JPH06260410A - Ultraviolet applicating device and application of ultraviolet ray - Google Patents

Ultraviolet applicating device and application of ultraviolet ray

Info

Publication number
JPH06260410A
JPH06260410A JP5069463A JP6946393A JPH06260410A JP H06260410 A JPH06260410 A JP H06260410A JP 5069463 A JP5069463 A JP 5069463A JP 6946393 A JP6946393 A JP 6946393A JP H06260410 A JPH06260410 A JP H06260410A
Authority
JP
Japan
Prior art keywords
ultraviolet
lamp
substrate
substrates
irradiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5069463A
Other languages
Japanese (ja)
Inventor
Hideo Kataoka
秀雄 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5069463A priority Critical patent/JPH06260410A/en
Publication of JPH06260410A publication Critical patent/JPH06260410A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To reconcile the inhibition of heat damage and the securement of the reliability of an ultraviolet applicating device by a method wherein the device is provided with an ultraviolet lamp of a water-cooled double tube structure for emitting ultraviolet rays on an object, a heat ray shielding filter, which is interposed between the object and the lamp, and a cooler for feeding cold air to the lamp and the object. CONSTITUTION:An object 2 consists of a laminated panel and ultraviolet application is conducted for fixing and bonding together one pair of substrates via an ultraviolet cured resin. An ultraviolet lamp 1 is involved in a jacket 3 made of quartz glass and a heat dissipation from the lamp is absorbed in the jacket 3 by circulating cooling water in the jacket 3. A heat ray shielding filter 4 is interposed between the lamp 1 and the object 2. The filter 4 reflects long- wavelength components, such as infrared rays, being contained in a radiation from the lamp 1 and selectively applies ultraviolet rays only to the object 2. Moreover, an external cooler 5 is incorporated in an ultraviolet emitting device, cold air is fed to the lamp 1 and the object 2 by the cooler 5 via a duct 6 and a force-cooling is conducted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は紫外線照射装置及び紫外
線照射方法に関する。より詳しくは、液晶パネル等の組
み立て加工等に適用される高出力低温露光技術に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultraviolet irradiation device and an ultraviolet irradiation method. More specifically, it relates to a high-output low-temperature exposure technique applied to assembly processing of liquid crystal panels and the like.

【0002】[0002]

【従来の技術】焼き付け処理、乾燥処理、さらには表面
処理等の目的で、従来から物品に紫外線を照射する加工
方法が広く行なわれている。物品に紫外線を照射する器
具としては、紫外線ランプを使用した紫外線照射装置が
広く利用されている。これらの中には、紫外線ランプや
物品の温度上昇を抑制する冷却機構を備えた紫外線照射
装置が知られており、例えば実公平3−56045号公
報や特公平4−56289号公報に開示されている。
2. Description of the Related Art Conventionally, a processing method for irradiating an article with ultraviolet rays has been widely used for the purpose of baking, drying, and surface treatment. BACKGROUND ART As a device for irradiating an article with ultraviolet rays, an ultraviolet irradiation device using an ultraviolet lamp is widely used. Among these, an ultraviolet irradiation device provided with a cooling mechanism for suppressing a temperature rise of an ultraviolet lamp or an article is known, and is disclosed in, for example, Japanese Utility Model Publication No. 3-56045 and Japanese Patent Publication No. 4-56289. There is.

【0003】[0003]

【発明が解決しようとする課題】近年紫外線照射装置の
応用として、紫外線硬化型樹脂を介して一対の基板を接
合固定し積層パネルに加工する技術が開発されており、
例えば液晶パネルの組み立て加工に適用される。液晶パ
ネルでは一対の基板間に液晶層を封入しており、信頼性
を保証する為完全な接合固定が重要であり、高出力の紫
外線が照射される。しかしながら、例えば60mW/cm2
程度の出力で露光処理を行なった場合、従来の紫外線照
射装置では被照射面を室温に制御する事が困難であっ
た。例えば60mW/cm2 の出力で20秒間露光処理を行
なうと基板面は80〜90℃まで昇温してしまう。この
結果、一対の基板の熱膨張率の違い等により熱的歪が発
生し所定の接合位置精度が確保できないという課題があ
る。又、基板表面には微細な膜が積層されており熱損傷
が加わるという課題がある。一方、基板の位置ずれや熱
損傷を抑制する為単純に冷却を行なうと、低温になる程
紫外線硬化型樹脂の反応進行が阻害され接着強度の低下
を招くという課題がある。従来、熱損傷の解消と接合部
の信頼性を両立させる事は極めて困難であった。
In recent years, as an application of an ultraviolet irradiation device, a technique has been developed in which a pair of substrates are bonded and fixed via an ultraviolet curable resin and processed into a laminated panel,
For example, it is applied to the assembly processing of liquid crystal panels. In a liquid crystal panel, a liquid crystal layer is enclosed between a pair of substrates, and it is important to completely bond and fix it in order to guarantee reliability, and high-power ultraviolet rays are irradiated. However, for example, 60 mW / cm 2
When the exposure process was performed with a moderate output, it was difficult to control the irradiated surface to room temperature with the conventional ultraviolet irradiation device. For example, if the exposure process is performed for 20 seconds at an output of 60 mW / cm 2, the substrate surface will be heated to 80 to 90 ° C. As a result, there is a problem that thermal distortion occurs due to a difference in the coefficient of thermal expansion of the pair of substrates and a predetermined joining position accuracy cannot be secured. In addition, there is a problem that a fine film is laminated on the surface of the substrate, which causes thermal damage. On the other hand, if the substrate is simply cooled in order to prevent displacement and heat damage, there is a problem that the reaction progress of the ultraviolet curable resin is obstructed as the temperature becomes lower, resulting in a decrease in adhesive strength. Conventionally, it has been extremely difficult to achieve both thermal damage elimination and joint reliability.

【0004】[0004]

【課題を解決するための手段】上述した従来の技術の課
題に鑑み、本発明は高出力低温露光を可能とする事によ
り熱損傷の抑制と信頼性の確保を両立させる事を目的と
する。かかる目的を達成する為に以下の手段を講じた。
即ち、本発明にかかる紫外線照射装置は、対象物に紫外
線を照射する水冷二重管構造の紫外線ランプと、対象物
と紫外線ランプの間に介在する熱線遮断フィルタと、紫
外線ランプ及び対象物に冷風を供給する冷却器とを備え
ており、高出力低温露光を可能とする。好ましくは、紫
外線照射装置は電源コントローラを備えており、所定の
シーケンスプログラムにより紫外線ランプの二段出力切
り換えを自動的に行なう。又、紫外線遮断マスクを備え
ており対象物の非露光領域を選択的に遮光する様にして
いる。
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, it is an object of the present invention to achieve both high power low temperature exposure and suppression of thermal damage and securing reliability. The following measures have been taken in order to achieve this object.
That is, the ultraviolet irradiation device according to the present invention is a water-cooled double tube structure ultraviolet lamp for irradiating an ultraviolet ray to an object, a heat ray blocking filter interposed between the object and the ultraviolet lamp, and an ultraviolet lamp and an object to cool air. And a cooler for supplying high temperature and low temperature exposure. Preferably, the ultraviolet irradiation device includes a power supply controller, and automatically switches the two-stage output of the ultraviolet lamp according to a predetermined sequence program. Further, an ultraviolet ray blocking mask is provided so that the non-exposed region of the object is selectively shielded.

【0005】本発明にかかる紫外線照射方法は、少なく
とも一方が紫外線に対して透明な一対の基板を紫外線硬
化型樹脂を介して互いに重ね合わせる工程と、比較的低
出力で紫外線を室温照射し一対の基板を互いに仮り留め
する工程と、比較的高出力で紫外線を照射し一対の基板
を互いに接合固定してパネルに加工する工程とからな
る。例えば、画素アレイの形成された一方の基板と対向
電極の形成された他方の基板を互いに接合固定して表示
用パネルに加工する事ができる。この場合、少なくとも
画素アレイの形成された領域を選択的に遮光した状態で
紫外線照射しても良い。
The method of irradiating ultraviolet rays according to the present invention comprises a step of laminating a pair of substrates, at least one of which is transparent to ultraviolet rays, through an ultraviolet curable resin, and a step of irradiating ultraviolet rays at room temperature with a relatively low output. It includes a step of temporarily fixing the substrates to each other and a step of irradiating ultraviolet rays at a relatively high output to bond and fix the pair of substrates to each other to form a panel. For example, one substrate on which the pixel array is formed and the other substrate on which the counter electrode is formed can be bonded and fixed to each other to be processed into a display panel. In this case, at least the region in which the pixel array is formed may be selectively shielded from light and irradiated with ultraviolet rays.

【0006】[0006]

【作用】本発明にかかる紫外線照射装置は高出力低温露
光を行なう為効率的な冷却構造を備えている。紫外線ラ
ンプは水冷二重管構造を有し放熱を除去している。熱線
遮断フィルタを組み込み、紫外線のみを選択的に照射す
る様にしている。冷却器を備えており対象物表面に冷風
を供給して温度上昇を抑制している。かかる構造によ
り、例えば出力60mW/cm2 で露光処理を行なった場合
対象物表面温度を24±2℃の範囲に制御でき室温照射
が可能になる。
The ultraviolet irradiation apparatus according to the present invention has an efficient cooling structure for performing high power low temperature exposure. The UV lamp has a water-cooled double tube structure to remove heat radiation. A heat ray cut-off filter is incorporated so that only ultraviolet rays are selectively irradiated. It is equipped with a cooler and supplies cool air to the surface of the object to suppress temperature rise. With such a structure, when the exposure process is performed with an output of 60 mW / cm 2 , for example, the surface temperature of the object can be controlled within the range of 24 ± 2 ° C., and irradiation at room temperature becomes possible.

【0007】本発明にかかる紫外線照射装置は、さらに
電源コントローラを備えており所定のシーケンスプログ
ラムにより紫外線ランプの二段出力切り換えを自動的に
行なう。この装置は、例えば積層パネルの接合固定加工
に好適である。先ず、比較的低出力で紫外線を室温照射
し積層基板を互いに仮り留めする。この際基板は室温に
保持されるので熱膨張率の違い等による位置ずれ等が生
ぜず精密なアライメントが可能になるとともに熱損傷の
惧れもない。次に、出力切り換えを行ない比較的高出力
で紫外線を照射し一対の基板を互いに接合固定してパネ
ルに加工する。これにより接着剤として用いた紫外線硬
化型樹脂の反応が十分に進行し所望の信頼性を確保でき
る。この際、既に仮り留めが行なわれているので若干基
板温度が上昇しても位置ずれが起きる惧れはない。本発
明にかかる紫外線照射装置は効率的な冷却構造を備えて
いる為紫外線出力を高めても基板温度上昇を抑制する事
ができる。
The ultraviolet irradiation apparatus according to the present invention further includes a power supply controller, and automatically switches the two-stage output of the ultraviolet lamp according to a predetermined sequence program. This apparatus is suitable for joining and fixing a laminated panel, for example. First, ultraviolet rays are irradiated at room temperature with a relatively low output to temporarily fix the laminated substrates to each other. At this time, since the substrate is kept at room temperature, the positional deviation due to the difference in the coefficient of thermal expansion does not occur, the precise alignment becomes possible, and there is no fear of thermal damage. Next, the output is switched and ultraviolet rays are irradiated at a relatively high output to bond and fix the pair of substrates to each other to form a panel. As a result, the reaction of the ultraviolet curable resin used as the adhesive sufficiently progresses, and desired reliability can be secured. At this time, since temporary fixing has already been performed, there is no possibility of positional displacement even if the substrate temperature slightly rises. Since the ultraviolet irradiation device according to the present invention has an efficient cooling structure, it is possible to suppress the substrate temperature rise even if the ultraviolet light output is increased.

【0008】[0008]

【実施例】以下図面を参照して本発明の好適な実施例を
詳細に説明する。図1は本発明にかかる紫外線照射装置
の全体構成を示す模式的なブロック図である。紫外線照
射装置は水冷二重管構造を有する紫外線ランプ1を備え
ており、対象物2に紫外線を照射する。本例では対象物
2は積層パネルからなり、紫外線硬化型樹脂を介して一
対の基板を固定接合する為に紫外線照射が行なわれる。
紫外線ランプ1は石英ガラス製のジャケット3に内包さ
れており、冷却水を循環させる事によりランプからの放
熱を吸収する。紫外線ランプ1と対象物2との間に熱線
遮断フィルタ4が介在しており、例えば石英基板上に多
層膜を形成したダイクロイックフィルタ等を用いる事が
できる。熱線遮断フィルタ4は紫外線ランプ1からの放
射に含まれる赤外線等長波長成分を反射し、紫外線のみ
を選択的に対象物2に照射する。これにより、対象物2
の表面温度上昇を抑制できる。さらに、外部冷却器5が
組み込まれており、ダクト6を介して紫外線ランプ1及
び対象物2に冷風を供給し強制冷却を行なう。冷却器5
は例えばクーラー等からなり5℃程度の冷風を送風して
室温冷却を可能にする。紫外線ランプ1には電源コント
ローラ7が接続しており、所定のシーケンスプログラム
により二段出力切り換えを自動的に行なう。加えて対象
物2の非露光領域を選択的に遮光する紫外線遮断マスク
8を備えている。この紫外線遮断マスク8はロボットア
ーム9に取り付けられており、必要に応じ対象物2の表
面に送り出される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic block diagram showing the overall configuration of an ultraviolet irradiation device according to the present invention. The ultraviolet irradiation device includes an ultraviolet lamp 1 having a water-cooled double tube structure, and irradiates an object 2 with ultraviolet light. In this example, the object 2 is a laminated panel and is irradiated with ultraviolet rays in order to fix and bond a pair of substrates via an ultraviolet curable resin.
The ultraviolet lamp 1 is enclosed in a quartz glass jacket 3 and absorbs heat radiation from the lamp by circulating cooling water. A heat ray blocking filter 4 is interposed between the ultraviolet lamp 1 and the object 2, and, for example, a dichroic filter having a multilayer film formed on a quartz substrate can be used. The heat ray cut-off filter 4 reflects long-wavelength components such as infrared rays included in the radiation from the ultraviolet lamp 1, and selectively irradiates only the ultraviolet rays on the object 2. As a result, the object 2
It is possible to suppress the surface temperature rise of the. Furthermore, an external cooler 5 is incorporated, and cold air is supplied to the ultraviolet lamp 1 and the object 2 via the duct 6 to perform forced cooling. Cooler 5
Is composed of, for example, a cooler or the like and blows cold air of about 5 ° C. to enable room temperature cooling. A power supply controller 7 is connected to the ultraviolet lamp 1, and two-stage output switching is automatically performed by a predetermined sequence program. In addition, an ultraviolet blocking mask 8 for selectively blocking the non-exposed region of the object 2 is provided. The ultraviolet blocking mask 8 is attached to the robot arm 9 and is delivered to the surface of the object 2 as needed.

【0009】引き続き図1を参照して本発明にかかる紫
外線照射方法を説明する。本照射方法は、例えば一対の
基板10,11を互いに接合固定する加工に適用され
る。先ず、予備工程として少なくとも一方が紫外線に対
して透明な一対の基板10,11を紫外線硬化型樹脂を
介して互いに重ね合わせる。次に、重ね合わされた状態
で備え付けの搬送機(図示せず)を用い紫外線照射装置
に供給する。次に、電源コントローラ7の自動制御に従
い、比較的低出力の紫外線を室温照射し、一対の基板1
0,11を互いに仮り留めする。この際、冷却器5から
冷風を供給し対象物2の表面を強制冷却しておく。本例
では紫外線照射時間は1秒から999秒の間で設定する
事ができる。例えば、60mW/cm2 の出力で数十秒程度
露光処理を行ない紫外線硬化型樹脂を半硬化させて仮り
留めを行なう。この時、対象物2の表面温度は24±2
℃の範囲内に制御可能である。何ら熱ストレスが加わら
ないので極めて高精度な仮り留めが行なえる。所定時間
経過後、電源コントローラ7による自動制御により、紫
外線ランプ1を比較的高出力側に切り換え所定時間紫外
線を照射する。これにより、紫外線硬化型樹脂の反応が
進行し、一対の基板10,11は互いに強固に接合され
る。例えば、ランプ出力を60mW/cm2 から130mW/
cm2 に切り換え所定時間露光処理を行なう。この場合に
も冷却器5から冷風が供給されており、紫外線ランプ1
の水冷と熱線遮断フィルタ4の熱線遮断も加わって対象
物2の表面温度上昇が極力抑制される。本例では、比較
的高出力で紫外線を照射した場合にも基板温度は40±
10℃の範囲に制御でき、熱損傷を与える惧れがない。
この様にして、紫外線硬化型樹脂の反応が十分に促進さ
れ接着強度が高くなり所望の信頼性が確保される。この
紫外線照射方法は、例えば画素アレイの形成された一方
の基板と対向電極の形成された他方の基板を互いに接合
固定して表示用パネルに加工する場合に適用できる。一
方の基板は例えば石英からなり、他方の基板はガラス等
からなる。この場合、両基板の熱膨張係数は一桁程度異
なり、露光処理中基板温度の上昇が生じた場合には熱的
歪が発生しアライメント精度が損なわれる。本発明では
高出力低温露光の可能な紫外線照射装置を用いている
為、熱損傷の防止と接着強度の確保を両立させる事がで
きる。特に、ランプ出力を切り換える二段露光を行なう
事により極めて精密な接合精度を確保できる。
Next, the ultraviolet irradiation method according to the present invention will be described with reference to FIG. This irradiation method is applied to, for example, a process of joining and fixing a pair of substrates 10 and 11 to each other. First, as a preliminary step, a pair of substrates 10 and 11 at least one of which is transparent to ultraviolet rays are superposed on each other with an ultraviolet curable resin interposed therebetween. Next, the superposed state is supplied to the ultraviolet irradiation device by using a built-in carrier (not shown). Next, according to the automatic control of the power supply controller 7, a relatively low-power ultraviolet ray is irradiated at room temperature, and the pair of substrates 1
Temporarily fix 0 and 11 to each other. At this time, cool air is supplied from the cooler 5 to forcibly cool the surface of the object 2. In this example, the ultraviolet irradiation time can be set between 1 second and 999 seconds. For example, the UV curable resin is semi-cured and temporarily fixed by exposure for several tens of seconds at an output of 60 mW / cm 2 . At this time, the surface temperature of the object 2 is 24 ± 2
It can be controlled within the range of ° C. Since no heat stress is applied, extremely accurate temporary fixing can be performed. After the lapse of a predetermined time, the ultraviolet lamp 1 is switched to a relatively high output side by automatic control by the power supply controller 7, and the ultraviolet light is irradiated for a predetermined time. As a result, the reaction of the ultraviolet curable resin proceeds, and the pair of substrates 10 and 11 are firmly bonded to each other. For example, the lamp output is 60mW / cm 2 to 130mW /
Switch to cm 2 and perform exposure processing for a predetermined time. Also in this case, the cool air is supplied from the cooler 5, and the ultraviolet lamp 1
With the water cooling and the heat ray cutoff of the heat ray cutoff filter 4, the surface temperature rise of the object 2 is suppressed as much as possible. In this example, the substrate temperature is 40 ± even when irradiated with ultraviolet rays at a relatively high output.
It can be controlled in the range of 10 ° C and there is no fear of causing heat damage.
In this way, the reaction of the ultraviolet curable resin is sufficiently promoted, the adhesive strength is increased, and the desired reliability is secured. This ultraviolet irradiation method can be applied, for example, when one substrate on which the pixel array is formed and the other substrate on which the counter electrode is formed are bonded and fixed to each other to be processed into a display panel. One substrate is made of, for example, quartz, and the other substrate is made of glass or the like. In this case, the thermal expansion coefficients of the two substrates are different by about one digit, and when the substrate temperature rises during the exposure process, thermal distortion occurs and alignment accuracy is impaired. In the present invention, since an ultraviolet irradiation device capable of high-power low-temperature exposure is used, it is possible to achieve both prevention of heat damage and securing of adhesive strength. Particularly, by performing a two-step exposure in which the lamp output is switched, extremely precise joining accuracy can be secured.

【0010】図2は、図1に示した紫外線照射装置のハ
ウジング構造を示す模式的な断面図である。ハウジング
12はランプ室13と照射炉14の2部に区分けされて
いる。上方のランプ室13には前述した水冷二重管紫外
線ランプ1が収納されており、下方の照射炉14には対
象物2が投入される。又、ランプ室13と照射炉14と
の境界には前述した熱線遮断フィルタ4が取り付けられ
ている。ランプ室13の天井部には排気ダクト口15が
設けられ、左右側壁には冷風導入口16,17が設けら
れている。同様に照射炉14の下部には排気ダクト口1
8が設けられ、左右側壁には冷風導入口19,20が設
けられている。図示の様に、ランプ室13、照射炉14
は夫々独立とし、排気ダクト口及び冷風導入口も別々に
設けている。これにより、ランプ室13と照射炉14を
夫々最適な条件で冷却する事ができる。仮に、ランプ室
と照射炉を同様な温度設計にすると、紫外線ランプ温度
が下がり過ぎる為紫外線照射量が安定しない。なお、照
射炉14では冷風導入口19,20を左右に設け、対象
物2の表面温度分布に偏りが生じない様にしている。
FIG. 2 is a schematic sectional view showing the housing structure of the ultraviolet irradiation device shown in FIG. The housing 12 is divided into two parts, a lamp chamber 13 and an irradiation furnace 14. The above-mentioned water-cooled double-tube UV lamp 1 is housed in the upper lamp chamber 13, and the target 2 is put into the irradiation furnace 14 below. Further, the above-mentioned heat ray blocking filter 4 is attached to the boundary between the lamp chamber 13 and the irradiation furnace 14. An exhaust duct port 15 is provided on the ceiling of the lamp chamber 13, and cold air inlets 16 and 17 are provided on the left and right side walls. Similarly, in the lower part of the irradiation furnace 14, the exhaust duct port 1
8 is provided, and cold air inlets 19 and 20 are provided on the left and right side walls. As shown, the lamp chamber 13 and the irradiation furnace 14
Are independent of each other, and an exhaust duct inlet and a cold air inlet are also provided separately. As a result, the lamp chamber 13 and the irradiation furnace 14 can be cooled under optimum conditions. If the lamp chamber and the irradiation furnace were designed to have the same temperature, the ultraviolet lamp temperature would be too low and the ultraviolet irradiation amount would not be stable. In the irradiation furnace 14, cold air inlets 19 and 20 are provided on the left and right sides so that the surface temperature distribution of the object 2 is not biased.

【0011】図3は、本発明にかかる紫外線照射方法に
より組み立てられた液晶パネルの一例を示す模式的な断
面図である。液晶パネルは石英等からなる一方の基板1
01とガラス等からなる他方の基板102とを所定の間
隙を介して接合固定した積層構造を有している。なお、
両基板101,102を接合した後、間隙内には液晶層
103が封入充填される。一対の基板101,102は
紫外線硬化型樹脂104を介して互いに接着されてい
る。下側の基板101の表面には、画素電極105、薄
膜トランジスタ106、周辺回路107、外部接続用の
端子電極108等が集積形成されており、TFT基板と
呼ばれる。又、図示しないがTFT基板101の内表面
は液晶配向処理が施されている。一方上側の基板102
の内表面にはカラーフィルタ109及び対向電極110
が形成されている。カラーフィルタ109はRGB三原
色のセグメントパタンに分割されており、画素電極10
5のマトリクスパタンと整合する様に配置される。この
様な構成を有する基板102はCF基板と呼ばれてい
る。なおこのCF基板の内表面も液晶層に対する配向処
理が施されている。
FIG. 3 is a schematic sectional view showing an example of a liquid crystal panel assembled by the ultraviolet irradiation method according to the present invention. The liquid crystal panel is one substrate 1 made of quartz or the like.
01 and the other substrate 102 made of glass or the like are bonded and fixed to each other with a predetermined gap therebetween. In addition,
After joining the substrates 101 and 102, a liquid crystal layer 103 is sealed and filled in the gap. The pair of substrates 101 and 102 are adhered to each other via an ultraviolet curable resin 104. A pixel electrode 105, a thin film transistor 106, a peripheral circuit 107, a terminal electrode 108 for external connection, and the like are integrally formed on the surface of the lower substrate 101, which is called a TFT substrate. Although not shown, the inner surface of the TFT substrate 101 is subjected to liquid crystal alignment treatment. On the other hand, the upper substrate 102
The color filter 109 and the counter electrode 110 are provided on the inner surface of the
Are formed. The color filter 109 is divided into segment patterns of RGB three primary colors.
5 is arranged so as to match the matrix pattern of 5. The substrate 102 having such a configuration is called a CF substrate. The inner surface of this CF substrate is also subjected to an alignment treatment for the liquid crystal layer.

【0012】TFT基板101は石英からなり、CF基
板102はガラスからなる。両基板の熱膨張係数には一
桁程度の相違がある。この点に鑑み、本発明では室温露
光により紫外線硬化型樹脂104を硬化しており、熱的
歪が発生しない様にしている。この結果、TFT基板1
01側のマトリクス画素電極パタンとCF基板102側
のカラーフィルタパタンとは互いに正確なアライメント
を維持したまま接合できる。又、二段露光を行なう事に
より紫外線硬化型樹脂104の反応を完結させ強固な接
着を行なう事で信頼性を確保している。
The TFT substrate 101 is made of quartz and the CF substrate 102 is made of glass. There is an order of magnitude difference in the coefficient of thermal expansion between the two substrates. In view of this point, in the present invention, the ultraviolet curable resin 104 is cured by exposure at room temperature so that thermal strain does not occur. As a result, the TFT substrate 1
The 01-side matrix pixel electrode pattern and the CF substrate 102-side color filter pattern can be joined together while maintaining accurate alignment with each other. Further, reliability is secured by performing a two-step exposure to complete the reaction of the ultraviolet curable resin 104 and perform strong adhesion.

【0013】図3に示した液晶パネルは、通常大判の石
英ウェハを利用して多数個取り方式により作成される。
図4にこの多数個取り方式を示す。大判の石英ウェハ1
11は縦横に区画されており、個々の区画毎に液晶パネ
ル100のチップが得られる。石英ウェハ111とガラ
スウェハ(図示せず)を互いに接合した後、分離線11
2に沿って分割し、個々の液晶パネル100を得る。図
示する様に、液晶パネル100は枠状に印刷された紫外
線硬化型樹脂104を用いて組み立てられており、枠内
は表示領域113を構成する。この表示領域113に対
しては紫外線を照射しない事が好ましい。仮に、紫外線
が照射されると液晶配向処理や薄膜トランジスタの微細
構造が損傷を受け表示品質を損なう惧れがある。
The liquid crystal panel shown in FIG. 3 is usually manufactured by a multi-cavity method using a large-sized quartz wafer.
FIG. 4 shows this multi-cavity method. Large format quartz wafer 1
11 are vertically and horizontally partitioned, and a chip of the liquid crystal panel 100 is obtained for each partition. After bonding the quartz wafer 111 and the glass wafer (not shown) to each other, the separation line 11
Divide along 2 to obtain individual liquid crystal panel 100. As shown in the figure, the liquid crystal panel 100 is assembled using an ultraviolet curable resin 104 printed in a frame shape, and a display area 113 is formed in the frame. It is preferable that the display area 113 is not irradiated with ultraviolet rays. If ultraviolet rays are irradiated, the liquid crystal alignment treatment and the fine structure of the thin film transistor may be damaged and display quality may be impaired.

【0014】この為、本発明では露光処理を行なう際紫
外線遮断マスクを使用している。そのパタン形状を図5
に示す。紫外線遮断マスク114は石英ウェハ111と
略同一の大きさを有する石英板115を用いて作成され
ており、その表面には金属クロム等により遮光パタン1
16が形成されている。この紫外線遮断マスク114を
石英ウェハ111に重ねた場合、遮光パタン116は個
々の表示領域113に整合する。従って、表示領域11
3を選択的に非露光領域とした状態で紫外線硬化型樹脂
104のみを露光処理する事が可能になる。石英板11
5は紫外線に対して透明であり照射損失を抑制する事が
できる。
Therefore, in the present invention, an ultraviolet blocking mask is used when performing the exposure process. Figure 5 shows the pattern shape.
Shown in. The ultraviolet blocking mask 114 is formed by using a quartz plate 115 having substantially the same size as the quartz wafer 111, and the surface of the quartz plate 115 is made of metal chrome or the like to shield the light.
16 are formed. When the ultraviolet blocking mask 114 is overlaid on the quartz wafer 111, the light blocking patterns 116 are aligned with the individual display areas 113. Therefore, the display area 11
It becomes possible to subject only the ultraviolet curable resin 104 to an exposure process in a state where 3 is selectively set as a non-exposed region. Quartz plate 11
5 is transparent to ultraviolet rays and can suppress irradiation loss.

【0015】最後に、図6を参照して図3に示した液晶
パネルの製造方法を説明する。先ず工程S1でTFT基
板及びCF基板を作成する。この段階では各基板は分離
されておらずウェハとして取り扱われる。次に工程S2
で必要に応じ表面処理を行なう。この処理は紫外線硬化
型樹脂の接着強度を上げる為に行なわれる。例えば、液
晶配向膜の組成によっては紫外線硬化型樹脂との相容性
が悪いものがあるので、基板表面周辺部からこの液晶配
向膜を除去する。あるいは、基板表面周辺部に沿って界
面活性剤を施す下地処理を行なっても良い。次に工程S
3において、少なくとも一方の基板表面周辺部に沿って
紫外線硬化型樹脂(UV樹脂)からなるシール剤を印刷
塗布する。この印刷は例えば液状のシール剤をスクリー
ン印刷して行なわれる。UV樹脂としては一般的にアク
リル系又はエポキシ系の材料が用いられる。エポキシ系
はアクリル系に比べて接着性に優れている。次に工程S
4において、印刷塗布されたUV樹脂を挟んで、一対の
基板を重ね合わせプレス等により加圧しておく。この
時、基板表面に一定の粒径を有するスペーサを散布し基
板間隙を一定に保つ様にしても良い。工程S5で紫外線
遮断マスクをセットし、液晶パネルの非露光領域を予め
選択的に遮光しておく。次に工程S6で低出力紫外線照
射を行なう。この段階ではUV樹脂の硬化反応がある程
度で停止するが、全体的な仮り留めが可能でありパタン
ずれを抑制できる。続いて工程S7で高出力紫外線照射
を行なう。これによりUV樹脂の硬化反応を完結させ強
固な接着を行なう事ができる。既に仮り留めが行なわれ
ているので多少基板温度が上昇してもパタンずれがなく
精密なアライメントを維持できる。次に工程S8で、必
要に応じ後加熱処理を行なう。この後加熱処理は接着強
度をさらに上げる事を目的とし、特にエポキシ系UV樹
脂を用いた場合に有効である。後加熱処理の温度として
は、基板に熱損傷を与えない範囲で、例えば50℃程度
に設定される。工程S9において、互いに貼り合わされ
た基板の分割を行ない個々のセルに分離する。最後に、
工程S10において個々のセルの間隙に液晶を封入し液
晶パネルを得る。この様に、一般にパネル製造を効率的
に行なう為に多数個取り方式を採用している。この場
合、上記例に代えて、液晶を封入した後セル分割を行な
っても良い。又、場合によっては最初から単個取り方式
を採用しても良い。この時にも本発明にかかる紫外線照
射方法は効果的である。
Finally, a method of manufacturing the liquid crystal panel shown in FIG. 3 will be described with reference to FIG. First, in step S1, a TFT substrate and a CF substrate are created. At this stage, the substrates are not separated but are treated as wafers. Next, step S2
Surface treatment is performed if necessary. This treatment is performed to increase the adhesive strength of the ultraviolet curable resin. For example, depending on the composition of the liquid crystal alignment film, some liquid crystal alignment films have poor compatibility with the ultraviolet curable resin, so the liquid crystal alignment film is removed from the peripheral portion of the substrate surface. Alternatively, a base treatment for applying a surfactant may be performed along the peripheral portion of the substrate surface. Next step S
3, a sealant made of an ultraviolet curable resin (UV resin) is applied by printing along at least one peripheral surface of the substrate. This printing is performed by screen-printing a liquid sealant, for example. An acrylic or epoxy material is generally used as the UV resin. Epoxy type has better adhesiveness than acrylic type. Next step S
In 4, the pair of substrates are overlapped and pressed by a press or the like, sandwiching the UV resin printed and applied. At this time, spacers having a constant particle size may be scattered on the substrate surface to keep the substrate gap constant. In step S5, an ultraviolet blocking mask is set, and the non-exposed area of the liquid crystal panel is selectively shielded in advance. Next, in step S6, low-power ultraviolet irradiation is performed. At this stage, the curing reaction of the UV resin is stopped to some extent, but temporary tacking is possible as a whole and pattern shift can be suppressed. Subsequently, in step S7, high-power ultraviolet irradiation is performed. As a result, the curing reaction of the UV resin can be completed and strong adhesion can be achieved. Since temporary fixing has already been performed, there is no pattern deviation even if the substrate temperature rises to some extent, and precise alignment can be maintained. Next, in step S8, post-heat treatment is performed if necessary. The subsequent heat treatment is intended to further increase the adhesive strength, and is particularly effective when an epoxy UV resin is used. The temperature of the post heat treatment is set to, for example, about 50 ° C. within a range that does not cause heat damage to the substrate. In step S9, the substrates bonded to each other are divided into individual cells. Finally,
In step S10, liquid crystal is filled in the spaces between the individual cells to obtain a liquid crystal panel. In this way, generally, a multi-cavity method is adopted in order to efficiently manufacture the panel. In this case, instead of the above example, the cell division may be performed after enclosing the liquid crystal. In some cases, a single-piece picking method may be adopted from the beginning. Also in this case, the ultraviolet irradiation method according to the present invention is effective.

【0016】[0016]

【発明の効果】以上説明した様に、本発明によれば、効
率的な冷却構造を装備する事により高出力低温露光を可
能としている。本発明により熱膨張係数の異なる一対の
基板の高精度接着が可能になる。特に、TFT基板とC
F基板を重ね合わせて液晶パネルを組み立てる場合に効
果的である。基板の温度上昇を抑制できるので熱による
基板の反り等が発生せず又熱損傷も防止できる。さら
に、二段露光によりUV樹脂の硬化を完結させ接着強度
を高めて信頼性を向上する事ができる。二段露光を行な
う際シーケンスプログラムにより自動制御とする事でタ
クトタイムを短縮する事ができるという効果がある。
As described above, according to the present invention, high-power low-temperature exposure is possible by providing an efficient cooling structure. The present invention enables highly precise bonding of a pair of substrates having different thermal expansion coefficients. Especially, the TFT substrate and C
This is effective when assembling a liquid crystal panel by stacking F substrates. Since the temperature rise of the substrate can be suppressed, the substrate does not warp due to heat and thermal damage can be prevented. Further, the two-step exposure can complete the curing of the UV resin to increase the adhesive strength and improve the reliability. There is an effect that the tact time can be shortened by automatically controlling the sequence program when performing the two-step exposure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる紫外線照射装置の構成を示す模
式的なブロック図である。
FIG. 1 is a schematic block diagram showing a configuration of an ultraviolet irradiation device according to the present invention.

【図2】本発明にかかる紫外線照射装置のハウジング構
造を示す模式的な断面図である。
FIG. 2 is a schematic sectional view showing a housing structure of an ultraviolet irradiation device according to the present invention.

【図3】本発明にかかる紫外線照射方法により組み立て
られた液晶パネルの一例を示す模式的な断面図である。
FIG. 3 is a schematic cross-sectional view showing an example of a liquid crystal panel assembled by the ultraviolet irradiation method according to the present invention.

【図4】液晶パネルの組み立て方式を示す平面図であ
る。
FIG. 4 is a plan view showing an assembly method of a liquid crystal panel.

【図5】紫外線遮断マスクのパタン形状を示す平面図で
ある。
FIG. 5 is a plan view showing a pattern shape of an ultraviolet blocking mask.

【図6】図3に示した液晶パネルの製造工程図である。FIG. 6 is a manufacturing process diagram of the liquid crystal panel shown in FIG.

【符号の説明】[Explanation of symbols]

1 紫外線ランプ 2 対象物 3 ジャケット 4 熱線遮断フィルタ 5 冷却器 6 ダクト 7 電源コントローラ 8 紫外線遮断マスク 1 UV lamp 2 Target 3 Jacket 4 Heat ray blocking filter 5 Cooler 6 Duct 7 Power controller 8 UV blocking mask

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 対象物に紫外線を照射する水冷二重管構
造の紫外線ランプと、対象物と紫外線ランプの間に介在
する熱線遮断フィルタと、紫外線ランプ及び対象物に冷
風を供給する冷却器とを備えており、高出力低温露光を
可能とした紫外線照射装置。
1. An ultraviolet lamp having a water-cooled double-tube structure for irradiating an object with ultraviolet rays, a heat ray blocking filter interposed between the object and the ultraviolet lamp, and a cooler for supplying cold air to the ultraviolet lamp and the object. Equipped with a UV irradiation device that enables high-output low-temperature exposure.
【請求項2】 所定のシーケンスプログラムにより紫外
線ランプの二段出力切り換えを自動的に行なう電源コン
トローラを備えた請求項1記載の紫外線照射装置。
2. The ultraviolet irradiating device according to claim 1, further comprising a power supply controller for automatically switching the two-stage output of the ultraviolet lamp according to a predetermined sequence program.
【請求項3】 対象物の非露光領域を選択的に遮光する
紫外線遮断マスクを備えた請求項1記載の紫外線照射装
置。
3. The ultraviolet irradiation device according to claim 1, further comprising an ultraviolet shielding mask that selectively shields a non-exposed region of the object.
【請求項4】 少なくとも一方が紫外線に対して透明な
一対の基板を紫外線硬化型樹脂を介して互いに重ね合わ
せる工程と、比較的低出力で紫外線を室温照射し一対の
基板を互いに仮り留めする工程と、比較的高出力で紫外
線を照射し一対の基板を互いに接合固定してパネルに加
工する工程とを含む紫外線照射方法。
4. A step of laminating a pair of substrates, at least one of which is transparent to ultraviolet rays, via an ultraviolet curable resin, and a step of temporarily irradiating the pair of substrates to each other by irradiating ultraviolet rays at room temperature with a relatively low output. And a step of irradiating ultraviolet rays with a relatively high output to bond and fix a pair of substrates to each other to process into a panel.
【請求項5】 画素アレイの形成された一方の基板と対
向電極の形成された他方の基板を互いに接合固定して表
示用パネルに加工する請求項4記載の紫外線照射方法。
5. The ultraviolet irradiation method according to claim 4, wherein one substrate on which the pixel array is formed and the other substrate on which the counter electrode is formed are bonded and fixed to each other and processed into a display panel.
【請求項6】 少なくとも画素アレイの形成された領域
を選択的に遮光した状態で紫外線照射する請求項5記載
の紫外線照射方法。
6. The ultraviolet irradiation method according to claim 5, wherein ultraviolet irradiation is performed in a state where at least a region where the pixel array is formed is shielded selectively.
JP5069463A 1993-03-04 1993-03-04 Ultraviolet applicating device and application of ultraviolet ray Pending JPH06260410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5069463A JPH06260410A (en) 1993-03-04 1993-03-04 Ultraviolet applicating device and application of ultraviolet ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5069463A JPH06260410A (en) 1993-03-04 1993-03-04 Ultraviolet applicating device and application of ultraviolet ray

Publications (1)

Publication Number Publication Date
JPH06260410A true JPH06260410A (en) 1994-09-16

Family

ID=13403383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5069463A Pending JPH06260410A (en) 1993-03-04 1993-03-04 Ultraviolet applicating device and application of ultraviolet ray

Country Status (1)

Country Link
JP (1) JPH06260410A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030210A1 (en) * 1995-03-31 1996-10-03 Ferguson International Holdings Plc Improvements in and relating to lamination of sheet materials
KR100445431B1 (en) * 1997-08-20 2004-11-03 삼성에스디아이 주식회사 Apparatus for baking material deposited on surface of cathode ray tube panel, including infrared radiation unit and filter, and baking method thereof
JP2008244481A (en) * 2007-03-23 2008-10-09 Asm Japan Kk Uv light irradiating apparatus with liquid filter and method
WO2014069254A1 (en) * 2012-11-02 2014-05-08 住友重機械工業株式会社 Substrate manufacturing apparatus
JP2017058087A (en) * 2015-09-17 2017-03-23 本田技研工業株式会社 Dryer
CN107597526A (en) * 2017-10-09 2018-01-19 志圣科技(广州)有限公司 Low temperature ultra-violet line curing apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030210A1 (en) * 1995-03-31 1996-10-03 Ferguson International Holdings Plc Improvements in and relating to lamination of sheet materials
KR100445431B1 (en) * 1997-08-20 2004-11-03 삼성에스디아이 주식회사 Apparatus for baking material deposited on surface of cathode ray tube panel, including infrared radiation unit and filter, and baking method thereof
JP2008244481A (en) * 2007-03-23 2008-10-09 Asm Japan Kk Uv light irradiating apparatus with liquid filter and method
WO2014069254A1 (en) * 2012-11-02 2014-05-08 住友重機械工業株式会社 Substrate manufacturing apparatus
JP2017058087A (en) * 2015-09-17 2017-03-23 本田技研工業株式会社 Dryer
CN107597526A (en) * 2017-10-09 2018-01-19 志圣科技(广州)有限公司 Low temperature ultra-violet line curing apparatus

Similar Documents

Publication Publication Date Title
US7144471B2 (en) Bonding method and apparatus
US5731860A (en) Method of manufacturing liquid crystal panel and press device to be adopted in the method
WO2019033538A1 (en) Manufacturing method for oled display panel
JP4126593B2 (en) Manufacturing method of liquid crystal display device
JPH06260410A (en) Ultraviolet applicating device and application of ultraviolet ray
JPS59131A (en) Device for assembling liquid crystal display
KR100615440B1 (en) laser chemical vapour deposition apparatus for repair and substrate repair method of liquid crystal display device using thereof
JP4055762B2 (en) Manufacturing method of electro-optical device
JP2007248644A (en) Adhesive curing device
KR101384453B1 (en) Liquid crystal display manufacturing apparatus and liquid crystal display manufacturing method
JPH05127174A (en) Production of liquid crystal display panel
US20030090616A1 (en) Method of and apparatus for producing liquid crystal display unit
JP2005216887A (en) Method of manufacturing thin film device, thin film device, liquid crystal display device and electroluminescence display device
JP2000241821A (en) Manufacture of liquid crystal panel
US20070094982A1 (en) Heat treatment for a panel and apparatus for carrying out the heat treatment method
JP3412873B2 (en) Manufacturing method of liquid crystal display device
JP3843517B2 (en) Manufacturing method of liquid crystal device
JPH06333808A (en) Thin film compression device and compression method
JP2001222016A (en) Liquid crystal display panel and its manufacturing method
JP2009186538A (en) Method of manufacturing substrate
JP2003029273A (en) Method of manufacturing liquid crystal device, apparatus for manufacturing liquid crystal device and method of baking adhesive for panel
JPH07335696A (en) Method and apparatus for mounting component
JP2006208867A (en) Manufacturing method of liquid crystal panel for projector
EP1506695A1 (en) Method of manufacturing a flat panel display
JPH112824A (en) Manufacture of liquid crystal display device