると、上記 4回対称面が露出して
部分での酸化物超電導体のc軸は、 4回対称面に含まれ
る 2つの等価な結晶主軸のいずれかに整合し、a軸ある
いはb軸が基板面に対して垂直方向に立った成長が行わ
れる。ここで、酸化物超電導体のc軸は、直交する 2つ
の等価な結晶主軸に対し、ほぼ当確率で整合して成長す
るため、酸化物超電導体のc軸方向の特異な熱膨張率を
緩和することができる。
Since the four-fold symmetry planes are exposed between the atomic steps formed on the substrate surface (polished surface), the RE-AE-Cu-O-based oxide is oxidized on the substrate surface. When the superconducting thin film is formed, the c-axis of the oxide superconductor in the part where the 4-fold symmetry plane is exposed is aligned with one of the two equivalent crystal principal axes included in the 4-fold symmetry plane, Growth is performed with the a-axis or the b-axis standing in the direction perpendicular to the substrate surface. Here, since the c-axis of the oxide superconductor grows in conformity with two equivalent crystal main axes that intersect at right angles with almost equal probability, the peculiar coefficient of thermal expansion of the oxide superconductor in the c-axis direction is relaxed. can do.

【0012】なお、 4回対称面そのものを表面とした基
板を用いることによっても、その上に製膜した酸化物超
電導体薄膜は、基板表面上でランダムに核成長を開始
し、a軸あるいはb軸が基板面に対して垂直方向に立っ
た構造は得られるものの、c軸方位の異なる結晶粒の大
きさは不定であり、その結果として結晶粒間の高さが大
きく異なってしまう。これにより、薄膜表面の凹凸は大
きくなり、著しい場合には、例えば 300nmの平均膜厚に
対して、50nm以上の高低差を生じる場合がある。これに
対して、本発明の製造方法においては、基板表面に互い
に直交する網目状のステップ構造(ステップ−ステップ
間の結晶面は結晶格子の数個〜数10個分程度)を設ける
ことにより、酸化物超電導体の核成長の起点となるステ
ップ部をほぼ等間隔に分散させているため、成長初期過
程を制御することができる。このため、c軸方位の異な
る結晶粒は小さく分散し、よってそれらの間の高低差を
著しく小さく押さえることが可能となる。そして、その
結果として、表面平滑性に優れた酸化物超電導体薄膜が
得られる。
By using a substrate having the 4-fold symmetry plane itself as a surface, the oxide superconductor thin film formed on the substrate starts random nucleation on the substrate surface, and a-axis or b-axis is formed. Although a structure in which the axis stands in the direction perpendicular to the substrate surface is obtained, the size of the crystal grains having different c-axis orientations is indefinite, and as a result, the height between the crystal grains greatly differs. As a result, the irregularities on the surface of the thin film become large, and in a significant case, a height difference of 50 nm or more may occur with respect to the average film thickness of 300 nm. On the other hand, in the manufacturing method of the present invention, by providing a mesh-shaped step structure (step-the crystal plane between steps is about several to several tens of crystal lattices) orthogonal to each other on the substrate surface, Since the step portions which are the starting points of the nucleus growth of the oxide superconductor are dispersed at substantially equal intervals, the initial growth process can be controlled. For this reason, the crystal grains having different c-axis orientations are dispersed in a small amount, so that the height difference between them can be suppressed to a significantly small level. As a result, an oxide superconductor thin film having excellent surface smoothness can be obtained.

【0013】上記した基板研磨における 4回対称結晶面
との角度は、それぞれ10度以下とすることが好ましい。
研磨角度が10度を超えると、他の配向、すなわち酸化物
超電導体結晶の [110]方向が基板面に対して垂直な結晶
粒等が発生する可能性が生じ、表面凹凸の増大や超電導
特性の低下等を招く。すなわち、研磨角度が10度以下で
あれば、実用に足る厚さの積層構造を形成しても、結晶
粒間の凹凸を極めて小さくすることが可能となる。より
好ましい研磨角度は、それぞれ 2〜 6度の範囲である。
The angles with respect to the 4-fold symmetry crystal plane in the above-mentioned substrate polishing are preferably 10 degrees or less.
If the polishing angle exceeds 10 degrees, other orientations, such as crystal grains in which the [110] direction of the oxide superconductor crystal is perpendicular to the substrate surface, may occur, increasing surface irregularities and superconducting properties. Will be reduced. That is, if the polishing angle is 10 degrees or less, it is possible to make the irregularities between the crystal grains extremely small even if a laminated structure having a practically sufficient thickness is formed. A more preferable polishing angle is in the range of 2 to 6 degrees.

【0014】本発明における酸化物超電導体薄膜は、RE
-AE-Cu-O系酸化物超電導体からなるものであり、具体的
には 化学式:REAE2 Cu3 O 7 ………(1) (式中、REは Y、La、Sc、Nd、Sm、Eu、Gd、Dy、Ho、E
r、Tm、Yb、Lu等の希土類元素から選ばれる少なくとも
1種の元素を、AEはBa、Ca、Sr等のアルカリ土類元素か
ら選ばれる少なくとも 1種の元素を示す)で実質的に表
される組成を有するものが例示される。なお、通常酸素
量は、最適な超電導特性が得られるように調整される。
また、各元素のモル比は厳密に上記比率を満足させなけ
ればならないものではなく、超電導特性が得られる範囲
であれば多少の変動は許容される。
The oxide superconductor thin film according to the present invention is RE
-AE-Cu-O-based oxide superconductor, chemical formula: REAE 2 Cu 3 O 7 ……… (1) (where RE is Y, La, Sc, Nd, Sm , Eu, Gd, Dy, Ho, E
At least selected from rare earth elements such as r, Tm, Yb, and Lu
One of the elements is AE, and AE is at least one element selected from alkaline earth elements such as Ba, Ca, and Sr). The amount of oxygen is usually adjusted so as to obtain the optimum superconducting characteristics.
Further, the molar ratio of each element does not have to strictly satisfy the above ratio, and some variation is allowed as long as the superconducting characteristics can be obtained.

【0015】[0015]

【作用】一般に、酸化物超電導体薄膜を形成するには、
薄膜形成に必要な 700℃前後の温度で酸化物超電導体と
の反応がなく、かつ結晶格子の寸法が近い材料からなる
基板を用いる必要がある。このような基板としては、 S
rTiO3 やこれと類似のペロブスカイト構造の酸化物が広
く用いられている。これらの基板は、図7に示すよう
に、室温では酸化物超電導体のc軸とよい格子整合性を
示すが、製膜が行われるような高温ではその整合性が悪
い。これは、酸化物超電導体のc軸方向の熱膨張率が特
異な温度依存性を示すためである。
[Function] Generally, in order to form an oxide superconductor thin film,
It is necessary to use a substrate made of a material that does not react with the oxide superconductor at a temperature of around 700 ° C required for thin film formation and has a crystal lattice size close to that of the oxide superconductor. One such substrate is S
Oxides with a perovskite structure similar to rTiO 3 are widely used. As shown in FIG. 7, these substrates show good lattice matching with the c-axis of the oxide superconductor at room temperature, but the matching is poor at high temperatures where film formation is performed. This is because the coefficient of thermal expansion of the oxide superconductor in the c-axis direction exhibits a unique temperature dependence.

【0016】この特異な温度依存性は、酸化物超電導体
中の銅と酸素原子が 1次元の秩序構造を作り、結晶系が
高温での正方晶から、低温での斜方晶に変化する現象と
対応している。従って、高温での製膜時には基板上の酸
化物超電導体膜は圧縮力を受けながら成長することにな
る。また、製膜が終了した後に、基板を冷却していく
と、酸化物超電導体膜は収縮し、圧縮力が引張り力に変
化する。この結果、酸化物超電導体のc軸が基板面と平
行で、かつc軸を 1方向に揃えて成長させると、室温ま
で冷却する過程で、酸化物超電導体膜にはクラックが発
生する。
This peculiar temperature dependence is a phenomenon in which the copper and oxygen atoms in the oxide superconductor form a one-dimensional ordered structure, and the crystal system changes from tetragonal at high temperature to orthorhombic at low temperature. It corresponds to. Therefore, when the film is formed at a high temperature, the oxide superconductor film on the substrate grows while receiving a compressive force. Further, when the substrate is cooled after the film formation is completed, the oxide superconductor film contracts, and the compressive force changes to the tensile force. As a result, if the oxide superconductor has a c-axis parallel to the substrate surface and is grown with the c-axis aligned in one direction, cracks occur in the oxide superconductor film in the process of cooling to room temperature.

【0017】上記したクラックは、酸化物超電導体膜の
c軸を互いに直交するような 2方向に、同様な割合でミ
クロに分散させて成長させ、応力を緩和することで防止
することができる。ただし、c軸の方位の異なる結晶粒
が成長初期において乱雑に発生すると、結晶粒間のアン
バランスによって、酸化物超電導体膜表面には多大な凹
凸が生じてしまう。換言すれば、立方晶あるいは正方晶
の結晶構造を持つ材料を基板とし、その 4回対称を有す
る結晶面上に酸化物超電導体薄膜を作製することで、a
軸ないしはb軸が基板面に垂直に立った酸化物超電導体
膜を作製することは可能であるが、その表面モフォロジ
ーは積層型のジョセフソン接合を作製するには不十分な
ものとならざるを得ない。
The above-mentioned cracks can be prevented by allowing the oxide superconductor film to grow microscopically in two directions such that the c-axes of the oxide superconductor film are orthogonal to each other at the same ratio and to relax the stress. However, if crystal grains having different c-axis orientations are randomly generated at the initial stage of growth, an imbalance between the crystal grains causes a large unevenness on the surface of the oxide superconductor film. In other words, by using a material having a cubic or tetragonal crystal structure as a substrate and forming an oxide superconductor thin film on the crystal plane having 4-fold symmetry,
Although it is possible to produce an oxide superconductor film in which the axis or the b-axis stands perpendicular to the substrate surface, its surface morphology must be insufficient for producing a laminated Josephson junction. I don't get it.

【0018】そこで、本発明の製造方法においては、ま
ず基板表面に結晶格子間隔程度の段差を、基板結晶の 4
回対称面の互いに直交する等価な 2つの結晶主軸方向に
多数形成している。このような網目状の段差が基板表面
に存在すると、酸化物超電導体膜は段差部分から成長を
開始することになる。従って、段差密度を制御(研磨角
度で制御)することにより、成長初期におけるc軸方位
の異なる結晶粒の密度を人為的に制御することが可能と
なる。そして、段差密度を十分に大きく設定しておくこ
とによって、c軸方位の異なる結晶粒を微細に、かつ 2
つの結晶主軸に対してほぼ等確率で、a軸またはb軸が
基板面とほぼ垂直になるように配向させて成長させるこ
とができる。これによって、結晶粒間の成長を均等に行
わせることができるため、表面平滑性に優れた酸化物超
電導体薄膜が得られる。
Therefore, in the manufacturing method of the present invention, first, a step having a crystal lattice spacing is formed on the substrate surface.
Many are formed in the direction of two equivalent crystal principal axes that are orthogonal to each other on the plane of rotational symmetry. When such a mesh-like step exists on the surface of the substrate, the oxide superconductor film starts to grow from the step. Therefore, by controlling the step density (controlling by the polishing angle), it is possible to artificially control the density of crystal grains having different c-axis orientations at the initial stage of growth. Then, by setting the step density sufficiently large, the crystal grains with different c-axis orientations can be made fine and
It is possible to grow by orienting so that the a-axis or the b-axis is substantially perpendicular to the substrate surface with almost equal probability with respect to one crystal main axis. This makes it possible to evenly grow the crystal grains, so that an oxide superconductor thin film having excellent surface smoothness can be obtained.

【0019】このように、本発明の超電導素子の製造方
法を用いることによって、酸化物基板上にc軸が基板面
とほぼ平行となるように配向させた、RE-AE-Cu-O系酸化
物超電導体薄膜を、膜中に大きな応力を残存させずに形
成することができ、その結果として、クラックの発生や
超電導転移温度の低下等を防止することが可能となる。
また、実用的なジョセフソン接合に必要な厚さの積層構
造を作製しても、その表面凹凸は十分に小さくすること
ができるため、超電導電極間の短絡等、従来の積層構造
で問題となっていた不良を大幅に減ずることが可能とな
る。
As described above, by using the method for manufacturing a superconducting element of the present invention, the RE-AE-Cu-O-based oxide is prepared by orienting the c-axis on the oxide substrate so as to be substantially parallel to the substrate surface. The superconducting thin film can be formed without leaving large stress in the film, and as a result, it is possible to prevent the occurrence of cracks, the decrease in the superconducting transition temperature, and the like.
In addition, even if a laminated structure having a thickness necessary for a practical Josephson junction is manufactured, the surface unevenness can be made sufficiently small, which causes a problem in the conventional laminated structure such as a short circuit between superconducting electrodes. It is possible to drastically reduce the defects.

【0020】[0020]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は、本発明の超電導素子の製造方法を
適用した一実施例の製造工程を示す図である。同図は、
超電導電極材料として YBa2 Cu3 O 7 、中間バリア層材
料としてPrBa2 Cu3 O 7 、また基板材料として SrTiO3
単結晶体を用いた 3層積層SNS型のジョセフソン接合
素子の製造工程を示している。同図を参照して、以下に
SNS型ジョセフソン接合素子の製造工程について説明
する。
FIG. 1 is a diagram showing a manufacturing process of an embodiment to which the method for manufacturing a superconducting element of the present invention is applied. This figure shows
YBa 2 Cu 3 O 7 as superconducting electrode material, PrBa 2 Cu 3 O 7 as intermediate barrier layer material, and SrTiO 3 as substrate material
The manufacturing process of a three-layer stacked SNS type Josephson junction device using a single crystal is shown. The manufacturing process of the SNS type Josephson junction element will be described below with reference to FIG.

【0022】まず、 SrTiO3 単結晶体を、 4回対称を有
する (100)結晶面とほぼ平行な主面を持つようにウエハ
ー状に切り出す。次いで、上記 (100)結晶面に含まれ、
互いに直交する等価な 2つの結晶主軸、すなわち [010]
と [001]の 2方向に沿って、それぞれ (100)結晶面に対
して 3度づつ傾けて、上記単結晶ウエハーを 2段階で研
磨することにより、図1(a)に示すように、表面に網
目状の原子ステップ2を設けた SrTiO3 基板1を作製す
る。
First, a SrTiO 3 single crystal is cut into a wafer so as to have a main surface that is substantially parallel to a (100) crystal plane having 4-fold symmetry. Then, included in the (100) crystal plane,
Two equivalent crystal principal axes that are orthogonal to each other, ie [010]
By polishing the single crystal wafer in two steps by tilting 3 degrees with respect to the (100) crystal plane along the two directions of [001] and [001], as shown in FIG. An SrTiO 3 substrate 1 having a mesh-shaped atomic step 2 is prepared on the substrate.

【0023】この基板1の作製工程について、図2〜図
4を参照して詳述する。まず、図2に示すように、 SrT
iO3 (100)ウエハー11に対して、 (100)結晶面に含ま
れる等価な 2つの結晶主軸の一方、例えば [010]方向に
(100)結晶面を 3度(図中、θ1 で示す)傾けて研磨を
行う。この第1段階の研磨による研磨面は、 (100)結晶
面に対して 3度傾いたものとなるが、この研磨面をミク
ロに見ると、図3に示すように、 [010]方向に階段状の
原子ステップ12aが形成されていることになる。図中
11aは、この第1段階の研磨により得られた、マクロ
に見た場合の研磨面を示している。
The manufacturing process of the substrate 1 will be described in detail with reference to FIGS. First, as shown in Fig. 2, SrT
With respect to the iO 3 (100) wafer 11, one of two equivalent crystal principal axes included in the (100) crystal plane, for example, in the [010] direction
The (100) crystal plane is tilted 3 degrees (indicated by θ 1 in the figure) and polished. The polished surface by this first-stage polishing is inclined by 3 degrees with respect to the (100) crystal plane. A microscopic view of this polished surface shows a staircase in the [010] direction as shown in Fig. 3. The atomic step 12a having a shape of a circle is formed. Reference numeral 11a in the drawing shows a polished surface in macroscopic view obtained by the first-stage polishing.

【0024】次に、 (100)結晶面に含まれる 2つの結晶
主軸の他方、すなわち [001]方向に(100)結晶面を 3度
(図中、θ2 で示す)傾けて研磨を行う。ただし、この
第2段階の研磨は、第1段階の研磨により得られた研磨
面を基準面として行う。この第2段階の研磨によって、
図4に示すように、 [001]方向にも階段状の原子ステッ
プ12bが形成される。そして、この第2段階の研磨
を、第1段階の研磨による研磨面を基準面として行って
いるため、階段状の原子ステップ12a、12bは、網
目状に形成されることになる。これら原子ステップ12
a、12bの間の面は、いずれも (100)結晶面となる。
Next, polishing is performed with the (100) crystal plane tilted by 3 degrees (indicated by θ 2 in the figure) in the other of the two crystal principal axes contained in the (100) crystal plane, that is, in the [001] direction. However, the second-stage polishing is performed using the polished surface obtained by the first-stage polishing as a reference surface. By this second stage polishing,
As shown in FIG. 4, stepwise atomic steps 12b are also formed in the [001] direction. Since the second-stage polishing is performed using the polished surface of the first-stage polishing as a reference surface, the step-like atomic steps 12a and 12b are formed in a mesh shape. These atomic steps 12
The plane between a and 12b is a (100) crystal plane.

【0025】このようにして、2段階の研磨を行うこと
により、図1(a)に示したように、表面に網目状の原
子ステップ2(12a、12b)が設けられた SrTiO3
基板1が得られる。
By carrying out the two-step polishing in this way, as shown in FIG. 1A, SrTiO 3 having a mesh-like atomic step 2 (12a, 12b) provided on the surface thereof.
The substrate 1 is obtained.

【0026】次に、上記 SrTiO3 基板1の網目状の原子
ステップ2が設けられた表面1a上に、図1(b)に示
すように、多元反応性スパッタ法によって、下部電極と
なる厚さ 300nmの YBa2 Cu3 O 7 膜3を形成する。この
下部電極の形成にあたっては、 Y、Cu、Ba2 CuO 3 の各
ターゲットを用い、各ターゲットに印加する高周波電力
を制御することで、 Y、Ba、Cuの組成比を所定の 1:2:3
としている。この実施例では、製膜時の基板温度は、酸
化物超電導体膜のa軸が SrTiO3 基板1の (100)面に垂
直に配向する 680℃に保っているが、製膜初期には幾分
基板温度を低く設定したり、同時に基板との間にPr-Ba-
Cu-O膜等のバッファー層を設けて、配向性をより確実な
ものとする手法等を併用することも可能である。
Next, on the surface 1a of the SrTiO 3 substrate 1 provided with the mesh-shaped atomic steps 2, as shown in FIG. 1 (b), a thickness to be a lower electrode is formed by a multi-source reactive sputtering method. A YBa 2 Cu 3 O 7 film 3 of 300 nm is formed. In forming this lower electrode, Y, Cu, and Ba 2 CuO 3 targets were used, and by controlling the high-frequency power applied to each target, the composition ratio of Y, Ba, and Cu was set to a predetermined 1: 2: 3
I am trying. In this example, the substrate temperature during film formation was maintained at 680 ° C. at which the a-axis of the oxide superconductor film was oriented perpendicular to the (100) plane of the SrTiO 3 substrate 1, but at the beginning of film formation, The substrate temperature may be set low, or Pr-Ba-
It is also possible to provide a buffer layer such as a Cu-O film and use a method of making the orientation more reliable, together.

【0027】次いで、上記下部電極層3の上に、同一真
空容器中でPr、Cu、Ba2 CuO 3 をターゲットとして厚さ
25nmのPrBa2 Cu3 O 7 膜からなる中間バリア層4、さら
に厚さ 100nmの YBa2 Cu3 O 7 膜からなる上部電極層5
を、図1(b)に示したように順次成長させる。
Then, on the lower electrode layer 3, a thickness of Pr, Cu, and Ba 2 CuO 3 was set as a target in the same vacuum chamber.
Intermediate barrier layer 4 consisting of a 25 nm PrBa 2 Cu 3 O 7 film and upper electrode layer 5 consisting of a 100 nm thick YBa 2 Cu 3 O 7 film.
Are sequentially grown as shown in FIG.

【0028】このようにして得られた積層膜の超電導転
移温度は 83Kであった。なお、この転移温度が理想的な
Y-Ba-Cu-O膜の持つ 92Kに比べて若干低いのは、製膜時
の基板温度が低いためである。また、得られた積層膜の
表面は、極めて平滑であり、高分解能の電子顕微鏡によ
ってもクラック等の発生は一切観察されず、原子間力顕
微鏡による測定で得られた結晶粒間の凹凸は、 2μm 角
のスキャン範囲で最大3nmであった。
The superconducting transition temperature of the laminated film thus obtained was 83K. This transition temperature is ideal
The reason why the Y-Ba-Cu-O film has a temperature slightly lower than 92K is that the substrate temperature during film formation is low. The surface of the obtained laminated film is extremely smooth, no occurrence of cracks or the like was observed even by a high-resolution electron microscope, and the unevenness between crystal grains obtained by measurement with an atomic force microscope was The maximum was 3 nm in the scan range of 2 μm square.

【0029】また、本発明との比較として、基板として
SrTiO3 (100) 面そのものを使って、上記実施例と同様
に積層膜を作製したところ、結晶粒間に20nm以上の凹凸
が観測され、結晶粒の大きさも上記実施例より大きかっ
た。このことは、本発明の効果を明瞭に示すものであ
る。
Also, as a comparison with the present invention, as a substrate
When a laminated film was produced using the SrTiO 3 (100) plane itself in the same manner as in the above-mentioned example, irregularities of 20 nm or more were observed between crystal grains, and the crystal grain size was also larger than that in the above-mentioned example. This clearly shows the effect of the present invention.

【0030】積層膜形成後の加工工程は、通常の半導体
素子の作製に用いられるものと同様である。すなわち、
図1(c)に示すように、表面の保護のために厚さ 100
nmの金蒸着膜6を形成した後、光学露光法で接合部のパ
ターンをレジスト膜に転写し、次いでレジストをマスク
としてイオンミリング法により、上部電極層5と中間バ
リア層4をエッチングする。接合面積は10μm 角とし
た。
The processing steps after formation of the laminated film are the same as those used in the manufacture of ordinary semiconductor elements. That is,
As shown in Fig. 1 (c), the thickness of 100
After forming the gold vapor deposition film 6 having a thickness of nm, the pattern of the joint portion is transferred to the resist film by the optical exposure method, and then the upper electrode layer 5 and the intermediate barrier layer 4 are etched by the ion milling method using the resist as a mask. The joint area was 10 μm square.

【0031】次に、図1(d)に示すように、上部電極
層5および下部電極層3への配線を互いに絶縁するため
の絶縁膜7を積層し、接合部上部のみに穴7aのあいた
形に加工する。この絶縁膜7としては、種々のものが利
用できるが、この実施例では工程を簡略化する目的でネ
ガレジストを利用した。この後、上部電極層5への配線
8をAuによって形成することで、積層型ジョセフソン素
子が完成する。
Next, as shown in FIG. 1D, an insulating film 7 for insulating the wirings to the upper electrode layer 5 and the lower electrode layer 3 from each other is laminated, and a hole 7a is formed only in the upper portion of the joint. Process into shape. Various materials can be used as the insulating film 7, but in this embodiment, a negative resist is used for the purpose of simplifying the process. After that, the wiring 8 to the upper electrode layer 5 is formed of Au to complete the stacked Josephson element.

【0032】図5は、この実施例で得られた超電導素子
の液体ヘリウム温度における電流−電圧特性である。上
下超電導電極間のマイクロショートによる超電導リーク
電流は存在せず、ジョフソン接合による臨界電流として
1.4mA、素子の出力電圧であるIc ・Rn 積として 4.1
mVが得られた。酸化物超電導体に期待される出力電圧20
mVに比べて低いのは、中間バリア層4の厚さが最適化さ
れていないためであり、Pr-Ba-Cu-O膜4を薄くすること
で、さらに良好な特性を得ることができる。
FIG. 5 shows current-voltage characteristics of the superconducting element obtained in this example at the temperature of liquid helium. There is no superconducting leakage current due to the micro short between the upper and lower superconducting electrodes, and it is considered as a critical current due to the Joffson junction.
1.4 mA, the I c · R n product, which is the output voltage of the device 4.1
mV was obtained. Output voltage expected for oxide superconductors 20
The reason why it is lower than mV is that the thickness of the intermediate barrier layer 4 is not optimized, and by making the Pr—Ba—Cu—O film 4 thinner, better characteristics can be obtained.

【0033】また図6は、この実施例の超電導素子が実
際に均一なジョセフソン特性を示すことを確認するため
に行った臨界電流の印加磁界依存性を示す図である。こ
の図から分かるように、作製した素子は理想的なフラウ
ンホファーパターンを示した。このようなジョセフソン
特性は液体窒素温度でも確認され、本発明の製造方法を
用いて作製した超電導素子が高温で動作し得ることを検
証できた。
FIG. 6 is a diagram showing the dependence of the critical current on the applied magnetic field to confirm that the superconducting element of this example actually exhibits uniform Josephson characteristics. As can be seen from this figure, the fabricated device exhibited an ideal Fraunhofer pattern. Such Josephson characteristics were confirmed even at the liquid nitrogen temperature, and it was verified that the superconducting element manufactured by using the manufacturing method of the present invention could operate at high temperature.

【0034】なお、上記実施例においては、超電導電極
材料として Y-Ba-Cu-O酸化物超電導体、中間バリア層材
料としてPr-Ba-Cu-O常電導体を用いた例について説明し
たが、本発明の製造方法はこれらを用いた場合に限られ
るものではなく、他の超電導電極材料と中間バリア層材
料との組合せにおいても、製膜条件の制御や製膜方法の
適切な選択等により実施可能である。
In the above embodiments, the Y-Ba-Cu-O oxide superconductor was used as the superconducting electrode material, and the Pr-Ba-Cu-O normal conductor was used as the intermediate barrier layer material. , The production method of the present invention is not limited to the case of using these, even in the combination of other superconducting conductive electrode material and the intermediate barrier layer material, by controlling the film-forming conditions and appropriate selection of the film-forming method. It is feasible.

【0035】[0035]

【発明の効果】以上に説明したように本発明によれば、
酸化物高温超電導体を利用した高温で動作し得るジョセ
フソン接合素子をはじめとして、積層構造を有する各種
の超電導素子を、安定にかつ再現性よく作製することが
可能となり、産業上多大の寄与をすることが期待され
る。
As described above, according to the present invention,
Various superconducting devices with a laminated structure, including Josephson junction devices that can operate at high temperatures using oxide high-temperature superconductors, can be manufactured in a stable and reproducible manner, making a great contribution to the industry. Expected to do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による超電導素子の製造工程
を示す断面図である。
FIG. 1 is a cross-sectional view showing a manufacturing process of a superconducting element according to an embodiment of the present invention.

【図2】図1に示す製造工程の要部を示す図であって、
SrTiO3 単結晶体に対する第1段階の研磨工程を説明す
るための図である。
FIG. 2 is a diagram showing a main part of the manufacturing process shown in FIG.
SrTiO 3 is a diagram for explaining a first stage of the polishing process with respect to a single crystal body.

【図3】図1に示す製造工程の要部を示す図であって、
SrTiO3 単結晶体の第1段階の研磨工程後の状態を示す
図である。
FIG. 3 is a diagram showing a main part of the manufacturing process shown in FIG.
SrTiO 3 is a diagram showing a state after the polishing process of the first stage of the single crystal body.

【図4】図1に示す製造工程の要部を示す図であって、
SrTiO3 単結晶体の第2段階の研磨工程後の状態を示す
図である。
FIG. 4 is a diagram showing a main part of the manufacturing process shown in FIG.
SrTiO 3 is a diagram showing a state after the polishing process of the second stage of the single crystal body.

【図5】本発明の一実施例により得た超電導素子の電流
−電圧特性を示す図である。
FIG. 5 is a diagram showing current-voltage characteristics of a superconducting device obtained according to an example of the present invention.

【図6】本発明の一実施例により得た超電導素子の臨界
電流の印加磁界依存性を示す図である。
FIG. 6 is a diagram showing an applied magnetic field dependency of a critical current of a superconducting device obtained according to an example of the present invention.

【図7】Y-Ba-Cu-O系酸化物超電導体および基板用酸化
物の熱膨張率の温度依存性を示す図である。
FIG. 7 is a diagram showing the temperature dependence of the coefficient of thermal expansion of a Y-Ba-Cu-O-based oxide superconductor and an oxide for a substrate.

【符号の説明】[Explanation of symbols]

1……網目状の原子ステップを有する SrTiO3 基板 2、12a、12b……原子ステップ 3……下部電極層 4……中間バリア層 5……上部電極層 11… SrTiO3 (100)ウエハー1 ... SrTiO 3 substrate having a net-like atomic step 2, 12a, 12b ... Atomic step 3 ... Lower electrode layer 4 ... Intermediate barrier layer 5 ... Upper electrode layer 11 ... SrTiO 3 (100) wafer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 立方晶または正方晶の結晶構造を有する
酸化物材料を、その4回対称を有する結晶面に対してほ
ぼ平行に切り出した後、前記 4回対称結晶面に含まれ、
互いに直交する等価な 2つの結晶主軸の方向に沿って、
それぞれ前記4回対称結晶面に対して角度を成して研磨
することにより、表面に網目状の原子ステップを有する
基板を作製する工程と、 前記基板の網目状原子ステップを設けた表面に、RE-AE-
Cu-O系(REは希土類元素から選ばれた少なくとも 1種の
元素を、AEはアルカリ土類元素から選ばれた少なくとも
1種の元素を示す)の酸化物超電導体薄膜を、その単位
格子のa軸またはb軸が前記基板表面とほぼ垂直になる
ように配向させて形成する工程とを有することを特徴と
する超電導素子の製造方法。
1. An oxide material having a cubic or tetragonal crystal structure is cut out substantially parallel to a crystal plane having 4-fold symmetry, and then included in the 4-fold symmetry crystal plane,
Along the direction of two equivalent crystal principal axes that are orthogonal to each other,
Each of the steps of producing a substrate having a mesh-like atomic step on the surface by polishing at an angle with respect to the four-fold symmetric crystal plane, and RE on the surface provided with the mesh-like atomic step of the substrate, RE -AE-
Cu-O system (RE is at least one element selected from rare earth elements, AE is at least one selected from alkaline earth elements)
A superconducting oxide thin film of one element) is oriented such that the a-axis or the b-axis of its unit cell is substantially perpendicular to the surface of the substrate. Device manufacturing method.
JP5043675A 1993-03-04 1993-03-04 Superconducting element manufacturing method Expired - Fee Related JP2778892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5043675A JP2778892B2 (en) 1993-03-04 1993-03-04 Superconducting element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5043675A JP2778892B2 (en) 1993-03-04 1993-03-04 Superconducting element manufacturing method

Publications (2)

Publication Number Publication Date
JPH06260693A true JPH06260693A (en) 1994-09-16
JP2778892B2 JP2778892B2 (en) 1998-07-23

Family

ID=12670421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5043675A Expired - Fee Related JP2778892B2 (en) 1993-03-04 1993-03-04 Superconducting element manufacturing method

Country Status (1)

Country Link
JP (1) JP2778892B2 (en)

Also Published As

Publication number Publication date
JP2778892B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
JP2907832B2 (en) Superconducting device and manufacturing method thereof
JP3064306B2 (en) Method of forming weakly coupled Josephson junction and superconducting device using the same
JP3278638B2 (en) High-temperature superconducting Josephson junction and method of manufacturing the same
US20090197770A1 (en) Bismuth based oxide superconductor thin films and method of manufacturing the same
KR970005158B1 (en) Superconducting thin film and wire and the process therefor
US5624885A (en) Josephson junction device of oxide superconductor and process for preparing the same
EP0341148B1 (en) A semiconductor substrate having a superconducting thin film
JP2778892B2 (en) Superconducting element manufacturing method
JP3425422B2 (en) Superconducting element manufacturing method
JP2883493B2 (en) Superconducting element
JPH0278282A (en) Josephson element
JP3696158B2 (en) Superconducting element and manufacturing method thereof
JP2899287B2 (en) Josephson element
JP2976427B2 (en) Method of manufacturing Josephson device
US5362709A (en) Superconducting device
JP3167768B2 (en) Grain boundary Josephson device and method of manufacturing the same
JP2666978B2 (en) Superconducting element
JP3258824B2 (en) Metal oxide material, superconducting junction element using the same, and substrate for superconducting element
JP2559413B2 (en) Oxide superconducting integrated circuit
JPH1174573A (en) Superconductinc element circuit, its manufacture and superconducting device
Chrisey Progress in the first ten years of HTS film growth
JPH0563247A (en) Superconducting joint structure and production thereof
JP2663856B2 (en) Superconducting circuit using edge-type Josephson junction and method of manufacturing the same
JPH02264486A (en) Superconductive film weakly coupled element
JPH0499078A (en) Formation of thin film and manufacture of superconducting device using same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980407

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees