JPH06260574A - Water cooled thyristor valve - Google Patents

Water cooled thyristor valve

Info

Publication number
JPH06260574A
JPH06260574A JP4351293A JP4351293A JPH06260574A JP H06260574 A JPH06260574 A JP H06260574A JP 4351293 A JP4351293 A JP 4351293A JP 4351293 A JP4351293 A JP 4351293A JP H06260574 A JPH06260574 A JP H06260574A
Authority
JP
Japan
Prior art keywords
cooling
cooling water
water
thyristor
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4351293A
Other languages
Japanese (ja)
Other versions
JP3073622B2 (en
Inventor
Takafumi Fujimoto
貴文 藤本
Shigeru Tanabe
茂 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP05043512A priority Critical patent/JP3073622B2/en
Publication of JPH06260574A publication Critical patent/JPH06260574A/en
Application granted granted Critical
Publication of JP3073622B2 publication Critical patent/JP3073622B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To supply cooling water whose amount is suitable to a load and save electric power of auxiliary equipments wherein a cooling equipment is main, by controlling the amount of cooling water according to the operation state of thyristor valves. CONSTITUTION:A direct current is detected by a DC detector 2. On the basis of the direct current, a control equipment 3 determines the optimum amount of cooling water of thyristor valves 1U-1Z. According to the command value of the optimum amount of cooling water, the cooling water is sent from a cooling equipment 4. The cooling water is sent to the thyristor valves 1U-1Z, via cooling water pipes 5A, 5B. Thus cooling is performed. After cooling, the cooling water is returned to the cooling equipment 4, via the cooling pipe 6, and again used as cooling water after heat exchange. Since the amount of cooling water required for cooling the thyristor valves 1U-1Z can be obtained from the operation state of the thyristor valves 1U-1Z, it is not necessary to circulate the cooling water more than the necessary amount, so that the load of the cooling equipment 4 is reduced and electric power can be saved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、直流送電等に使用する
水冷式サイリスタバルブに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water-cooled thyristor valve used for DC power transmission and the like.

【0002】[0002]

【従来の技術】従来の水冷式サイリスタバルブにおいて
は、定格運転しているか否かに拘りなく、無負荷状態に
近い場合でも、冷却装置は定格運転時に必要な冷却水を
循環させていた。
2. Description of the Related Art In a conventional water-cooled thyristor valve, the cooling device circulates the cooling water necessary for the rated operation even when the chiller valve is in the unloaded state regardless of whether or not the rated operation is performed.

【0003】[0003]

【発明が解決しようとする課題】サイリスタバルブが定
格運転を行っている場合、冷却水量はサイリスタ温度が
一定値を越えないように設計されている。ところが、例
えばサイリスタバルブが定格電流の10%で運転してい
る場合でも、冷却水量は一定であるため、サイリスタ温
度は定格運転時の温度まで上昇しない。これは、サイリ
スタが過冷却されているのと同じであり、冷却装置を主
とする補機が余分な電力を無駄に消費することになる。
When the thyristor valve is in rated operation, the amount of cooling water is designed so that the thyristor temperature does not exceed a certain value. However, for example, even when the thyristor valve is operating at 10% of the rated current, the thyristor temperature does not rise to the temperature at the rated operation because the cooling water amount is constant. This is the same as when the thyristor is overcooled, and the auxiliary device mainly including the cooling device wastes extra power.

【0004】そこで、本発明の目的は、サイリスタバル
ブの運転状態に応じて冷却水量を制御して、補機の省電
力化を図ることのできる水冷式サイリスタバルブを提供
することなある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a water-cooled thyristor valve capable of controlling the amount of cooling water according to the operating state of the thyristor valve to save the power consumption of auxiliary equipment.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに請求項1の、水冷式ヒ―トシンクにより冷却される
複数のサイリスタと、該サイリスタにそれぞれ並列接続
される水冷抵抗器とコンデンサの直列回路からなる分圧
回路と、前記ヒ―トシンク及び前記水冷抵抗器に冷却水
を循環させる冷却水系に熱交換するための冷却装置を備
えた水冷式サイリスタバルブは、該サイリスタバルブの
運転状態を検出する手段と、該手段に応答して前記冷却
装置を制御し冷却水量を制御する制御装置を具備してい
る。
In order to achieve the above object, a plurality of thyristors cooled by a water-cooled heat sink according to claim 1, and a water-cooled resistor and a capacitor respectively connected in parallel to the thyristors are provided. A water-cooling type thyristor valve equipped with a voltage dividing circuit consisting of a series circuit and a cooling device for heat exchange to a cooling water system for circulating cooling water in the heat sink and the water cooling resistor, the operating state of the thyristor valve It is provided with means for detecting and a controller for controlling the cooling device and controlling the amount of cooling water in response to the means.

【0006】又、上記の目的を達成するために請求項2
の、水冷式ヒ―トシンクにより冷却される複数のサイリ
スタと、該サイリスタにそれぞれ並列接続される水冷抵
抗器とコンデンサの直列回路からなる分圧回路と、前記
ヒ―トシンク及び前記水冷抵抗器に冷却水を循環させる
冷却水系統に熱交換するための冷却装置を備えた水冷式
サイリスタバルブは、前記冷却水系統を前記冷却装置か
ら前記水冷式ヒ―トシンクへ冷却水を供給するサイリス
タヒ―トシンク用冷却水系統と、前記冷却装置から前記
冷却抵抗器へ冷却水を供給する水冷抵抗器用冷却水系統
とに分割し、分割された冷却水系統にそれぞれ流量調節
弁を設け、更に、前記サイリスタバルブの運転状態に応
じて前記流量調節弁を制御する手段を設けたものであ
る。
Further, in order to achieve the above-mentioned object, claim 2
, A plurality of thyristors cooled by a water-cooled heat sink, a voltage dividing circuit consisting of a series circuit of a water-cooled resistor and a capacitor connected in parallel to each of the thyristors, and cooled to the heat sink and the water-cooled resistor. A water-cooled thyristor valve equipped with a cooling device for heat exchange with a cooling water system that circulates water is a cooling system for a thyristor heat sink that supplies cooling water from the cooling device to the water cooling heat sink. The system is divided into a water system and a cooling water system for a water cooling resistor that supplies cooling water from the cooling device to the cooling resistor, each divided cooling water system is provided with a flow control valve, and the thyristor valve is operated. Means for controlling the flow rate control valve according to the state is provided.

【0007】更に、上記の目的を達成するために請求項
3の水冷式サイリスタバルブは、前記サイリスタバルブ
の運転状態に応じて前記流量調節弁を制御する手段を、
サイリスタヒ―トシンク用冷却水系統の冷却水量を、サ
イリスタバルブの通電電流が所定値以下の場合、サイリ
スの温度が定格電流通電時と同じになるまで減少させる
ように制御する手段としたものである。
Further, in order to achieve the above object, the water-cooled thyristor valve according to claim 3 has means for controlling the flow rate control valve according to an operating state of the thyristor valve.
This is a means for controlling the amount of cooling water in the cooling water system for the thyristor heat sink so that the temperature of the thyrist will decrease until the temperature of the thyrist becomes the same as that at the time when the rated current is passed, when the current flowing through the thyristor valve is below a predetermined value.

【0008】又、上記の目的を達成するために請求項4
の水冷式サイリスタバルブは、前記サイリスタバルブの
運転状態に応じて前記流量調節弁を制御する手段を、サ
イリスタヒ―トシンク用冷却水系統の冷却水量を運転電
流が大きくなるにつれて増加させ、前記水冷抵抗器用冷
却水系統の冷却水量を運転電流が大きくなるにつれて減
少させるように制御する手段としたものである。
Further, in order to achieve the above object, claim 4
The water-cooled thyristor valve of the means for controlling the flow rate control valve according to the operating state of the thyristor valve, increases the cooling water amount of the cooling water system for thyristor heat sink as the operating current increases, This is a means for controlling the amount of cooling water in the cooling water system so as to decrease as the operating current increases.

【0009】更に又、上記の目的を達成するために請求
項5の水冷式サイリスタバルブは、前記サイリスタバル
ブの運転状態に応じて前記流量調節弁を制御する手段
を、前記水冷抵抗器用冷却水系統の冷却水量をサイリス
タバルブの制御遅れ角が90°に近い程増加させ、前記
サイリスタヒ―トシンク用冷却水系統の冷却水量をサイ
リスタバルブの制御遅れ角が90°に近い程減少させさ
せるように制御する手段としたものである。
Furthermore, in order to achieve the above-mentioned object, the water-cooled thyristor valve of claim 5 has a means for controlling the flow rate control valve according to the operating state of the thyristor valve, the cooling water system for the water-cooled resistor. The amount of cooling water is increased as the control delay angle of the thyristor valve approaches 90 °, and the amount of cooling water of the cooling water system for the thyristor heat sink is controlled to decrease as the control delay angle of the thyristor valve approaches 90 °. It is a means.

【0010】[0010]

【作用】前述のように構成された、請求項1の発明によ
れば、サイリスタバルブの運転状態に応じて冷却水量を
制御することができるため、負荷に見合った冷却水量を
供給することができるため、冷却装置を主とする補機が
余分な電力を無駄に消費することなく、補機の省電力化
を図ることができる。
According to the invention of claim 1, which is configured as described above, the amount of cooling water can be controlled in accordance with the operating state of the thyristor valve, so that the amount of cooling water suitable for the load can be supplied. Therefore, it is possible to reduce the power consumption of the auxiliary machine without wasteful consumption of extra electric power by the auxiliary machine including the cooling device.

【0011】又、請求項2の発明によれば、冷却装置か
ら分岐される冷却水系統を、水冷式ヒ―トシンクへ冷却
水を供給するサイリスタヒ―トシンク用冷却水系統と、
冷却抵抗器へ冷却水を供給する水冷抵抗器用冷却水系統
とに分割し、それぞれの冷却水系統に流れる冷却水流量
を、サイリスタバルブの運転状態に応じてそれぞれ独立
に制御できるようにしているため、水冷抵抗器の温度特
性及びサイリスタの温度特性に合せて冷却水流量を制御
でき、補機の省電力化を図ることに加えより効果的な冷
却を行うことができる。
According to the invention of claim 2, the cooling water system branched from the cooling device is a cooling water system for a thyristor heat sink for supplying the cooling water to the water cooling type heat sink.
It is divided into a cooling water system for water cooling resistors that supplies cooling water to the cooling resistors, and the flow rate of cooling water flowing through each cooling water system can be independently controlled according to the operating state of the thyristor valve. The flow rate of the cooling water can be controlled according to the temperature characteristics of the water-cooled resistor and the temperature characteristics of the thyristor, and power can be saved in the auxiliary machinery as well as more effective cooling.

【0012】更に、請求項3の発明によれば、サイリス
タバルブの運転状態をサイリスタバルブの通電電流で判
断し、サイリスタバルブの通電電流が所定値以下のと
き、サイリスタヒ―トシンク用冷却水系統の冷却水量を
サイリスの温度が定格電流通電時と同じになるまで減少
させるように制御することによって、補機の省電力化を
図ることに加え、サイリスタの順方向電圧降下が小さく
なるため、サイリスタの損失を低減できる。
Further, according to the third aspect of the present invention, the operating state of the thyristor valve is judged by the energizing current of the thyristor valve, and when the energizing current of the thyristor valve is below a predetermined value, cooling of the cooling water system for thyristor heat sink is performed. By controlling the amount of water to decrease until the temperature of the thyris becomes the same as when the rated current is applied, power consumption of the auxiliary equipment is reduced and the forward voltage drop of the thyristor becomes smaller, resulting in loss of thyristor. Can be reduced.

【0013】又、請求項4の発明によれば、前記サイリ
スタバルブの運転状態をサイリスタバルブの通電電流で
判断し、サイリスタヒ―トシンク用冷却水系統の冷却水
量を通電電流が大きくなるにつれて増加させ、前記水冷
抵抗器用冷却水系統の冷却水量を通電電流が大きくなる
につれて減少させるように制御することによって、補機
の省電力化を図ることに加えより効果的な冷却を行うこ
とができ、更に、サイリスタバルブの制御遅れ角90°
の運転時間の制約を軽減できる。
According to the invention of claim 4, the operating state of the thyristor valve is judged by the energizing current of the thyristor valve, and the cooling water amount of the cooling water system for the thyristor heat sink is increased as the energizing current increases, By controlling the amount of cooling water in the cooling water system for the water-cooled resistor to decrease as the energizing current increases, more effective cooling can be performed in addition to power saving of auxiliary machinery, and further, Control delay angle of thyristor valve 90 °
It is possible to reduce the restrictions on the driving time.

【0014】更に又、請求項5の発明によれば、サイリ
スタバルブの運転状態を、サイリスタバルブの制御遅れ
角で判断し、前記水冷抵抗器用冷却水系統の冷却水量を
サイリスタバルブの制御遅れ角が90°に近い程増加さ
せ、前記サイリスタヒ―トシンク用冷却水系統の冷却水
量をサイリスタバルブの制御遅れ角が90°に近い程減
少させさせるように制御することによって、補機の省電
力化を図ることに加えより効果的な冷却を行うことがで
き更に、サイリスタバルブの制御遅れ角90°の運転時
間の制約を軽減できる。
Further, according to the invention of claim 5, the operating state of the thyristor valve is judged by the control delay angle of the thyristor valve, and the cooling water amount of the cooling water system for the water cooling resistor is determined by the control delay angle of the thyristor valve. By increasing the temperature as it approaches 90 ° and decreasing the amount of cooling water in the cooling water system for the thyristor heat sink as the control delay angle of the thyristor valve approaches 90 °, the power consumption of the auxiliary machinery is reduced. In addition to this, more effective cooling can be performed, and the restriction on the operation time of the control delay angle of 90 ° of the thyristor valve can be alleviated.

【0015】[0015]

【実施例】次に、図1に示す本発明の一実施例の構成図
を参照して本発明を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the block diagram of one embodiment of the present invention shown in FIG.

【0016】図1において、1U〜1Zは電力変換を行
うためのサイリスタバルブであり、P,Nは直流側端
子、R,S,Tは交流側端子である。2は直流電流を検
出する電流検出器、3は電流検出器2で検出された電流
に応じてサイリスタバルブ1U〜1Zの最適冷却水量を
決定する制御装置、4は冷却水を循環し熱交換するため
の冷却装置で、制御装置3からの最適冷却水量指令値に
基づいて冷却水を循環させる。5Aは冷却装置4からの
冷却水を矢印の如くサイリスタバルブ1U〜1Wへ導く
ための冷却水管路、5Bは冷却装置4からの冷却水を矢
印の如くサイリスタバルブ1X〜1Zへ導くための冷却
水管路である。6はサイリスタバルブ1U〜1W及び1
X〜1Zを冷却した冷却水を矢印の如く冷却装置4へと
戻す冷却水管路である。
In FIG. 1, 1U to 1Z are thyristor valves for converting electric power, P and N are DC side terminals, and R, S and T are AC side terminals. Reference numeral 2 is a current detector for detecting a direct current, 3 is a control device for determining the optimum amount of cooling water for the thyristor valves 1U to 1Z according to the current detected by the current detector 2, and 4 is circulation of cooling water for heat exchange. The cooling device circulates the cooling water based on the optimum cooling water amount command value from the control device 3. Reference numeral 5A is a cooling water pipe line for guiding the cooling water from the cooling device 4 to the thyristor valves 1U to 1W as indicated by the arrow, and 5B is a cooling water pipe for guiding the cooling water from the cooling device 4 to the thyristor valves 1X to 1Z as indicated by the arrow. It is a road. 6 is a thyristor valve 1U to 1W and 1
This is a cooling water pipe line that returns the cooling water that has cooled X to 1Z to the cooling device 4 as indicated by the arrow.

【0017】電流検出器2により直流電流を検出し、そ
の直流電流を基に制御装置3でサイリスタバルブ1U〜
1Zの最適冷却水量を決定し、その最適冷却水量指令値
による冷却水を冷却装置4より送り出し、冷却水管路5
A,5Bにより、冷却水はサイリスタバルブ1U〜1Z
へと送られ冷却を行う。冷却後、冷却水は冷却水管路6
により冷却装置4へと戻され、熱交換された後再び冷却
水として使用される。以上のことから、サイリスタバル
ブ1U〜1Zの運転状態により、サイリスタバルブ1U
〜1Zを冷却するのに必要な冷却水量が求められるの
で、必要以上の冷却水を循環させる必要がなく、冷却装
置4の負荷軽減となり、省電力化を図ることができる。
次に本発明の他の実施例を図2を参照して説明する。
A direct current is detected by the current detector 2, and based on the direct current, the controller 3 causes the thyristor valve 1U ...
The optimum cooling water amount of 1Z is determined, the cooling water according to the optimum cooling water amount command value is sent from the cooling device 4, and the cooling water pipe line 5
Cooling water is cooled by thyristor valves 1U to 1Z by A and 5B.
Is sent to and cooled. After cooling, the cooling water is the cooling water pipeline 6
Then, it is returned to the cooling device 4, and after heat exchange, it is used again as cooling water. From the above, the thyristor valve 1U depends on the operating state of the thyristor valves 1U to 1Z.
Since the amount of cooling water required for cooling ~ 1Z is required, it is not necessary to circulate more cooling water than necessary, the load on the cooling device 4 can be reduced, and power can be saved.
Next, another embodiment of the present invention will be described with reference to FIG.

【0018】図2において、111 〜11n はサイリス
タであり、121 〜12(n+1) はサイリスタ111 〜1
1n を冷却するヒ―トシンク、131 〜13n は水冷抵
抗器である。
In FIG. 2, 111 to 11n are thyristors, and 121 to 12 (n + 1) are thyristors 111 to 1n.
Heat sinks for cooling 1n and water cooling resistors 131 to 13n.

【0019】今、冷却装置4からの冷却水をサイリスタ
バルブに導く冷却水管路5を、ヒ―トシンク用冷却水管
路51と水冷抵抗用冷却水管路52とに分割し、冷却水
量を調節する流量調整弁を冷却水管路51には流量調整
弁71を、冷却水管路52には流量調整弁72を取付け
ている。このように構成することで、サイリスタヒ―ト
シンク121 〜12(n+1) と水冷抵抗器131 〜13n
への冷却水量の配分を変えることが可能となる。次に、
水冷抵抗器131 〜13n の損失PSNは、制御遅れ角を
α、その時の重なり角をuとした場合、
Now, the cooling water pipe line 5 for guiding the cooling water from the cooling device 4 to the thyristor valve is divided into a heat sink cooling water pipe line 51 and a water cooling resistance cooling water pipe line 52 to adjust the amount of cooling water. A flow control valve 71 is attached to the cooling water pipe 51, and a flow control valve 72 is attached to the cooling water pipe 52. With this configuration, the thyristor heat sinks 121 to 12 (n + 1) and the water cooling resistors 131 to 13n are formed.
It is possible to change the distribution of the amount of cooling water to the. next,
If the control delay angle is α and the overlapping angle at that time is u, the loss PSN of the water-cooled resistors 131 to 13n is

【0020】[0020]

【数1】 の関係が成り立つ。従って、制御遅れ角αが90°に近
い程、水冷抵抗器131〜13n の損失PSNが大きくな
ることが分る。このことから、通常サイリスタバルブの
制御遅れ角90°での運転時間は制約されている。更
に、サイリスタの損失PTHY は直流電流の大きさに依存
しており、直流電流が大きい程サイリスタの損失PTHY
は大きくなる。直流電流とIdNと制御遅れ角αの間に
は、
[Equation 1] The relationship is established. Therefore, it can be seen that the loss PSN of the water-cooled resistors 131 to 13n increases as the control delay angle α approaches 90 °. Therefore, the operation time of the thyristor valve at the control delay angle of 90 ° is usually restricted. Furthermore, the thyristor loss PTHY depends on the magnitude of the DC current. The larger the DC current, the more the thyristor loss PTHY.
Grows. Between the DC current, IdN and the control delay angle α,

【0021】[0021]

【数2】 の関係があり、制御遅れ角αが0°に近い程、直流電流
IdNが大きくなり、サイリスタ111 〜11n の損失が
増えることが分る。
[Equation 2] It can be seen that the DC current IdN increases and the loss of the thyristors 111 to 11n increases as the control delay angle α approaches 0 °.

【0022】以上のことから、制御遅れ角αが小さいと
きには、サイリスタ111 〜11nの損失が大きくなる
ので、サイリスタヒートシンク121 〜12(n+1) への
冷却水量を増やす。逆に、制御遅れ角αが大きいときに
は、水冷抵抗器131 〜13n の損失が大きくなるの
で、水冷抵抗器131 〜13n への冷却水量を増やす。
このように制御遅れ角αの値によって、サイリスタヒ―
トシンク121 〜12(n+1) と水冷抵抗器131 〜13
n への冷却水量の配分を、流量調節弁71と72により
調整することで、サイリスタ111 〜11n と水冷抵抗
器131 〜13nの損失を最小限に抑えることができ、
サイリスタバルブにとって最適な冷却が可能となる。
From the above, when the control delay angle α is small, the loss of the thyristors 111 to 11n becomes large, so the amount of cooling water to the thyristor heat sinks 121 to 12 (n + 1) is increased. On the contrary, when the control delay angle α is large, the loss of the water cooling resistors 131 to 13n becomes large, so that the amount of cooling water to the water cooling resistors 131 to 13n is increased.
Thus, depending on the value of the control delay angle α, the thyristor
Tosinks 121 to 12 (n + 1) and water cooling resistors 131 to 13
By adjusting the distribution of the amount of cooling water to n by the flow control valves 71 and 72, it is possible to minimize the loss of the thyristors 111 to 11n and the water cooling resistors 131 to 13n.
Optimal cooling is possible for the thyristor valve.

【0023】サイリスタの順方向電圧降下と通電電流と
の間には、図3の様な特性が有る。図3において、サイ
リスタ温度が25°Cの曲線と125°Cの曲線の交点
Aにおける通電電流IA とすると、通電電流IA 以下よ
り小さい場合には、サイリスタ温度の高い方がサイリス
タの順方向電圧降下が小さく、通電電流IA より大きい
場合には、サイリスタの温度の低い方がサイリスタの順
方向電圧降下が小さくなる。
There is a characteristic as shown in FIG. 3 between the forward voltage drop of the thyristor and the applied current. In FIG. 3, assuming that the energizing current IA at the intersection A of the curve of the thyristor temperature of 25 ° C. and the curve of 125 ° C. is lower than the energizing current IA, the higher the thyristor temperature is, the higher the forward voltage drop of the thyristor is. Is small and is larger than the current IA, the lower the temperature of the thyristor, the smaller the forward voltage drop of the thyristor.

【0024】サイリスタ温度は冷却水量により変化する
が、直流電流が小さい場合には、流量調節弁71により
サイリスタヒ―トシンク121 〜12(n+1) の冷却水量
を減らし、サイリスタ温度を上げる。逆に直流電流が大
きい場合には、流量調節弁71によりサイリスタヒ―ト
シンク121 〜12(n+1) の冷却冷却水量を増やし、サ
イリスタ温度を下げる。
Although the thyristor temperature changes depending on the cooling water amount, when the direct current is small, the flow control valve 71 reduces the cooling water amount of the thyristor heat sinks 121 to 12 (n + 1) to raise the thyristor temperature. On the contrary, when the direct current is large, the flow control valve 71 increases the cooling and cooling water amount of the thyristor heat sinks 121 to 12 (n + 1) and lowers the thyristor temperature.

【0025】以上のことから、サイリスタの損失は順方
向電圧と通電電流の積で決定されるので、直流電流に応
じてサイリスタ温度を冷却水量により変化させ、サイリ
スタの順方向電圧を変化させることでサイリスタの損失
を減らすことができる。
From the above, the loss of the thyristor is determined by the product of the forward voltage and the energized current. Therefore, the thyristor temperature is changed by the cooling water amount according to the direct current, and the forward voltage of the thyristor is changed. The thyristor loss can be reduced.

【0026】尚、前述説明は、冷却水系統を冷却装置か
ら水冷式ヒ―トシンクへ冷却水を供給するサイリスタヒ
―トシンク用冷却水系統と、冷却装置から冷却抵抗器へ
冷却水を供給する水冷抵抗器用冷却水系統とに分割し、
分割された冷却水系統にそれぞれ流量調節弁を設けて、
サイリスタバルブの運転状態に応じて前記流量調節弁を
制御して冷却水量を制御する例を述べているが、これに
加えて、サイリスタバルブの運転状態に応じて冷却装置
を制御して冷却水量を制御するようにしてもよい。
In the above description, the cooling water system for the thyristor heat sink for supplying the cooling water from the cooling device to the water cooling type heat sink, and the water cooling resistance for supplying the cooling water from the cooling device to the cooling resistor. And cooling water system for
Each cooling water system is equipped with a flow control valve,
Although an example of controlling the flow rate control valve to control the cooling water amount according to the operating state of the thyristor valve is described, in addition to this, the cooling device is controlled to control the cooling water amount according to the operating state of the thyristor valve. It may be controlled.

【0027】[0027]

【発明の効果】以上説明のように、請求項1の発明によ
れば、冷却水量をサイリスタバルブの運転状態により制
御することで必要以上の冷却水が不要となるので、冷却
装置の負荷が軽減され、省電力化が図れる。
As described above, according to the first aspect of the invention, by controlling the amount of cooling water according to the operating state of the thyristor valve, unnecessary cooling water is not needed, so the load on the cooling device is reduced. Therefore, power saving can be achieved.

【0028】又、請求項2の発明によれば、冷却水系統
を、水冷式ヒ―トシンクへ冷却水を供給するサイリスタ
ヒ―トシンク用冷却水系統と、冷却抵抗器へ冷却水を供
給する水冷抵抗器用冷却水系統とに分割し、それぞれの
冷却水系統に流れる冷却水流量を、サイリスタバルブの
運転状態に応じてそれぞれ独立に制御できるようにして
いるため、必要以上の冷却水が不要となるので、冷却装
置の負荷が軽減され、省電力化が図れることに加え、水
冷抵抗器の温度特性及びサイリスタの温度特性に合せて
冷却水流量を制御でき、より効果的な冷却を行うことが
できる。
According to the invention of claim 2, the cooling water system is a cooling water system for a thyristor heat sink for supplying the cooling water to the water cooling type heat sink, and a water cooling resistor for supplying the cooling water to the cooling resistor. The cooling water system is divided into the cooling water system and the flow rate of the cooling water flowing in each cooling water system can be controlled independently according to the operating state of the thyristor valve, so unnecessary cooling water is not required. In addition to reducing the load on the cooling device and saving power, the flow rate of the cooling water can be controlled according to the temperature characteristics of the water cooling resistor and the temperature characteristics of the thyristor, and more effective cooling can be performed.

【0029】更に、請求項3の発明によれば、冷却水系
統を、水冷式ヒ―トシンクへ冷却水を供給するサイリス
タヒ―トシンク用冷却水系統と、冷却抵抗器へ冷却水を
供給する水冷抵抗器用冷却水系統とに分割し、サイリス
タバルブの通電電流が所定値以下のとき、サイリスタヒ
―トシンク用冷却水系統の冷却水量をサイリスの温度が
定格電流通電時と同じになるまで減少させるように制御
することによって、補機の省電力化を図ることに加え、
サイリスタの順方向電圧降下が小さくなるため、サイリ
スタの損失を低減できる。
Further, according to the invention of claim 3, the cooling water system is a cooling water system for a thyristor heat sink for supplying the cooling water to the water cooling type heat sink, and a water cooling resistor for supplying the cooling water to the cooling resistor. When the energizing current of the thyristor valve is below a specified value, the cooling water volume of the thyristor heat sink cooling system is controlled to decrease until the temperature of the thyrist becomes the same as when the rated current is energized. By doing so, in addition to saving power for auxiliary equipment,
Since the forward voltage drop of the thyristor is small, the loss of the thyristor can be reduced.

【0030】又、請求項4の発明によれば、冷却水系統
を、水冷式ヒ―トシンクへ冷却水を供給するサイリスタ
ヒ―トシンク用冷却水系統と、冷却抵抗器へ冷却水を供
給する水冷抵抗器用冷却水系統とに分割し、サイリスタ
ヒ―トシンク用冷却水系統の冷却水量を通電電流が大き
くなるにつれて増加させ、前記水冷抵抗器用冷却水系統
の冷却水量を通電電流が大きくなるにつれて減少させる
ように制御することによって、補機の省電力化を図るこ
とに加えより効果的な冷却を行うことができ、更に、サ
イリスタバルブの制御遅れ角90°の運転時間の制約を
軽減できる。更に又、請求項5の発明は、請求項4の発
明同様な効果を得ることができる。
According to the invention of claim 4, the cooling water system is a cooling water system for thyristor heat sink for supplying the cooling water to the water cooling type heat sink, and a water cooling resistor for supplying the cooling water to the cooling resistor. And the cooling water system for the thyristor heat sink to increase the cooling water amount as the energizing current increases, and to decrease the cooling water amount for the water cooling resistor cooling water system as the energizing current increases. By controlling the power consumption of the auxiliary equipment, more effective cooling can be achieved, and further, the restriction of the operation time of the control delay angle of 90 ° of the thyristor valve can be reduced. Furthermore, the invention of claim 5 can obtain the same effect as the invention of claim 4.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の水冷式サイリスタバルブ一実施例を示
す構成図。
FIG. 1 is a configuration diagram showing an embodiment of a water-cooled thyristor valve of the present invention.

【図2】本発明の他の実施例を示す冷却系統図。FIG. 2 is a cooling system diagram showing another embodiment of the present invention.

【図3】本発明を説明するための、サイリスタの順方向
電圧と通電電流との関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between a forward voltage and a conduction current of a thyristor for explaining the present invention.

【符号の説明】 1 …サイリスタバルブ 11 …サイリスタ 12 …サイリスタヒ―トシンク 13 …水冷抵抗器 2 …電流検出器 3 …制御装置 4 …冷却装置 5,6 …冷却水管路 51 …サイリスタヒ―トシンク用 52 …水冷抵抗器用 冷却水管路 冷却水管路 71 …流量調節弁 72 …流量調節弁[Explanation of Codes] 1 ... Thyristor valve 11 ... Thyristor 12 ... Thyristor heat sink 13 ... Water cooling resistor 2 ... Current detector 3 ... Control device 4 ... Cooling device 5, 6 ... Cooling water pipe 51 ... Thyristor heat sink 52 ... Cooling water pipe for water cooling resistor Cooling water pipe 71 ... Flow control valve 72 ... Flow control valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水冷式ヒ―トシンクにより冷却され
る複数のサイリスタと、該サイリスタにそれぞれ並列接
続される水冷抵抗器とコンデンサの直列回路からなる分
圧回路と、前記ヒ―トシンク及び前記水冷抵抗器に冷却
水を循環させる冷却水系に熱交換するための冷却装置を
備えた水冷式サイリスタバルブにおいて、該サイリスタ
バルブの運転状態を検出する手段と、該手段に応答して
前記冷却装置を制御し冷却水量を制御する制御装置を具
備して成る水冷式サイリスタバルブ。
1. A plurality of thyristors cooled by a water-cooled heat sink, a voltage dividing circuit comprising a series circuit of a water-cooling resistor and a capacitor connected in parallel to the thyristor, the heat sink and the water-cooling resistor. In a water-cooled thyristor valve equipped with a cooling device for heat exchange with a cooling water system that circulates cooling water in a vessel, means for detecting the operating state of the thyristor valve, and controlling the cooling device in response to the means. A water-cooled thyristor valve comprising a control device for controlling the amount of cooling water.
【請求項2】 水冷式ヒ―トシンクにより冷却さ
れる複数のサイリスタと、該サイリスタにそれぞれ並列
接続される水冷抵抗器とコンデンサの直列回路からなる
分圧回路と、前記ヒ―トシンク及び前記水冷抵抗器に冷
却水を循環させる冷却水系統に熱交換するための冷却装
置を備えた水冷式サイリスタバルブにおいて、前記冷却
水系統を前記冷却装置から前記水冷式ヒ―トシンクへ冷
却水を供給するサイリスタヒ―トシンク用冷却水系統
と、前記冷却装置から前記冷却抵抗器へ冷却水を供給す
る水冷抵抗器用冷却水系統とに分割し、分割された冷却
水系統にそれぞれ流量調節弁を設け、更に、前記サイリ
スタバルブの運転状態に応じて前記流量調節弁を制御す
る手段を設けたことを特徴とする水冷式サイリスタバル
ブ。
2. A plurality of thyristors cooled by a water-cooled heat sink, a voltage dividing circuit comprising a series circuit of a water-cooling resistor and a capacitor connected in parallel to the thyristor, the heat sink and the water-cooling resistor. In a water-cooled thyristor valve equipped with a cooling device for exchanging heat with a cooling water system for circulating cooling water in a vessel, a thyristor heater for supplying cooling water from the cooling device to the water cooling type heat sink in the cooling water system. A cooling water system for a tosink and a cooling water system for a water cooling resistor for supplying cooling water from the cooling device to the cooling resistor, and a flow control valve is provided in each of the divided cooling water systems, and the thyristor is further provided. A water-cooled thyristor valve comprising means for controlling the flow control valve according to the operating state of the valve.
【請求項3】 前記サイリスタバルブの運転状態に
応じて前記流量調節弁を制御する手段は、前記サイリス
タヒ―トシンク用冷却水系統の冷却水量を、サイリスタ
バルブの通電電流が所定値以下の場合、サイリスの温度
が定格電流通電時と同じになるまで減少させるように制
御する手段であることを特徴とする請求項2の水冷式サ
イリスタバルブ。
3. The means for controlling the flow rate control valve in accordance with the operating state of the thyristor valve, the cooling water amount of the cooling water system for the thyristor heat sink, when the energizing current of the thyristor valve is a predetermined value or less, 3. The water-cooled thyristor valve according to claim 2, which is a means for controlling so as to decrease the temperature until the same as when the rated current is applied.
【請求項4】 前記サイリスタバルブの運転状態に
応じて前記流量調節弁を制御する手段は、前記サイリス
タヒ―トシンク用冷却水系統の冷却水量を運転電流が大
きくなるにつれて増加させ、前記水冷抵抗器用冷却水系
統の冷却水量を運転電流が大きくなるにつれて減少させ
るように制御する手段であることを特徴とする請求項2
の水冷式サイリスタバルブ。
4. The means for controlling the flow rate control valve according to the operating state of the thyristor valve increases the cooling water amount of the cooling water system for the thyristor heat sink as the operating current increases, and cools the water cooling resistor. The means for controlling the amount of cooling water in the water system so as to decrease as the operating current increases.
Water-cooled thyristor valve.
【請求項5】 前記サイリスタバルブの運転状態に
応じて前記流量調節弁を制御する手段は、前記水冷抵抗
器用冷却水系統の冷却水量をサイリスタバルブの制御遅
れ角が90°に近い程増加させ、前記サイリスタヒ―ト
シンク用冷却水系統の冷却水量をサイリスタバルブの制
御遅れ角が90°に近い程減少させさせるように制御す
る手段であることを特徴とする請求項2の水冷式サイリ
スタバルブ。
5. The means for controlling the flow rate control valve according to the operating state of the thyristor valve increases the cooling water amount of the cooling water system for the water cooling resistor as the control delay angle of the thyristor valve approaches 90 °, 3. The water-cooled thyristor valve according to claim 2, further comprising means for controlling the amount of cooling water in the cooling water system for the thyristor heat sink so as to decrease as the control delay angle of the thyristor valve approaches 90 °.
JP05043512A 1993-03-04 1993-03-04 Water-cooled thyristor valve Expired - Lifetime JP3073622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05043512A JP3073622B2 (en) 1993-03-04 1993-03-04 Water-cooled thyristor valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05043512A JP3073622B2 (en) 1993-03-04 1993-03-04 Water-cooled thyristor valve

Publications (2)

Publication Number Publication Date
JPH06260574A true JPH06260574A (en) 1994-09-16
JP3073622B2 JP3073622B2 (en) 2000-08-07

Family

ID=12665794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05043512A Expired - Lifetime JP3073622B2 (en) 1993-03-04 1993-03-04 Water-cooled thyristor valve

Country Status (1)

Country Link
JP (1) JP3073622B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007166804A (en) * 2005-12-14 2007-06-28 Toyota Motor Corp Motor drive and vehicle having the same
CN100403194C (en) * 2005-09-13 2008-07-16 广州市高澜水技术有限公司 Control system of hermetic circulating type pure water cooling device for thyristor valve set

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100403194C (en) * 2005-09-13 2008-07-16 广州市高澜水技术有限公司 Control system of hermetic circulating type pure water cooling device for thyristor valve set
JP2007166804A (en) * 2005-12-14 2007-06-28 Toyota Motor Corp Motor drive and vehicle having the same

Also Published As

Publication number Publication date
JP3073622B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US9291376B2 (en) Auxiliary heater control device, heated fluid utilization system, and auxiliary heater control method
US20080231304A1 (en) Apparatus and method for controlling temperature in a chuck system
CN108859740B (en) Cooling system and electric automobile
KR20020045518A (en) Chilling system
JP4692180B2 (en) Heat pump water heater
WO2021019676A1 (en) Cooling device and cooling method
JPH07143615A (en) Cooler of power converting means for electric motor vehicle
KR920004275B1 (en) Method and system for operating a cooling plant
JPH06260574A (en) Water cooled thyristor valve
KR100442033B1 (en) Air conditioner
JP2002213242A (en) Cooling controller for movable body
JP2000190329A (en) Apparatus and method for cooling mold for molding
JPH038453B2 (en)
JP2001326410A (en) Semiconductor-laser cooling device
JP3577196B2 (en) Semiconductor cooling device and power conversion device having semiconductor cooling device
JPS6414542A (en) Operation controlling method for cold water system for air conditioning operation
JPH07334247A (en) Temperature controller for hydraulic oil
JPS58186956A (en) Cooler
KR101977170B1 (en) Control method of thermostat and cooling system using phase change
JPS6066039A (en) Air conditioner
JP2579080B2 (en) Thermal storage heat source unit
JPH06272988A (en) Chilled water system controlling method for air conditioning facility
JPS595607A (en) Adjuster for temperature of winding
JPH0252970A (en) Cooling device
JPS5868123A (en) Method for controlling refrigerator

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080602

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090602

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100602

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120602

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130602

EXPY Cancellation because of completion of term