JPH06260478A - Formation of thin film pattern - Google Patents

Formation of thin film pattern

Info

Publication number
JPH06260478A
JPH06260478A JP4770493A JP4770493A JPH06260478A JP H06260478 A JPH06260478 A JP H06260478A JP 4770493 A JP4770493 A JP 4770493A JP 4770493 A JP4770493 A JP 4770493A JP H06260478 A JPH06260478 A JP H06260478A
Authority
JP
Japan
Prior art keywords
thin film
resist
pattern
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4770493A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tomita
佳宏 冨田
Ryoichi Takayama
良一 高山
Yuko Okano
祐幸 岡野
Satoru Fujii
覚 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4770493A priority Critical patent/JPH06260478A/en
Publication of JPH06260478A publication Critical patent/JPH06260478A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weting (AREA)

Abstract

PURPOSE:To lift off a thin film so as to form a fine thin film pattern even when the thickness of the film is large and the film is formed at a high temperature by forming a resist pattern on a substrate and lifting off the thin film by using a plated layer formed by electroplating to a thickness larger than that of the resist as a mask, with the electroplating being performed by using the substrate as an electrode. CONSTITUTION:After forming a conductive thin film 2 on the entire surface of a substrate 1, a resist pattern 3 having a film thickness of 5mum is formed on the thin film 2 by using a positive resist and, by performing electroplating by using the thin film 2 as an electrode, a plated layer 4 having a film thickness of 8mum is formed. As a result, a mask for lifting off having overhung sections which are formed on the resist 3 by about 5mum in width is obtained. Then a thin film 5 is formed after removing the resist 3 by melting and etching off the exposed part of the thin film 2. Finally, a thin film pattern 5b is formed by etching off the plated layer 4 and thin film 2 and stripping off the thin film 5a from the plated layer 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜のパターン形成方法
に関し、特にエッチングが困難な薄膜のパターン形成方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film pattern forming method, and more particularly to a thin film pattern forming method which is difficult to etch.

【0002】[0002]

【従来の技術】半導体プロセスを支える技術として薄膜
の微細パターン形成技術が重要な位置を占めている。従
来の半導体プロセスに使用される薄膜は、シリコンやそ
の酸化膜、アルミなどの電極材料に限られていた。近
年、強誘電体や磁性体などの機能材料を用いた電子デバ
イスの作製にこれらの技術が適用されるようになり、よ
り広範な薄膜材料のパターン形成技術が必要となってい
る。
2. Description of the Related Art A thin film fine pattern forming technique occupies an important position as a technique for supporting a semiconductor process. Thin films used in conventional semiconductor processes have been limited to silicon, oxide films thereof, and electrode materials such as aluminum. In recent years, these techniques have been applied to the production of electronic devices using functional materials such as ferroelectrics and magnetic substances, and a wider range of pattern forming techniques for thin film materials is required.

【0003】従来、以下のパターン形成方法がある。 1)マスク分離法: 成膜したい部分に穴の明いたメタ
ルマスクで基板をカバーし、成膜後メタルマスクを取り
外すことで薄膜パターンを形成する。広範な薄膜材料の
パターン形成が可能であるが、基板とマスクの熱膨張率
の違いによるパターンずれやマスク浮き、マスク自体の
加工精度などの問題があり、微細パターンの形成には不
向きである。
Conventionally, there are the following pattern forming methods. 1) Mask separation method: A substrate is covered with a metal mask having a hole in a portion where a film is to be formed, and after the film is formed, the metal mask is removed to form a thin film pattern. Although it is possible to form a pattern of a wide range of thin film materials, there are problems such as a pattern shift due to a difference in coefficient of thermal expansion between a substrate and a mask, a mask floating, and a processing accuracy of the mask itself, which is not suitable for forming a fine pattern.

【0004】2)エッチング法: 基板に全面に成膜
し、フォトレジストなどで残したい部分をカバーし、エ
ッチングでパターンを形成後、レジストを除去する。半
導体プロセスで一般的に使用されている方法で、ドライ
エッチングの出現でパターン形成できる薄膜の種類が広
がった。
2) Etching method: A film is formed on the entire surface of a substrate, a portion to be left is covered with a photoresist or the like, a pattern is formed by etching, and then the resist is removed. With the use of methods commonly used in semiconductor processes, the advent of dry etching has broadened the types of thin films that can be patterned.

【0005】3)リフトオフ法: 基板上にフォトレジ
ストなどのパターンを形成し、この上に成膜し、レジス
トを溶解除去すると同時にレジスト上の薄膜を除去す
る。エッチングが容易でない薄膜の場合はこの方法が用
いられている。
3) Lift-off method: A pattern such as a photoresist is formed on a substrate, a film is formed on the pattern, the resist is dissolved and removed, and at the same time, the thin film on the resist is removed. This method is used for thin films that are not easily etched.

【0006】ここで、従来のリフトオフ法について図2
を用いて説明を行う。 a)基板1上にレジストパターン3’を形成する。
FIG. 2 shows the conventional lift-off method.
Will be explained. a) Form a resist pattern 3'on the substrate 1.

【0007】b)この上に所望の薄膜5を成膜する。 c)レジスト3’を溶剤で溶解除去すると、レジスト上
の薄膜5aが剥離し、レジストのない部分の薄膜5bの
パターンを残すことができる。
B) A desired thin film 5 is formed on this. c) When the resist 3'is dissolved and removed with a solvent, the thin film 5a on the resist is peeled off, and the pattern of the thin film 5b on the part without the resist can be left.

【0008】レジスト上の薄膜5aをきれいに剥離する
には、レジスト3’の断面が基板から離れるほど開口幅
が狭くなるオーバーハング形状であることが望ましい。
オーバーハング部が大きいほど薄膜5aと5bのギャッ
プが広く、溶剤が浸透し易く剥離が容易である。逆にオ
ーバーハングが少ないと、レジストの壁面へ薄膜5が回
り込んで5aと5bがつながってしまい、剥離が困難
で、剥離できてもエッジにバリが生ずる。
In order to cleanly remove the thin film 5a on the resist, it is desirable that the cross section of the resist 3'has an overhang shape in which the opening width becomes narrower as the distance from the substrate increases.
The larger the overhang portion, the wider the gap between the thin films 5a and 5b, and the more easily the solvent penetrates and the easier the peeling. On the other hand, if the overhang is small, the thin film 5 wraps around the wall surface of the resist and connects 5a and 5b, making it difficult to peel, and even if peeling is possible, burrs are generated at the edges.

【0009】リフトオフ用のレジストパターンの形成に
は、レジストの表面が現像液に溶け難くなる処理を行っ
てから現像を行い、溶解度の差によってオーバーハング
形状を形成する方法が一般に用いられている。
To form a resist pattern for lift-off, a method is generally used in which the resist surface is treated to make it difficult to dissolve in a developing solution and then developed to form an overhang shape by a difference in solubility.

【0010】[0010]

【発明が解決しようとする課題】エッチングできない薄
膜の微細パターンを形成する場合、リフトオフ法を用い
るが、それには下記の制約がある。
When forming a fine pattern of a thin film that cannot be etched, the lift-off method is used, but it has the following restrictions.

【0011】1)パターニングされる薄膜よりも、レジ
ストの膜厚が10倍以上ないときれいに薄膜の不要部分
の剥離ができない。
1) Unless the thickness of the resist is 10 times or more that of the thin film to be patterned, the unnecessary portion of the thin film cannot be peeled off cleanly.

【0012】2)成膜温度が高いとレジストの劣化やオ
ーバーハング形状のダレが生じ、パターン形成ができな
い。一般的なレジストでは100℃以下が望ましい。
2) When the film forming temperature is high, the resist is deteriorated and the overhang shape is sagged, so that the pattern cannot be formed. For a general resist, 100 ° C. or lower is desirable.

【0013】従って、厚い膜や高温成膜の場合はメタル
マスクによる分離しか方法がなく、メタルマスクでは1
00μm程度の分離精度しか得られない。
Therefore, in the case of thick film or high temperature film formation, there is only the method of separation by the metal mask, and the metal mask has only one method.
Only a separation accuracy of about 00 μm can be obtained.

【0014】本発明は、従来のリフトオフ法に用いたレ
ジストの欠点を解消し、膜厚が厚く成膜温度が高い薄膜
でもリフトオフ可能とし、微細な薄膜パターンを形成す
ることを目的とする。
An object of the present invention is to solve the drawbacks of the resist used in the conventional lift-off method, to enable lift-off even in a thin film having a large film thickness and a high film forming temperature, and to form a fine thin film pattern.

【0015】[0015]

【課題を解決するための手段】この問題を解決するため
本発明は、基板上にレジストパターンを形成し、基板を
電極とした電気メッキで前記レジストよりも厚く形成し
たメッキ層をマスクとしてリフトオフを行うものであ
る。
In order to solve this problem, according to the present invention, a resist pattern is formed on a substrate, and lift-off is performed by using a plating layer formed to be thicker than the resist by electroplating using the substrate as an electrode as a mask. It is something to do.

【0016】[0016]

【作用】導電性を有する基板上に、もしくは導電性薄膜
を成膜した基板上にレジストパターンを形成後、基板を
電極として電気メッキを行うと、レジストパターンのな
い部分からメッキ層が成長する。メッキ層の成長は等方
的に進むため、初期は基板に対して垂直方向へ成長する
が、レジスト膜よりも厚くなるとレジストに乗り上げる
様に横方向へも成長するため、オーバーハング形状を容
易に形成することができる。このメッキ層をマスクとし
て所望の薄膜を成膜し、メッキ層をエッチング除去する
ことで前記薄膜のパターンを形成する。
When a resist pattern is formed on a conductive substrate or a substrate on which a conductive thin film is formed and then electroplating is performed using the substrate as an electrode, a plating layer grows from a portion without the resist pattern. Since the growth of the plating layer proceeds isotropically, it grows in the vertical direction to the substrate at the beginning, but when it becomes thicker than the resist film, it grows in the lateral direction as it rides on the resist film, so that the overhang shape can be easily formed. Can be formed. A desired thin film is formed by using this plating layer as a mask, and the plating layer is removed by etching to form a pattern of the thin film.

【0017】実際にメッキを行うと、レジスト上に乗り
上げるエッジ部ほど成長が速いため、レジスト上に乗り
上げた膜厚よりもオーバーハング部の幅の方が大きく、
リフトオフにとって理想的なオーバーハング形状を得る
ことができる。オーバーハング部の形状は、メッキ時の
電圧、電流と時間により制御できる。
When plating is actually performed, since the edge portion that rides on the resist grows faster, the width of the overhang portion is larger than the film thickness that rides on the resist.
An overhang shape ideal for lift-off can be obtained. The shape of the overhang portion can be controlled by the voltage, current and time during plating.

【0018】理想的なオーバーハング形状が作製できる
ため、パターニングする薄膜の膜厚の倍程度の膜厚のレ
ジストでも、オーバーハング部の下への回り込みが少な
く、バリのない薄膜パターンを容易に形成できる。
Since an ideal overhang shape can be produced, even a resist having a film thickness that is about twice the film thickness of the thin film to be patterned has less wraparound under the overhang portion and can easily form a burr-free thin film pattern. it can.

【0019】また、メッキ層にニッケル、クロム、銅な
どの電気メッキ可能な金属を用いることで成膜温度の高
い薄膜のパターニングが可能である。
Further, by using an electroplatable metal such as nickel, chromium or copper for the plating layer, it is possible to pattern a thin film having a high film forming temperature.

【0020】以上明らかなように、本発明によれば膜厚
の厚い薄膜や成膜温度の高い薄膜のリフトオフを容易に
実現し、微細な薄膜パターンを形成することができる。
As is apparent from the above, according to the present invention, lift-off of a thin film having a large film thickness or a thin film having a high film forming temperature can be easily realized and a fine thin film pattern can be formed.

【0021】[0021]

【実施例】以下、具体例について詳細を述べる。図1は
本発明におけるパターン形成方法を示す図である。
EXAMPLES Hereinafter, specific examples will be described in detail. FIG. 1 is a diagram showing a pattern forming method according to the present invention.

【0022】a)基板1としてマグネシアの単結晶を用
い、全面に導電性薄膜2としてクロム薄膜を約150n
m成膜し、この上にポジレジストを用いて膜厚5μmの
レジストパターン3を形成した。
A) A single crystal of magnesia is used as the substrate 1, and a chromium thin film is formed as a conductive thin film 2 on the entire surface by about 150 n.
Then, a positive resist was used to form a resist pattern 3 having a film thickness of 5 μm.

【0023】b)導電性薄膜2を電極として電気メッキ
を行いメッキ層4を形成した。表1に示す組成のメッキ
液を用い、陽極を銅電極、陰極を試料とし、印加電圧3
Vで1分間メッキを行った。このメッキ処理により膜厚
約8μmの銅薄膜を形成し、レジスト3上に乗り上げた
オーバーハング部の幅が5μm程度の理想的なリフトオ
フ用マスクを得ることができた。
B) Electroplating was performed using the conductive thin film 2 as an electrode to form a plated layer 4. Using the plating solution having the composition shown in Table 1, the anode was a copper electrode, the cathode was a sample, and the applied voltage was 3
Plated at V for 1 minute. By this plating treatment, a copper thin film having a film thickness of about 8 μm was formed, and an ideal lift-off mask having a width of the overhanging portion on the resist 3 of about 5 μm could be obtained.

【0024】[0024]

【表1】 [Table 1]

【0025】c)レジスト3をアセトンで溶解除去し、
導電性薄膜2の露出した部分をクロムエッチング液で除
去した。
C) The resist 3 is dissolved and removed with acetone,
The exposed portion of the conductive thin film 2 was removed with a chromium etching solution.

【0026】d)薄膜5として2μmのチタン酸鉛系の
薄膜を表2の条件で成膜した。
D) As the thin film 5, a 2 μm lead titanate-based thin film was formed under the conditions shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】e)塩化第二鉄水溶液によりメッキ層4お
よび導電性薄膜2をエッチング除去するとともに、メッ
キ層上4上の薄膜5aを剥離し、薄膜パターン5bを形
成した。
E) The plating layer 4 and the conductive thin film 2 were removed by etching with an aqueous ferric chloride solution, and the thin film 5a on the plating layer 4 was peeled off to form a thin film pattern 5b.

【0029】薄膜5に用いた材料はペロブスカイト型の
結晶構造を有する強誘電体薄膜で、表2に示すような条
件でマグネシアの(100)面上に成膜すると、c軸配
向膜が得られる。さらにこの膜は分極処理を行わなくて
も基板に対して上方向に自発分極が揃っており、焦電型
の赤外線センサや圧電素子の材料として注目されてい
る。
The material used for the thin film 5 is a ferroelectric thin film having a perovskite type crystal structure, and when formed on the (100) face of magnesia under the conditions shown in Table 2, a c-axis oriented film is obtained. . Furthermore, this film has spontaneous polarization aligned upward with respect to the substrate without polarization treatment, and is attracting attention as a material for pyroelectric infrared sensors and piezoelectric elements.

【0030】一般的にペロブスカイト型の強誘電体材料
はエッチング処理が困難で、作製に600℃以上の高温
が必要であり、機能デバイスへの応用には数ミクロンの
膜厚が必要である。従って、従来はメタルマスクによる
分離しか方法がなく、メタルマスクの精度、マスクと基
板の密着むらや熱膨張率の差によるパターンズレなど多
くの問題があり、ギャップ100μm以下の微細なパタ
ーン加工ができなかった。
Generally, a perovskite type ferroelectric material is difficult to etch, requires a high temperature of 600 ° C. or higher for fabrication, and requires a film thickness of several microns for application to a functional device. Therefore, conventionally, there is only a method of separating with a metal mask, and there are many problems such as precision of the metal mask, uneven contact between the mask and the substrate, and pattern deviation due to the difference in coefficient of thermal expansion. There wasn't.

【0031】本実施例では、ギャップ20μm、100
μmピッチのパターン形成に成功した。さらにメッキ層
4のオーバーハング形状を制御することで、より細かな
パターンの形成が可能である。
In this embodiment, the gap is 20 μm, 100
Successful pattern formation with μm pitch. Further, by controlling the overhang shape of the plating layer 4, it is possible to form a finer pattern.

【0032】[0032]

【発明の効果】以上のように、本発明はメッキ法で形成
したオーバーハング形状のメッキ層をマスクとしたリフ
トオフを行うことで、エッチングが難しい、膜厚が厚
い、成膜温度が高いなどの理由でパターンが形成できな
い薄膜において、微細なパターン形成を可能とする。
As described above, according to the present invention, the lift-off is performed by using the overhang-shaped plating layer formed by the plating method as a mask, so that the etching is difficult, the film thickness is high, the film forming temperature is high, etc. A fine pattern can be formed in a thin film in which a pattern cannot be formed for the reason.

【0033】基板上に導電性薄膜を設け、導電性薄膜の
露出部をエッチング除去した場合の例を示したが、導電
性薄膜をエッチングしない場合や、導電性を有する基板
上にメッキする場合でも同等の効果が得られる。
An example in which a conductive thin film is provided on the substrate and the exposed portion of the conductive thin film is removed by etching has been shown. However, even when the conductive thin film is not etched or when plating is performed on a conductive substrate. The same effect can be obtained.

【0034】メッキ層の材料としては銅以外にクロム、
ニッケル、鉛など多くの金属の可能性があり、パターニ
ングされる薄膜や、その成膜条件に合ったメッキ材料や
エッチング液を選択することで、チタン酸鉛系薄膜以外
の材料においても本発明による微細パターンの形成が可
能であることは言うまでもない。
As the material for the plating layer, chromium is used in addition to copper.
There is a possibility of many metals such as nickel and lead. By selecting a thin film to be patterned, a plating material and an etching solution that match the film forming conditions, it is possible to apply the present invention to materials other than lead titanate thin films. It goes without saying that a fine pattern can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の薄膜パターン形成法の概略図FIG. 1 is a schematic view of a thin film pattern forming method according to an embodiment of the present invention.

【図2】従来のリフトオフ法の概略図FIG. 2 is a schematic diagram of a conventional lift-off method.

【符号の説明】[Explanation of symbols]

1 基板 2 導電性薄膜 3 レジスト 4 メッキ層 5 薄膜 1 substrate 2 conductive thin film 3 resist 4 plating layer 5 thin film

フロントページの続き (72)発明者 藤井 覚 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continuation (72) Inventor Satoshi Fujii 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基板上に導電性薄膜を成膜し、その上にレ
ジストパターンを形成し、前記導電性薄膜を電極とした
電気メッキで前記レジストよりも厚いメッキ層を形成
後、前記レジストを除去し、前記メッキ層をマスクとし
て所望の薄膜を成膜し、前記メッキ層をエッチング除去
することで前記薄膜のうちメッキ層上の部分を剥離する
薄膜パターン形成方法。
1. A conductive thin film is formed on a substrate, a resist pattern is formed on the conductive thin film, and a plating layer thicker than the resist is formed by electroplating using the conductive thin film as an electrode. A method for forming a thin film pattern, which comprises removing a desired thin film by using the plating layer as a mask and removing the plating layer by etching to remove a portion of the thin film on the plating layer.
【請求項2】導電性基板上にレジストパターンを形成
し、前記基板を電極とした電気メッキで前記レジストよ
りも厚いメッキ層を形成後、前記レジストを除去し、前
記メッキ層をマスクとして所望の薄膜を成膜し、前記メ
ッキ層をエッチング除去することで前記薄膜のうちメッ
キ層上の部分を剥離する薄膜パターン形成方法。
2. A resist pattern is formed on a conductive substrate, a plating layer thicker than the resist is formed by electroplating using the substrate as an electrode, the resist is removed, and the desired plating layer is used as a mask. A method of forming a thin film pattern, wherein a thin film is formed and the plating layer is removed by etching to remove a portion of the thin film on the plating layer.
【請求項3】レジスト除去後、導電性薄膜の露出部分を
エッチング除去してから所望の薄膜を成膜する請求項1
記載の薄膜パターン形成方法。
3. A desired thin film is formed after etching the exposed portion of the conductive thin film after removing the resist.
A method for forming a thin film pattern as described.
【請求項4】薄膜がペロブスカイト型の結晶構造を有す
る強誘電体である請求項1記載の薄膜パターン形成方
法。
4. The method for forming a thin film pattern according to claim 1, wherein the thin film is a ferroelectric substance having a perovskite type crystal structure.
【請求項5】薄膜がPbx Lay Tiz Zrw3 で表
され、 a) 0.7≦x≦1 0.9≦x+y≦1 0.95≦z≦1 w=0 b) x=1 y=0 0.45≦z<1 z+w=1 c) 0.83≦x≦1 x+y=1 0.5≦z<1 0.96≦z+w≦1 のいずれかの組成を有する請求項4記載の薄膜パターン
形成方法。
5. The thin film is represented by Pb x La y Ti z Zr w O 3, a) 0.7 ≦ x ≦ 1 0.9 ≦ x + y ≦ 1 0.95 ≦ z ≦ 1 w = 0 b) x = 1 y = 0 0.45 ≦ z <1 z + w = 1 c) 0.83 ≦ x ≦ 1 x + y = 1 0.5 ≦ z <1 0.96 ≦ z + w ≦ 1 The thin film pattern formation according to claim 4. Method.
JP4770493A 1993-03-09 1993-03-09 Formation of thin film pattern Pending JPH06260478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4770493A JPH06260478A (en) 1993-03-09 1993-03-09 Formation of thin film pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4770493A JPH06260478A (en) 1993-03-09 1993-03-09 Formation of thin film pattern

Publications (1)

Publication Number Publication Date
JPH06260478A true JPH06260478A (en) 1994-09-16

Family

ID=12782692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4770493A Pending JPH06260478A (en) 1993-03-09 1993-03-09 Formation of thin film pattern

Country Status (1)

Country Link
JP (1) JPH06260478A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235880A (en) * 2004-02-18 2005-09-02 Fuji Photo Film Co Ltd Laminate structure and its manufacturing method
JP2005235878A (en) * 2004-02-18 2005-09-02 Fuji Photo Film Co Ltd Laminate structure and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235880A (en) * 2004-02-18 2005-09-02 Fuji Photo Film Co Ltd Laminate structure and its manufacturing method
JP2005235878A (en) * 2004-02-18 2005-09-02 Fuji Photo Film Co Ltd Laminate structure and its manufacturing method
JP4516327B2 (en) * 2004-02-18 2010-08-04 富士フイルム株式会社 Manufacturing method of laminated structure

Similar Documents

Publication Publication Date Title
US5348617A (en) Selective etching process
US4497684A (en) Lift-off process for depositing metal on a substrate
US3386894A (en) Formation of metallic contacts
EP0767490A1 (en) Method of etching silicon carbide
EP0013130A1 (en) Method of producing Josephson elements of the tunneling junction type
JPH06260478A (en) Formation of thin film pattern
JPH06196846A (en) Forming of copper circuit pattern on ceramic substrate
JP2989956B2 (en) Method for manufacturing semiconductor device
JP3969178B2 (en) Electronic component and manufacturing method thereof
US4334950A (en) Advantageous fabrication technique for devices relying on magnetic properties
KR20050079001A (en) Semiconductor device and process for manufacturing the same
JPS58194334A (en) Formation of thin film
JPH03104127A (en) Formation of fine pattern
EP0022580A1 (en) Advantageous fabrication technique for devices relying on magnetic properties
JP2000124217A (en) Structure of wiring pattern and forming method of the wiring pattern
JPH08286210A (en) Liquid crystal display device and its production
RU2054747C1 (en) Process of relief fabrication in dielectric substrate
US5672282A (en) Process to preserve silver metal while forming integrated circuits
JP6007754B2 (en) Wiring structure manufacturing method
JPS63314852A (en) Manufacture of semiconductor device
JPH042135A (en) Manufacture of self matching type thin film transistor matrix
JPS6053020A (en) Manufacture of semiconductor device
JPH02214122A (en) Manufacture of semiconductor device
JPS63287021A (en) Formation of fine pattern
JPH06244102A (en) Method of forming protective film of resist