JPH06260397A - Mask for x-ray exposure and manufacture thereof - Google Patents

Mask for x-ray exposure and manufacture thereof

Info

Publication number
JPH06260397A
JPH06260397A JP4623793A JP4623793A JPH06260397A JP H06260397 A JPH06260397 A JP H06260397A JP 4623793 A JP4623793 A JP 4623793A JP 4623793 A JP4623793 A JP 4623793A JP H06260397 A JPH06260397 A JP H06260397A
Authority
JP
Japan
Prior art keywords
film
ray
support film
silicon nitride
ray exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4623793A
Other languages
Japanese (ja)
Inventor
Fuminobu Noguchi
文信 野口
Shoji Tanaka
正二 田中
Tadashi Matsuo
正 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP4623793A priority Critical patent/JPH06260397A/en
Publication of JPH06260397A publication Critical patent/JPH06260397A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To provide a mask for X-ray exposure and a manufacture thereof in which the resistance to X-ray irradiation can be increased, and the transmitting support film is not easily damaged during the manufacturing. CONSTITUTION:The main portions of the mask for X-ray exposure comprise a frame 2 of silicon having an X-ray transmitting window 1 in the center thereof, a transmitting support film 3 made of an Si3N4 film transmitting an X-ray, the edge of which is supported by the frame 2 and the internal stress of which is released, an X-ray absorbing substance 4 of Ta provided in the form of a pattern on the principal surface of the transmitting support film 3, and a protection film 5 provided on the side and rear of the frame 2 and comprised of the same material as the transmitting support film 3. In addition, since the transmitting support film 3 is comprised of the stoichiometric Si3N4 film, its chemical bonding stabilizes to increase the resistance to X-ray irradiation, and since it is comprised of the Si3N4 film the internal stress is released, the damage of the transmitting support film due to the internal stress can be avoided during the manufacturing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線リソグラフィーに
使用されるX線露光用マスクとその製造方法に係り、特
に、X線照射耐性の向上が図れしかも製造中に透過性支
持膜の破損が起こり難いX線露光用マスクとその製造方
法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray exposure mask used in X-ray lithography and a method for manufacturing the same, and more particularly, to an improvement in X-ray irradiation resistance and damage of a transparent support film during manufacturing. The present invention relates to an X-ray exposure mask which is less likely to occur and an improvement in its manufacturing method.

【0002】[0002]

【従来の技術】この種のX線露光用マスクとしては、例
えば、図9に示すように中央にX線透過窓aを有する枠
体bと、この枠体bにその周縁部が保持されアライメン
ト光とX線を共に透過する透過性支持膜cと、この透過
性支持膜cの上記枠体bとは反対側の主面上にパターン
状に設けられたX線吸収体dと、上記枠体bの側面並び
に裏面に設けられかつ透過性支持膜と同一の材料で構成
される保護膜eとでその主要部が構成されるものが知ら
れている。尚、この保護膜eは、上記枠体を構成する基
材に対しバックエッチ処理してX線透過窓aを形成する
際、そのエッチングマスクとして作用するものである。
2. Description of the Related Art As an X-ray exposure mask of this kind, for example, as shown in FIG. 9, a frame body b having an X-ray transmission window a in the center, and a peripheral portion of the frame body b held by the frame body b are aligned. A transparent support film c that transmits both light and X-rays, an X-ray absorber d provided in a pattern on the main surface of the transparent support film c opposite to the frame b, and the frame. It is known that a main part is constituted by a protective film e provided on the side surface and the back surface of the body b and made of the same material as the permeable support film. The protective film e acts as an etching mask for back-etching the base material forming the frame to form the X-ray transmission window a.

【0003】そして、このX線露光用マスクは、通常、
図10(A)〜(E)に示す工程を経て製造されてい
る。
This X-ray exposure mask is usually
It is manufactured through the steps shown in FIGS.

【0004】まず、上記枠体bを構成する平坦状の基材
b’の主面に透過性支持膜cを成膜し、かつ、上記基材
b’の側面並びに裏面に保護膜eを成膜する(図10A
参照)。その際、上記透過性支持膜cと保護膜eは同一
の材料でかつ同時に成膜されるのが一般的である。次
に、図10(B)に示すように上記透過性支持膜c上に
Au、W等で構成されるX線吸収体膜d’を一様に成膜
し、かつ、このX線吸収体膜d’上にレジストパターン
を形成しこのレジストから露出するX線吸収体膜d’を
エッチングにより除去してパターニングし図10(C)
に示すようなX線吸収体dを形成する。また、上記保護
膜eについても同様なフォトリソグラフィー処理により
パターニングしてその中央部を除去し(図10D参
照)、かつパターニングされた保護膜eをマスクにして
基材b’をバックエッチ処理し、X線透過窓aを形成し
て図10(E)に示すようなX線露光用マスクが製造さ
れる。
First, a transparent support film c is formed on the main surface of a flat base material b'constituting the frame body b, and a protective film e is formed on the side surface and the back surface of the base material b '. Membrane (Figure 10A)
reference). At that time, the transparent support film c and the protective film e are generally formed of the same material and at the same time. Next, as shown in FIG. 10 (B), an X-ray absorber film d ′ composed of Au, W, etc. is uniformly formed on the transparent support film c, and this X-ray absorber is formed. A resist pattern is formed on the film d ', and the X-ray absorber film d'exposed from the resist is removed by etching to be patterned, as shown in FIG.
An X-ray absorber d as shown in is formed. The protective film e is also patterned by the same photolithography process to remove the central part (see FIG. 10D), and the base material b ′ is back-etched using the patterned protective film e as a mask. By forming the X-ray transmission window a, an X-ray exposure mask as shown in FIG. 10 (E) is manufactured.

【0005】ところで、このX線露光用マスクはX線露
光装置に装着して使用されるが、露光時に被露光体であ
る半導体基板等と位置整合(アライメント)させる必要
がある。そして、このアライメント操作は、上記X線露
光用マスクに対して400〜700nmの範囲の特定波
長の可視光(アライメント光)を照射し、このX線露光
用マスクを透過したアライメント光を被露光体側で検知
してその両者間の位置ずれを検出し、この検出信号に基
づいて上記X線露光用マスクをx方向並びにy方向へ適
量移動させて行われている。このため、X線露光用マス
クの透過性支持膜cには可視光透過率の高い膜が要求さ
れる。
By the way, although this X-ray exposure mask is used by being mounted on an X-ray exposure apparatus, it is necessary to align it with a semiconductor substrate or the like which is an object to be exposed at the time of exposure. In this alignment operation, the X-ray exposure mask is irradiated with visible light (alignment light) having a specific wavelength in the range of 400 to 700 nm, and the alignment light transmitted through the X-ray exposure mask is exposed. Is performed by detecting the positional deviation between the two, and the X-ray exposure mask is moved by an appropriate amount in the x and y directions based on this detection signal. Therefore, the transparent support film c of the X-ray exposure mask is required to have a high visible light transmittance.

【0006】また、X線露光用マスクは露光中、高い強
度のX線が照射されるため、上記透過性支持膜cにはX
線照射耐性の優れた膜が要求される。
Further, since the X-ray exposure mask is irradiated with high-intensity X-rays during exposure, the transparent supporting film c is exposed to X-rays.
A film having excellent radiation resistance is required.

【0007】そして、これ等の要求特性を満足させる材
料としてSiN、特に、ストイキオーメトリック(化学
量論比)なSi34が知られている。
As a material satisfying these required characteristics, SiN, particularly stoichiometric (stoichiometric ratio) Si 3 N 4 is known.

【0008】[0008]

【発明が解決しようとする課題】ところで、上記透過性
支持膜としてシリコンリッチのSiNを適用した場合、
このSiNは化学量論比から大きくずれてその化学結合
状態が不安定なためX線照射耐性が不十分となり、X線
の照射によって膜の変色等X線照射損傷が発生し易い問
題点を有していた。
By the way, when silicon-rich SiN is applied as the permeable support film,
This SiN has a problem that its chemical bond state is largely deviated from the stoichiometric ratio and its X-ray irradiation resistance becomes insufficient, and thus X-ray irradiation easily causes X-ray irradiation damage such as discoloration of the film. Was.

【0009】一方、ストイキオーメトリック(化学量論
比)なSi34を適用して上記透過性支持膜を構成した
場合、このSi34は化学結合状態が安定なため優れた
X線照射耐性を有しているが、その反面、このSi34
膜は非常に大きな引っ張り応力を有しており、このSi
34膜から成る透過性支持膜に隣接して設けられた上記
基材の一部がバックエッチ処理により除去された際、こ
の透過性支持膜が有する大きな引っ張り応力に起因して
この透過性支持膜が破損され易い問題点を有していた。
On the other hand, when stoichiometric (stoichiometric ratio) Si 3 N 4 is applied to form the above-mentioned permeable support film, this Si 3 N 4 has a stable chemical bond state and is therefore excellent in X-rays. It has irradiation resistance, but on the other hand, this Si 3 N 4
The film has a very large tensile stress,
When a part of the base material provided adjacent to the permeable support film made of 3 N 4 film is removed by the back etching process, the permeability is increased due to the large tensile stress of the permeable support film. There was a problem that the supporting film was easily damaged.

【0010】本発明はこのような問題点に着目してなさ
れたもので、その課題とするところは、X線照射耐性の
向上が図れしかも製造中に透過性支持膜の破損が起こり
難いX線露光用マスクとその製造方法を提供することに
ある。
The present invention has been made by paying attention to such a problem, and its object is to improve the X-ray irradiation resistance and prevent the breakage of the permeable support film during manufacturing. An object is to provide an exposure mask and a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】すなわち、請求項1に係
る発明は、中央にX線透過窓を有する枠体と、この枠体
にその周縁部が保持されアライメント光とX線を共に透
過する透過性支持膜と、この透過性支持膜の上記枠体と
は反対側の主面上にパターン状に設けられたX線吸収体
と、上記枠体の側面並びに裏面に設けられかつ透過性支
持膜と同一の材料で構成される保護膜とを備えるX線露
光用マスクを前提とし、上記透過性支持膜が、SiNx
(但し、1.0 < x ≦ 1.5)で示されその内
部応力が解放された窒化シリコン膜により構成されてい
ることを特徴とするものである。
That is, in the invention according to claim 1, a frame body having an X-ray transmission window in the center and a peripheral portion of the frame body is held by the frame body, and both alignment light and X-rays are transmitted therethrough. A transparent support film, an X-ray absorber provided in a pattern on the main surface of the transparent support film opposite to the frame body, and a transparent support provided on the side surface and the back surface of the frame body. Assuming an X-ray exposure mask provided with a protective film made of the same material as the film, the transparent support film is made of SiNx.
(However, 1.0 <x ≤ 1.5) and the internal stress is relieved to form a silicon nitride film.

【0012】この請求項1記載の発明に係るX線露光用
マスクによれば、SiNx(但し、1.0 < x ≦
1.5)で示された化学量論比からのずれの小さい窒
化シリコン膜により上記透過性支持膜が構成されている
ためその化学結合状態が安定してX線照射耐性が向上す
ると共に、化学量論比からのずれの小さい窒化シリコン
膜はシリコンリッチのSiNに較べてその屈折率が小さ
いため可視光(アライメント光)の透過率が向上し、か
つ、上記透過性支持膜はその内部応力が解放された窒化
シリコン膜により構成されているため製造中においてこ
の内部応力に起因した透過性支持膜の破損を回避でき
る。
According to the X-ray exposure mask of the first aspect of the present invention, SiNx (where 1.0 <x ≤
Since the permeable support film is composed of a silicon nitride film having a small deviation from the stoichiometric ratio shown in 1.5), the chemical bond state is stable and the X-ray irradiation resistance is improved. Since the silicon nitride film having a small deviation from the stoichiometric ratio has a smaller refractive index than Si-rich SiN, the transmittance of visible light (alignment light) is improved, and the above-mentioned transparent support film has an internal stress Since it is composed of the released silicon nitride film, it is possible to avoid damage to the permeable support film due to this internal stress during manufacturing.

【0013】特に、上記透過性支持膜がストイキオーメ
トリックなSi34膜で構成されている場合にその効果
は大きい。請求項2に係る発明はこのような技術的理由
からなされている。
In particular, the effect is great when the permeable support film is composed of a stoichiometric Si 3 N 4 film. The invention according to claim 2 is made for such a technical reason.

【0014】すなわち、請求項2に係る発明は請求項1
記載の発明に係るX線露光用マスクを前提とし、上記窒
化シリコンがSi34であることを特徴とするものであ
る。
That is, the invention according to claim 2 is claim 1
Based on the X-ray exposure mask according to the invention described above, the silicon nitride is Si 3 N 4 .

【0015】次に、請求項3に係る発明は、このように
X線照射耐性の向上が図れしかも製造中に上記透過性支
持膜の破損が起こり難いX線露光用マスクを製造する方
法に関するものである。
Next, the invention according to claim 3 relates to a method for producing an X-ray exposure mask, which is capable of improving the X-ray irradiation resistance in this way and which is less likely to damage the transparent support film during the production. Is.

【0016】すなわち、請求項3に係る発明は、中央に
X線透過窓を有する枠体と、この枠体にその周縁部が保
持されアライメント光とX線を共に透過する透過性支持
膜と、この透過性支持膜の上記枠体とは反対側の主面上
にパターン状に設けられたX線吸収体と、上記枠体の側
面並びに裏面に設けられかつ透過性支持膜と同一の材料
で構成される保護膜とを備えるX線露光用マスクの製造
方法を前提とし、枠体を構成する平坦状の基材両面にS
iNx(1.0 < x ≦ 1.5)で示される窒化
シリコン膜を成膜し、かつ、主面側の窒化シリコン膜の
みを除去して上記基材をその主面側が凸状となる形状に
変形させる工程と、変形された上記基材の両面に再度S
iNx(1.0 < x ≦ 1.5)で示される窒化
シリコン膜を成膜し、かつ、裏面側に成膜された2番目
の窒化シリコン膜を除去して上記基材を平坦状に戻すこ
とにより基材の主面に成膜された窒化シリコン膜の内部
応力を解放させる工程、を具備することを特徴とするも
のである。
That is, in the invention according to claim 3, a frame body having an X-ray transmission window in the center, and a transparent support film whose peripheral portion is held by the frame body and which transmits both alignment light and X-rays, An X-ray absorber provided in a pattern on the main surface of the transparent support film opposite to the frame body, and the same material as the transparent support film provided on the side surface and the back surface of the frame body. Based on the method of manufacturing an X-ray exposure mask having a protective film that is formed, S is formed on both surfaces of a flat base material that forms a frame.
A shape in which a silicon nitride film represented by iNx (1.0 <x ≤ 1.5) is formed, and only the silicon nitride film on the main surface side is removed to make the main surface convex on the main surface side. And the step of transforming into both sides of the transformed base material again.
A silicon nitride film represented by iNx (1.0 <x ≤ 1.5) is formed, and the second silicon nitride film formed on the back surface side is removed to restore the substrate to a flat shape. Accordingly, the step of releasing the internal stress of the silicon nitride film formed on the main surface of the base material is provided.

【0017】この請求項3記載の発明に係るX線露光用
マスクの製造方法によれば、枠体を構成する平坦状の基
材両面にSiNx(1.0 < x ≦ 1.5)で示
された化学量論比からのずれが小さい窒化シリコン膜を
成膜した後、主面側の窒化シリコン膜のみを除去する
と、裏面側に成膜された窒化シリコン膜の引っ張り応力
が上記基材に作用してこの基材をその主面側が凸状とな
る形状に変形させると共にこの変形による内部応力を基
材に生じさせる。
According to the method of manufacturing an X-ray exposure mask according to the invention of claim 3, SiNx (1.0 <x ≤ 1.5) is provided on both surfaces of the flat base material forming the frame. After depositing a silicon nitride film with a small deviation from the stoichiometric ratio, the tensile stress of the silicon nitride film deposited on the back surface side is By acting, the base material is deformed into a convex shape on the main surface side, and at the same time, internal stress due to this deformation is generated in the base material.

【0018】次に、変形された基材の両面に再度SiN
x(1.0 < x ≦ 1.5)で示された化学量論
比からのずれが小さい窒化シリコン膜を成膜すると、同
時に形成された表面側(すなわち主面側)と裏面側の窒
化シリコン膜の上記応力は均衡するため主面側が凸状の
基材形状はそのまま保持される。
Then, SiN is again applied to both sides of the deformed substrate.
x (1.0 <x ≤ 1.5), a silicon nitride film with a small deviation from the stoichiometric ratio is formed, and at the same time, nitriding of the front surface side (that is, the main surface side) and the back surface side is performed. Since the stress of the silicon film is balanced, the shape of the base material having a convex main surface side is maintained as it is.

【0019】この状態で裏面側に成膜された少なくとも
2番目の窒化シリコン膜を除去すると、その分、裏面側
における窒化シリコン膜の引っ張り応力が低減するた
め、上記基材は主面側に成膜された窒化シリコン膜の内
部応力を緩和させる方向へ変形して元の平坦形状に戻る
と共に基材に発生していた内部応力も解放される。
If at least the second silicon nitride film formed on the back surface side is removed in this state, the tensile stress of the silicon nitride film on the back surface side is correspondingly reduced, so that the base material is formed on the main surface side. The internal stress of the film-formed silicon nitride film is deformed in a direction in which the internal stress is relaxed to return to the original flat shape, and the internal stress generated in the base material is also released.

【0020】このため、SiNx(但し、1.0 <
x ≦ 1.5)で示されその内部応力が解放された窒
化シリコン膜により上記透過性支持膜を構成することが
可能となる。
Therefore, SiNx (however, 1.0 <
It becomes possible to form the above-mentioned permeable support film by the silicon nitride film represented by x ≤ 1.5) and the internal stress of which is released.

【0021】そして、上記基材の一部をバックエッチ処
理により除去してX線透過窓を形成しても、上記透過性
支持膜はその内部応力が解放された窒化シリコン膜によ
り構成されているためその破損の恐れが解消され、従っ
て、上述したX線照射耐性とアライメント光の透過率が
向上したX線露光用マスクの製造が可能となる。
Even if a part of the base material is removed by a back etching process to form an X-ray transmission window, the transparent support film is composed of a silicon nitride film whose internal stress is released. Therefore, the risk of damage is eliminated, and therefore, it is possible to manufacture the X-ray exposure mask having the above-mentioned X-ray irradiation resistance and the alignment light transmittance improved.

【0022】特に、上記透過性支持膜がストイキオーメ
トリックなSi34膜で構成されている場合にその効果
は大きい。請求項4に係る発明はこのような技術的理由
からなされている。
Particularly, the effect is great when the permeable support film is composed of a stoichiometric Si 3 N 4 film. The invention according to claim 4 is made for such a technical reason.

【0023】すなわち、請求項4に係る発明は請求項3
記載の発明に係るX線露光用マスクの製造方法を前提と
し、上記窒化シリコンがSi34であることを特徴とす
るものである。
That is, the invention according to claim 4 is claim 3
Based on the method for manufacturing an X-ray exposure mask according to the invention described above, the silicon nitride is Si 3 N 4 .

【0024】このような技術的手段において、SiNx
(1.0 < x ≦ 1.5)で示され上記透過性支
持膜及び保護膜を構成する窒化シリコン膜の成膜方法と
しては、例えば、SiH2Cl2とNH3 等の材料ガスを
用いた公知の減圧化学気相蒸着法(LPCVD法)が適
用でき、また、その膜厚は0.5〜2.0μm程度に設
定される。また、この窒化シリコン膜を除去する手段と
してはC26等のエッチングガスを用いた反応性イオン
エッチング法等が適用できる。
In such technical means, SiNx
As a method of forming the silicon nitride film, which is represented by (1.0 <x ≦ 1.5) and constitutes the above-mentioned permeable support film and protective film, for example, a material gas such as SiH 2 Cl 2 and NH 3 is used. A known low pressure chemical vapor deposition method (LPCVD method) can be applied, and the film thickness thereof is set to about 0.5 to 2.0 μm. As a means for removing this silicon nitride film, a reactive ion etching method using an etching gas such as C 2 F 6 can be applied.

【0025】次に、上記枠体を構成する基材としては公
知のシリコン基板等が適用でき、また、パターン状に形
成されるX線吸収体としてはAu、W、Ta等原子番号
の大きい重金属が適用でき、その膜厚は通常0.2〜
1.0μmに設定される。
Next, a known silicon substrate or the like can be applied as the base material constituting the frame body, and a heavy metal having a large atomic number such as Au, W or Ta can be used as the X-ray absorber formed in a pattern. Can be applied, and the film thickness is usually 0.2 to
It is set to 1.0 μm.

【0026】[0026]

【作用】請求項1〜2に係る発明によれば、SiNx
(但し、1.0 < x ≦ 1.5)で示された化学
量論比からのずれの小さい窒化シリコン膜により透過性
支持膜が構成されているためその化学結合状態が安定し
てX線照射耐性が向上すると共に、化学量論比からのず
れの小さい窒化シリコン膜はシリコンリッチのSiNに
較べてその屈折率が小さいため可視光透過率が向上し、
かつ、上記透過性支持膜はその内部応力が解放された窒
化シリコン膜により構成されているため製造中において
この内部応力に起因した透過性支持膜の破損を回避する
ことが可能となる。
According to the inventions according to claims 1 and 2, SiNx
(However, since the permeable support film is composed of a silicon nitride film having a small deviation from the stoichiometric ratio shown by 1.0 <x ≤ 1.5), its chemical bond state is stable and X-ray is stable. The irradiation resistance is improved, and the visible light transmittance is improved because the silicon nitride film having a small deviation from the stoichiometric ratio has a smaller refractive index than silicon-rich SiN.
Moreover, since the permeable support film is composed of the silicon nitride film in which the internal stress is released, it is possible to avoid damage to the permeable support film due to the internal stress during manufacturing.

【0027】他方、請求項3〜4に係る発明によれば、
枠体を構成する平坦状の基材両面にSiNx(1.0
< x ≦ 1.5)で示された化学量論比からのずれ
が小さい窒化シリコン膜を成膜した後、主面側の窒化シ
リコン膜のみを除去すると、裏面側に成膜された窒化シ
リコン膜の引っ張り応力が上記基材に作用してこの基材
をその主面側が凸状となる形状に変形させると共にこの
変形による内部応力を基材に生じさせる。
On the other hand, according to the inventions of claims 3 to 4,
The SiNx (1.0
<X ≦ 1.5) After forming a silicon nitride film with a small deviation from the stoichiometric ratio, if only the silicon nitride film on the main surface side is removed, the silicon nitride film formed on the back surface side The tensile stress of the film acts on the base material to deform the base material into a shape in which the main surface side is convex, and at the same time, internal stress due to this deformation is generated in the base material.

【0028】次に、変形された基材の両面に再度SiN
x(1.0 < x ≦ 1.5)で示された化学量論
比からのずれが小さい窒化シリコン膜を成膜すると、同
時に形成された表面側(すなわち主面側)と裏面側の窒
化シリコン膜の上記応力は均衡するため主面側が凸状の
基材形状はそのままの状態で保持される。
Then, SiN is again applied to both sides of the deformed substrate.
x (1.0 <x ≤ 1.5), a silicon nitride film with a small deviation from the stoichiometric ratio is formed, and at the same time, nitriding of the front surface side (that is, the main surface side) and the back surface side is performed. Since the above stress of the silicon film is balanced, the shape of the base material having the convex main surface side is maintained as it is.

【0029】この状態で裏面側に成膜された少なくとも
2番目の窒化シリコン膜を除去すると、その分、裏面側
における窒化シリコン膜の引っ張り応力が低減すること
から上記基材は主面側に成膜された窒化シリコン膜の内
部応力を緩和させる方向へ変形して元の平坦形状に戻る
と共に基材に発生していた内部応力も解放されるため、
SiNx(1.0 < x ≦ 1.5)で示されその
内部応力が解放された窒化シリコン膜により上記透過性
支持膜を構成することが可能となる。
In this state, if at least the second silicon nitride film formed on the back surface side is removed, the tensile stress of the silicon nitride film on the back surface side is reduced by that amount, so that the above-mentioned base material is formed on the main surface side. Since the silicon nitride film is deformed in a direction to relax the internal stress and returns to the original flat shape, the internal stress generated in the base material is also released.
The permeable support film can be made of a silicon nitride film represented by SiNx (1.0 <x ≦ 1.5) and the internal stress of which has been released.

【0030】[0030]

【実施例】以下、本発明の実施例について図面を参照し
て詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0031】まず、この実施例に係るX線露光用マスク
は、図1に示すように中央にX線透過窓1を有するシリ
コン製の枠体2と、この枠体2にその周縁部が保持され
アライメント光とX線を共に透過する厚さ2μmのSi
34から成る透過性支持膜3と、この透過性支持膜3の
上記枠体2とは反対側の主面上にパターン状に設けら厚
さ1μmのTaから成るX線吸収体4と、上記枠体2の
側面並びに裏面に設けられかつ透過性支持膜3と同一の
材料で構成された厚さ2μmの保護膜5とでその主要部
が構成されている。
First, in the X-ray exposure mask according to this embodiment, as shown in FIG. 1, a frame 2 made of silicon having an X-ray transmission window 1 in the center and a peripheral portion of the frame 2 are held by the frame 2. 2 μm thick Si that transmits both the alignment light and X-rays
A transparent support film 3 made of 3 N 4, and an X-ray absorber 4 made of Ta and having a thickness of 1 μm, which is provided in a pattern on the main surface of the transparent support film 3 opposite to the frame 2. A main part of the protective film 5 is provided on the side surface and the back surface of the frame body 2 and has a thickness of 2 μm and is made of the same material as the permeable support film 3.

【0032】そして、このX線露光用マスクは以下のよ
うな工程を経て製造されているものである。
The X-ray exposure mask is manufactured through the following steps.

【0033】まず、直径3インチ、厚さ1mmのシリコ
ン基板20に対してSiH2Cl2とNH3 を原料ガスと
するLPCVD法によりその両面にSi34から成る厚
さ2μmの薄膜31、51を成膜した(図2参照)。
First, with respect to a silicon substrate 20 having a diameter of 3 inches and a thickness of 1 mm, a thin film 31 made of Si 3 N 4 and having a thickness of 2 μm is formed on both surfaces thereof by the LPCVD method using SiH 2 Cl 2 and NH 3 as source gases. 51 was deposited (see FIG. 2).

【0034】次に、上記シリコン基板20の主面(すな
わち表面)側に成膜した薄膜31に対し、C26をエッ
チングガスとした反応性イオンエッチング処理を施して
上記薄膜31を除去した。この処理により上記シリコン
基板20に対しその裏面側に成膜された薄膜51の引っ
張り応力が作用するため、図3に示すようにシリコン基
板20はその主面側が凸状となる形状に変形すると共に
この変形による内部応力がシリコン基板20内に発生す
る。
Next, the thin film 31 formed on the main surface (that is, the surface) side of the silicon substrate 20 is subjected to a reactive ion etching process using C 2 F 6 as an etching gas to remove the thin film 31. . By this treatment, tensile stress of the thin film 51 formed on the back surface side acts on the silicon substrate 20, so that the silicon substrate 20 is deformed into a shape in which the main surface side is convex as shown in FIG. Internal stress due to this deformation is generated in the silicon substrate 20.

【0035】次いで、変形されたシリコン基板20の両
面に、再度、上記LPCVD法によりSi34から成る
厚さ2μmの薄膜32、52を成膜した。尚、同時に成
膜された上記薄膜32、52の引っ張り応力は均衡する
ため、シリコン基板20の主面側が凸状の形状はそのま
ま保持されている(図4参照)。
Then, on both surfaces of the deformed silicon substrate 20, thin films 32 and 52 made of Si 3 N 4 and having a thickness of 2 μm were formed again by the LPCVD method. Since the tensile stresses of the thin films 32 and 52 formed at the same time are balanced, the convex shape of the main surface side of the silicon substrate 20 is maintained (see FIG. 4).

【0036】次に、この状態でシリコン基板20の裏面
側に成膜した2回目の薄膜52に対しC26をエッチン
グガスとした反応性イオンエッチング(RIE)処理を
施して除去すると、シリコン基板20の裏面側における
引っ張り応力が低減することから、上記シリコン基板2
0は主面側に成膜された薄膜32の内部応力を緩和させ
る方向へ変形して元の平坦形状に戻ると共にシリコン基
板20内に発生していた内部応力も解放される(図5参
照)。尚、この処理により上記シリコン基板20の主面
側に成膜されたSi34から成る薄膜32の内部応力は
解放された状態となる。
Next, in this state, the second thin film 52 formed on the back surface side of the silicon substrate 20 is subjected to reactive ion etching (RIE) using C 2 F 6 as an etching gas to remove it. Since the tensile stress on the back surface side of the substrate 20 is reduced, the silicon substrate 2
In 0, the thin film 32 formed on the main surface side is deformed in a direction to relax the internal stress and returns to the original flat shape, and the internal stress generated in the silicon substrate 20 is also released (see FIG. 5). . By this treatment, the internal stress of the thin film 32 of Si 3 N 4 formed on the main surface side of the silicon substrate 20 is released.

【0037】次に、上記シリコン基板20の裏面側に設
けられた薄膜51に対し反応性イオンエッチング処理を
施して図6に示すようにその中央部を窓状に開口した
後、上記Si34から成る薄膜32上に厚さ1μmのT
aから成るX線吸収体層40をRFスパッタリング法に
より一様に成膜した(図7参照)。そして、このX線吸
収体層40上にレジストパターン(図示せず)を形成
し、このレジストパターンをマスクとして反応性イオン
エッチングによるパターン処理を施し、図8に示すよう
なパターン状のX線吸収体4を形成した。
Next, after opening the central portion in the window shape, as shown in FIG. 6 is subjected to reactive ion etching to thin film 51 provided on the back surface side of the silicon substrate 20, the Si 3 N 1 μm thick T on the thin film 32 of 4
The X-ray absorber layer 40 made of a was uniformly formed by the RF sputtering method (see FIG. 7). Then, a resist pattern (not shown) is formed on the X-ray absorber layer 40, patterning is performed by reactive ion etching using the resist pattern as a mask, and the patterned X-ray absorption as shown in FIG. 8 is performed. Body 4 formed.

【0038】最後に、シリコン基板20の裏面側に残留
する薄膜51(すなわち保護膜5)をマスクにして上記
シリコン基板20を熱アルカリによるエッチング処理を
施し、X線透過窓1を有する枠体2を形成して図1に示
すようなX線露光用マスクを製造した。
Finally, using the thin film 51 (that is, the protective film 5) remaining on the back surface side of the silicon substrate 20 as a mask, the silicon substrate 20 is subjected to etching treatment with a hot alkali, and the frame body 2 having the X-ray transmission window 1 is formed. Then, an X-ray exposure mask as shown in FIG. 1 was manufactured.

【0039】尚、この処理の際、Si34から成る上記
薄膜32はその内部応力が解放されているため薄膜32
(すなわち透過性支持膜3)の破損は起こらなかった。
During this process, since the internal stress of the thin film 32 made of Si 3 N 4 is released, the thin film 32 is removed.
(That is, the permeable support membrane 3) did not break.

【0040】[0040]

【発明の効果】請求項1〜2に係る発明によれば、Si
Nx(但し、1.0 < x ≦ 1.5)で示された
化学量論比からのずれの小さい窒化シリコン膜により透
過性支持膜が構成されているためその化学結合状態が安
定してX線照射耐性が向上すると共に、化学量論比から
のずれの小さい窒化シリコン膜はシリコンリッチのSi
Nに較べてその屈折率が小さいため可視光透過率が向上
し、かつ、上記透過性支持膜はその内部応力が解放され
た窒化シリコン膜により構成されているため製造中にお
いてこの内部応力に起因した透過性支持膜の破損を回避
できる効果を有している。
According to the inventions of claims 1 and 2, Si
Since the permeable support film is made of a silicon nitride film having a small deviation from the stoichiometric ratio represented by Nx (1.0 <x ≤ 1.5), its chemical bonding state is stable. The silicon nitride film, which has improved radiation resistance and a small deviation from the stoichiometric ratio, is a silicon-rich Si.
Since the refractive index is smaller than that of N, the visible light transmittance is improved, and since the transparent support film is composed of the silicon nitride film in which the internal stress is released, it is caused by the internal stress during manufacturing. It has the effect of avoiding damage to the permeable support membrane.

【0041】また、請求項3〜4に係る発明によれば、
X線照射耐性の向上が図れしかも製造中に透過性支持膜
の破損が起こり難いX線露光用マスクを確実にしかも容
易に製造できる効果を有している。
According to the inventions of claims 3 to 4,
This has the effect that the X-ray exposure mask can be reliably and easily manufactured with improved resistance to X-ray irradiation and in which damage to the transparent support film is less likely to occur during manufacture.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係るX線露光用マスクの断面説明図。FIG. 1 is an explanatory cross-sectional view of an X-ray exposure mask according to an example.

【図2】実施例に係るX線露光用マスクの製造工程を示
す説明図。
FIG. 2 is an explanatory view showing a manufacturing process of the X-ray exposure mask according to the embodiment.

【図3】実施例に係るX線露光用マスクの製造工程を示
す説明図。
FIG. 3 is an explanatory view showing a manufacturing process of the X-ray exposure mask according to the embodiment.

【図4】実施例に係るX線露光用マスクの製造工程を示
す説明図。
FIG. 4 is an explanatory view showing a manufacturing process of the X-ray exposure mask according to the embodiment.

【図5】実施例に係るX線露光用マスクの製造工程を示
す説明図。
FIG. 5 is an explanatory view showing a manufacturing process of the X-ray exposure mask according to the embodiment.

【図6】実施例に係るX線露光用マスクの製造工程を示
す説明図。
FIG. 6 is an explanatory view showing a manufacturing process of the X-ray exposure mask according to the embodiment.

【図7】実施例に係るX線露光用マスクの製造工程を示
す説明図。
FIG. 7 is an explanatory view showing the manufacturing process of the X-ray exposure mask according to the example.

【図8】実施例に係るX線露光用マスクの製造工程を示
す説明図。
FIG. 8 is an explanatory view showing the manufacturing process of the X-ray exposure mask according to the example.

【図9】従来のX線露光用マスクの断面説明図。FIG. 9 is a cross-sectional explanatory view of a conventional X-ray exposure mask.

【図10】(A)〜(E)は従来例に係るX線露光用マ
スクの製造工程を示す説明図。
10A to 10E are explanatory views showing a manufacturing process of an X-ray exposure mask according to a conventional example.

【符号の説明】[Explanation of symbols]

1 X線透過窓 2 枠体 3 透過性支持膜 4 X線吸収体 5 保護膜 1 X-ray transmission window 2 Frame 3 Transparent support film 4 X-ray absorber 5 Protective film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】中央にX線透過窓を有する枠体と、この枠
体にその周縁部が保持されアライメント光とX線を共に
透過する透過性支持膜と、この透過性支持膜の上記枠体
とは反対側の主面上にパターン状に設けられたX線吸収
体と、上記枠体の側面並びに裏面に設けられかつ透過性
支持膜と同一の材料で構成される保護膜とを備えるX線
露光用マスクにおいて、 上記透過性支持膜が、SiNx(但し、1.0 < x
≦ 1.5)で示されその内部応力が解放された窒化
シリコン膜により構成されていることを特徴とするX線
露光用マスク。
1. A frame body having an X-ray transmission window in the center, a transparent support film whose peripheral portion is held by the frame body and transmits both alignment light and X-rays, and the frame of the transparent support film. An X-ray absorber provided in a pattern on the main surface opposite to the body, and a protective film provided on the side surface and the back surface of the frame body and made of the same material as the transparent support film. In the mask for X-ray exposure, the transparent support film is made of SiNx (provided that 1.0 <x
An X-ray exposure mask, which is formed of a silicon nitride film whose internal stress is released by ≦ 1.5).
【請求項2】上記窒化シリコンがSi34であることを
特徴とする請求項1記載のX線露光用マスク。
2. The X-ray exposure mask according to claim 1, wherein the silicon nitride is Si 3 N 4 .
【請求項3】中央にX線透過窓を有する枠体と、この枠
体にその周縁部が保持されアライメント光とX線を共に
透過する透過性支持膜と、この透過性支持膜の上記枠体
とは反対側の主面上にパターン状に設けられたX線吸収
体と、上記枠体の側面並びに裏面に設けられかつ透過性
支持膜と同一の材料で構成される保護膜とを備えるX線
露光用マスクの製造方法において、 枠体を構成する平坦状の基材両面にSiNx(1.0
< x ≦ 1.5)で示される窒化シリコン膜を成膜
し、かつ、主面側の窒化シリコン膜のみを除去して上記
基材をその主面側が凸状となる形状に変形させる工程
と、 変形された上記基材の両面に再度SiNx(1.0 <
x ≦ 1.5)で示される窒化シリコン膜を成膜
し、かつ、裏面側に成膜された2番目の窒化シリコン膜
を除去して上記基材を平坦状に戻すことにより基材の主
面に成膜された窒化シリコン膜の内部応力を解放させる
工程、 を具備することを特徴とするX線露光用マスクの製造方
法。
3. A frame body having an X-ray transmission window in the center, a transparent support film whose peripheral portion is held by the frame body and transmits both alignment light and X-rays, and the frame of the transparent support film. An X-ray absorber provided in a pattern on the main surface opposite to the body, and a protective film provided on the side surface and the back surface of the frame body and made of the same material as the transparent support film. In the method for manufacturing an X-ray exposure mask, SiNx (1.0
<X ≤ 1.5), forming a silicon nitride film, and removing only the silicon nitride film on the main surface side to deform the substrate into a shape in which the main surface side is convex. , SiNx (1.0 <1.0
x ≤ 1.5) is formed, and the second silicon nitride film formed on the back surface side is removed to return the above-mentioned base material to a flat shape, thereby forming a main surface of the base material. And a step of releasing the internal stress of the silicon nitride film formed on the surface, the method for manufacturing an X-ray exposure mask.
【請求項4】上記窒化シリコンがSi34であることを
特徴とする請求項3記載のX線露光用マスクの製造方
法。
4. The method of manufacturing an X-ray exposure mask according to claim 3, wherein the silicon nitride is Si 3 N 4 .
JP4623793A 1993-03-08 1993-03-08 Mask for x-ray exposure and manufacture thereof Pending JPH06260397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4623793A JPH06260397A (en) 1993-03-08 1993-03-08 Mask for x-ray exposure and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4623793A JPH06260397A (en) 1993-03-08 1993-03-08 Mask for x-ray exposure and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06260397A true JPH06260397A (en) 1994-09-16

Family

ID=12741524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4623793A Pending JPH06260397A (en) 1993-03-08 1993-03-08 Mask for x-ray exposure and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06260397A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029736A (en) * 2002-03-29 2004-01-29 Hoya Corp Method for determining flatness of substrate for electronic device, production method and method for producing mask blank and mask for transfer
JP2008177468A (en) * 2007-01-22 2008-07-31 Tokyo Electron Ltd Processing method of substrate, coater and substrate treatment system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004029736A (en) * 2002-03-29 2004-01-29 Hoya Corp Method for determining flatness of substrate for electronic device, production method and method for producing mask blank and mask for transfer
JP2008177468A (en) * 2007-01-22 2008-07-31 Tokyo Electron Ltd Processing method of substrate, coater and substrate treatment system

Similar Documents

Publication Publication Date Title
US4152601A (en) X-ray lithography mask and method for manufacturing the same
JPH06260397A (en) Mask for x-ray exposure and manufacture thereof
JP3223581B2 (en) X-ray exposure mask and method of manufacturing the same
JPH06163368A (en) X-ray exposure mask
JPH0675190B2 (en) Monolithic channel mask with amorphous / single crystal structure
JPH0737779A (en) X-ray exposure mask and its mask blank
JP2542652B2 (en) Method of manufacturing mask for X-ray exposure
JP3253774B2 (en) X-ray exposure mask and mask blank used therefor
JPH0316116A (en) Mask structure for x-ray lithography and x-ray exposure using mask structure
JP3899537B2 (en) X-ray exposure mask blank and manufacturing method thereof
JPH10321495A (en) X-ray exposure mask and its manufacture
JPS641926B2 (en)
JP3209638B2 (en) X-ray exposure mask
JP3387222B2 (en) X-ray exposure mask and mask blank used for manufacturing the same
JPH07153679A (en) Transmission-type multilayer film
JPS6030138A (en) Mask for x-ray exposure
JPH05234843A (en) Substrate chuck of aligner
JPH04130712A (en) Mask for x-ray exposure and manufacture thereof
JPS63115332A (en) Mask for x-ray exposure
JPH0936016A (en) Membrane, mask, aligner using them, and device manufacturing method
JPH0786149A (en) Formation of mask for x-ray exposure
JPH01173618A (en) Method for forming mask membrane for x-ray lithography
JPH03217013A (en) X-ray mask
JPH08167555A (en) X-ray mask, manufacture therefor, and producing method of device using x-ray mask
JP2003197500A (en) X-ray exposure mask and manufacturing method thereof