JPH06257416A - Shaft cooling water control device for combined cycle power plant - Google Patents

Shaft cooling water control device for combined cycle power plant

Info

Publication number
JPH06257416A
JPH06257416A JP4402093A JP4402093A JPH06257416A JP H06257416 A JPH06257416 A JP H06257416A JP 4402093 A JP4402093 A JP 4402093A JP 4402093 A JP4402093 A JP 4402093A JP H06257416 A JPH06257416 A JP H06257416A
Authority
JP
Japan
Prior art keywords
shaft
cooling water
valve
flow rate
inlet flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4402093A
Other languages
Japanese (ja)
Inventor
Mitsunobu Nakajo
光伸 中条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4402093A priority Critical patent/JPH06257416A/en
Publication of JPH06257416A publication Critical patent/JPH06257416A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To supply the required amount of cooling water to only the bearing part of a prime mover by providing a bypass pipe provided with a valve controlled by a control circuit for detecting by means of a detector sufficient lowering of the temperature of high temperature parts having residual heat so as to close the valve. CONSTITUTION:The cooling water cooled by a cooling water-cooler flows into a serial inlets shaft cooling header l. Thereafter, the cooled cooling water is depressurized by respective shaft inlet flow rate adjusting main-valve 2, and then distributed to respective apparatuses 5 through a shaft-inlet shaft cooling header 3 and respective apparatus inlet adjusting valves 11. With a bearing cooling water supplying line 9 only, the upstream side of a shaft inlet flow rate adjusting main-valve 2 of a shaft cooling water supplying mother-pipe 6 and the upstream side of the apparatus inlet adjusting valve 11 are connected to each other by a bypass pipeline 7 containing an ON/OFF valve 8. Even when the opening of the shaft inlet flow rate adjusting main-valve 2 is minimal due to shaft-stopping, the ON/OFF valve 8 is opened. Thus, regardless of the opening of the shaft inlet flow rate adjusting main-valve 2, the required amount of cooling water can be supplied to only the bearing part of a motor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンバインドサイクル
発電プラントの停止後における原動機軸受部の軸冷却水
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shaft cooling water control device for a prime mover bearing portion after a combined cycle power plant is stopped.

【0002】[0002]

【従来の技術】最近の火力プラントは、高効率運転・運
用の多様化および毎日の運転・停止の面で起動時間が短
く有利なコンバインドサイクル発電プラントが採用され
る場合が多い。しかし、原動機の各軸毎の出力が通常の
汽力発電プラントに比べて小さいことから複数の軸で一
系列を構成しており、部分負荷運用は必要出力分の軸を
運転(例えば4軸1系列のプラントで75%運用時に
は、3軸運転,1軸停止)することにより、高効率運用
を実現している。上述したような、コンバインドサイク
ル発電プラントの従来の軸冷システムの概要を図5の系
統図を参照して説明する。
2. Description of the Related Art Recent thermal power plants often employ a combined cycle power plant which has a short starting time and is advantageous in terms of diversification of highly efficient operation / operation and daily operation / stop. However, since the output of each axis of the prime mover is smaller than that of a normal steam power plant, multiple axes form one series, and partial load operation operates the axes for the required output (for example, 4 axes 1 series). In this plant, high efficiency operation is realized by operating 3 axes and stopping 1 axis at 75% operation. An outline of the conventional shaft cooling system of the combined cycle power generation plant as described above will be described with reference to the system diagram of FIG.

【0003】同図に示すように、冷却水ポンプ30によ
って送り出された冷却水は、冷却器入口ヘッダ31を介
して、複数の冷却水冷却器32へ送られ、ここで冷却さ
れた後、冷却器出口ヘッダ33を通り、系列入口軸冷ヘ
ッダ34へ送られる。系列入口軸冷ヘッダ34には、軸
入口流量調節元弁35を含む各軸冷却水供給母管41が
軸数だけ設けられている。冷却水はそれぞれの母管41
に接続されている各軸入口軸冷ヘッダ36及び軸機器入
口調節弁37を介し、各軸機器38へと供給された後、
各軸出口軸冷ヘッダ39及び系列出口軸冷ヘッダ40を
経て、冷却水ポンプ30へと戻される。
As shown in the figure, the cooling water sent out by the cooling water pump 30 is sent to a plurality of cooling water coolers 32 via a cooler inlet header 31, and after being cooled there, it is cooled. It passes through the outlet header 33 and is sent to the series inlet shaft cooling header 34. The series inlet shaft cooling header 34 is provided with each shaft cooling water supply mother pipe 41 including the shaft inlet flow rate control valve 35 by the number of shafts. The cooling water is supplied to each mother pipe 41.
After being supplied to each shaft device 38 through each shaft inlet shaft cooling header 36 and shaft device inlet control valve 37 connected to
It is returned to the cooling water pump 30 via each shaft outlet shaft cooling header 39 and series outlet shaft cooling header 40.

【0004】このような軸冷却水システムは、部分負荷
運用時には必要熱交換量を熱交換する台数の冷却水冷却
器32だけを運用し、かつ停止軸の軸入口流量調節元弁
35は最小流量を流すミニマム開度とする(低負荷時に
は冷却水ポンプ30も1台停止する)ことにより、経済
的な部分負荷時のプラント運用を実現している。
Such a shaft cooling water system operates only the number of cooling water coolers 32 that exchange heat in a required heat exchange amount at the time of partial load operation, and the shaft inlet flow rate control valve 35 of the stopped shaft has a minimum flow rate. Is set to a minimum opening (the cooling water pump 30 is also stopped when the load is low) to realize economical plant operation during partial load.

【0005】[0005]

【発明が解決しようとする課題】ところで、上述のよう
な軸冷却水システムにおいて、部分負荷運用時には、停
止された軸の軸機器38の中の原動機軸受部(特にター
ビンの)だけは、運転時に高温ガスにさらされていたこ
とから、軸停止後も残熱を有するため2〜3時間程度の
冷却が必要である。しかし、軸停止時と同時に、軸入口
流量調節元弁35がミニマム開度となってしまうため、
原動機軸受部へのみに必要冷却水量を供給することが困
難であった。
In the shaft cooling water system as described above, during partial load operation, only the prime mover bearing portion (particularly of the turbine) in the shaft device 38 of the stopped shaft is in operation. Since it was exposed to high-temperature gas, it has residual heat even after the shaft is stopped, so cooling for about 2-3 hours is required. However, at the same time when the shaft is stopped, the shaft inlet flow rate control valve 35 becomes the minimum opening,
It was difficult to supply the required amount of cooling water only to the prime mover bearing.

【0006】本発明は、上記事情に鑑みてなされたもの
で、その目的は経済的な部分負荷時のプラント運用の実
現という本来の目的を失うことなく、停止された軸の原
動機軸受部のみに必要冷却水量を供給するコンバインド
サイクル発電プラント用軸冷却水制御装置を提供するこ
とにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide only a prime mover bearing portion of a stopped shaft without losing the original purpose of realizing plant operation under economical partial load. An object of the present invention is to provide a shaft cooling water control device for a combined cycle power plant that supplies a required amount of cooling water.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、冷却水を原動機と発電機からなる軸へ送
るポンプと、この冷却水の冷却を行う熱交換器と冷却水
の圧力を均一にするヘッダ部を有する複数の軸で1系列
としたコンバインドサイクル発電プラントの軸冷却水系
統において、各軸入口流量調節元弁前と高温部品冷却ラ
インとを、軸停止時,各軸入口流量調節元弁がミニマム
開度になったことを検知して開、軸停止後,残熱をもつ
高温部品の温度が十分冷えたことを温度検知器により検
知して閉とする制御回路により制御される弁を設けたバ
イパス管を接続し、軸停止後も残熱をもつ高温部品に安
定して必要冷却水量を供給するように構成したことを特
徴とする。
In order to achieve the above object, the present invention provides a pump for sending cooling water to a shaft composed of a prime mover and a generator, a heat exchanger for cooling this cooling water, and a cooling water. In a shaft cooling water system of a combined cycle power plant in which a plurality of shafts having a header section for equalizing pressure are combined into one series, in front of each shaft inlet flow rate control valve and high temperature component cooling line, when the shaft is stopped, each shaft is stopped. It is opened by detecting that the inlet flow rate control valve has reached the minimum opening, and after the axis is stopped, the temperature detector detects that the temperature of the high temperature component with residual heat has cooled sufficiently and closes it. It is characterized in that a bypass pipe provided with a valve to be controlled is connected so as to stably supply the required amount of cooling water to high temperature parts having residual heat even after the shaft is stopped.

【0008】[0008]

【作用】本発明によると、軸入口流量調節元弁が軸停止
でミニマム開度になっても、バイパス配管に設置された
弁を開にすることにより、軸入口流量調節元弁の開度に
左右されることなく、軸入口流量調節元弁前から原動機
軸受部へのみ必要冷却水量の供給が可能となる。
According to the present invention, even if the shaft inlet flow control valve is at the minimum opening due to shaft stop, the valve installed in the bypass pipe is opened to adjust the opening of the shaft inlet flow control valve. It is possible to supply the required amount of cooling water only from the front of the shaft inlet flow rate control valve to the prime mover bearing portion without being affected by it.

【0009】[0009]

【実施例】以下、本発明の実施例を図を参照して説明す
る。
Embodiments of the present invention will now be described with reference to the drawings.

【0010】図1は本発明の一実施例の系統構成図であ
る。同図において、冷却水冷却器により冷却された冷却
水は、系列入口軸冷ヘッダ1に流入する。その後、各軸
入口流量調節元弁2により減圧され、各軸入口軸冷ヘッ
ダ3を介し、各機器入口調節弁11を経て各機器5へ分
配された後、各軸出口軸冷ヘッダ12及び系列出口軸冷
ヘッダ13を経て冷却水ポンプへ戻される。しかし、軸
受冷却水供給ライン9だけは軸冷却水供給母管6の軸入
口流量調節元弁2の上流側から、軸受冷却水供給ライン
9の機器入口調節弁11の上流側までをON/OFF弁
8を含むバイパス配管7で繋いでいる。また、軸受冷却
水供給ライン9のバイパス配管7との合流点の上流に
は、逆流防止のために逆止弁10を設けている。次に、
上述したON/OFF弁8の構成とその動作を図2の制
御回路及び図3の動作状態を説明する図を参照して説明
する。
FIG. 1 is a system configuration diagram of an embodiment of the present invention. In the figure, the cooling water cooled by the cooling water cooler flows into the series inlet shaft cooling header 1. After that, the pressure is reduced by each shaft inlet flow rate control valve 2, and is distributed to each device 5 through each device inlet control valve 11 via each shaft inlet shaft cooling header 3, and then each shaft outlet shaft cooling header 12 and series. It is returned to the cooling water pump through the outlet shaft cooling header 13. However, only the bearing cooling water supply line 9 is turned on / off from the upstream side of the shaft inlet flow rate control valve 2 of the shaft cooling water supply mother pipe 6 to the upstream side of the equipment inlet control valve 11 of the bearing cooling water supply line 9. They are connected by a bypass pipe 7 including a valve 8. Further, a check valve 10 is provided upstream of the confluence point of the bearing cooling water supply line 9 with the bypass pipe 7 to prevent backflow. next,
The configuration and operation of the ON / OFF valve 8 described above will be described with reference to the control circuit of FIG. 2 and the operation state of FIG.

【0011】図2(A)の制御回路図に示すように、バ
イパス配管7上にあるON/OFF弁8は、軸入口流量
調節元弁ミニマム開度信号22と軸受メタル温度低信号
21の2つの信号により制御される弁である。軸入口流
量調節元弁2とガスタービン軸受部15に取り付けられ
た温度検出器16より制御回路20内に取り入れられた
2つの電気信号は、排他的論理和演算回路23及び論理
否定演算回路24において演算される。
As shown in the control circuit diagram of FIG. 2 (A), the ON / OFF valve 8 on the bypass pipe 7 has a shaft opening flow rate control valve minimum opening signal 22 and a bearing metal temperature low signal 21. It is a valve controlled by two signals. Two electrical signals taken into the control circuit 20 from the temperature detector 16 attached to the shaft inlet flow rate control valve 2 and the gas turbine bearing portion 15 are supplied to the exclusive OR operation circuit 23 and the logical NOT operation circuit 24. Is calculated.

【0012】すなわち、図2(B)の排他的論理和表に
示すように、(1) 軸停止前は軸入口流量調節元弁2は通
常開度で、軸受メタル温度通常運転温度であるので、両
者の信号は0であり、排他的理論和の解は0となり、O
N/OFF弁8は全閉25である。(2) 軸停止時は軸入
口流量調節元弁2はミニマム開度になり1で、軸受メタ
ル温度はまだ温度低の設定値よりも高いため0であり、
その排他的論理和の解は1となり、ON/OFF弁8は
全開26となる。(3) ガスタービン軸受部の冷却終了時
は、軸入口流量調節元弁2はミニマム開度で1、軸受メ
タル温度も設定値以下になり1が出力され、その排他的
論理和は0になり、ON/OFF弁8は全閉25とな
る。上述したようにON/OFF弁8は軸受メタル温度
低信号21と軸入口流量調節元弁ミニマム開度信号22
の2つの信号により制御される。
That is, as shown in the exclusive OR table of FIG. 2 (B), (1) before the shaft is stopped, the shaft inlet flow rate control valve 2 is at the normal opening and the bearing metal temperature is at the normal operating temperature. , The signals of both are 0, the solution of the exclusive theoretical sum is 0, and O
The N / OFF valve 8 is fully closed 25. (2) When the shaft is stopped, the shaft inlet flow rate control valve 2 has a minimum opening of 1 and the bearing metal temperature is still higher than the low temperature set value, so it is 0.
The solution of the exclusive OR is 1, and the ON / OFF valve 8 is fully opened 26. (3) When the cooling of the gas turbine bearing is completed, the shaft inlet flow rate control valve 2 is set to 1 at the minimum opening, the bearing metal temperature is also below the set value, and 1 is output, and the exclusive OR becomes 0. , ON / OFF valve 8 is fully closed 25. As described above, the ON / OFF valve 8 has the bearing metal temperature low signal 21 and the shaft inlet flow rate adjustment source valve minimum opening signal 22.
Are controlled by two signals.

【0013】図3は、軸回転数、軸入口流量調節元弁開
度、軸受メタル温度、ON/OFF弁電気信号の時間経
過を示した図であり、以下、再び図1の系統図を参照し
て説明する。
FIG. 3 is a diagram showing the time course of the shaft rotation speed, the shaft inlet flow control valve opening, the bearing metal temperature, and the ON / OFF valve electric signal. Refer to the system diagram of FIG. 1 again. And explain.

【0014】今、軸停止により軸入口流量調節元弁2が
ミニマム開度になると、バイパス配管7上のON/OF
F弁8が開となり、原動機軸受部のメタル温度が基準値
以下になるまでは、軸受冷却水供給ライン9にのみ他の
軸機器5とは別に必要冷却水量を供給し、軸受部のメタ
ル温度が基準値以下になり、軸受部の安全が確認された
後に、バイパス配管7上のON/OFF弁8が閉とな
り、通常の軸停止の状態に戻される。
Now, when the shaft inlet flow rate control valve 2 reaches the minimum opening degree due to the shaft stop, ON / OF on the bypass pipe 7 is performed.
Until the F valve 8 is opened and the metal temperature of the motor bearing part falls below the reference value, the required cooling water amount is supplied only to the bearing cooling water supply line 9 separately from the other shaft equipment 5, and the metal temperature of the bearing part is increased. Is below the reference value, and after the safety of the bearing is confirmed, the ON / OFF valve 8 on the bypass pipe 7 is closed and the normal shaft stop state is restored.

【0015】以上の結果より明らかなように、本発明は
図1に示すように、軸入口流量調節元弁2前の軸冷却水
供給母管6と軸冷却水供給ライン9を、軸停止で開、原
動機軸受メタル温度低で閉となるON/OFF弁8を含
むバイパス配管7でつなぐことにより、軸入口流量調節
元弁2の開度に左右されることなく、原動機軸受軸冷却
器へのみ必要冷却水量の供給が可能となる。図4は本発
明の他の実施例の構成図である。
As is clear from the above results, according to the present invention, as shown in FIG. 1, the shaft cooling water supply mother pipe 6 and the shaft cooling water supply line 9 before the shaft inlet flow rate control valve 2 can be stopped. By connecting with a bypass pipe 7 that includes an ON / OFF valve 8 that opens and closes when the motor bearing metal temperature is low, it does not depend on the opening of the shaft inlet flow rate control valve 2 and only to the engine bearing shaft cooler. It is possible to supply the required amount of cooling water. FIG. 4 is a block diagram of another embodiment of the present invention.

【0016】本実施例が図1の実施例と相違する点は、
バイパス配管の取り出し口が、軸冷却水供給母管6では
なく、系列入口軸冷ヘッダ1から直接取り出すようにし
た点のみであり、その他の構成は同一であるので、同一
部分には同一符号を付してその説明は省略する。本実施
例におけるON/OFF弁8も図1の実施例のON/O
FF弁8と同様に制御されることは勿論である。
This embodiment is different from the embodiment of FIG. 1 in that
Only the outlet of the bypass pipe is taken out directly from the series inlet shaft cooling header 1 instead of the shaft cooling water supply mother pipe 6, and other configurations are the same, so the same portions are denoted by the same reference numerals. The description is omitted. The ON / OFF valve 8 of this embodiment is also the ON / O of the embodiment of FIG.
Of course, it is controlled similarly to the FF valve 8.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
従来の軸冷却水システムにバイパス配管とON/OFF
弁を追加するという極めて簡易な構成により、経済的な
部分負荷時のプラント運用の実現という本来の目的を失
うことなく停止された軸の原動機軸受軸冷却器のみに必
要冷却水量を供給できるので、実用的には極めて有効で
ある。
As described above, according to the present invention,
Bypass piping and ON / OFF to conventional shaft cooling water system
With the extremely simple configuration of adding a valve, the required amount of cooling water can be supplied only to the prime mover bearing shaft cooler of the stopped shaft without losing the original purpose of realizing plant operation under economical partial load. It is extremely effective in practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である軸冷却水システムの系
統構成図。
FIG. 1 is a system configuration diagram of a shaft cooling water system that is an embodiment of the present invention.

【図2】同図(A)は図1のバイパス配管上のON/O
FF弁の制御回路図、同図(B)は排他的論理和表を示
した図。
FIG. 2 (A) shows ON / O on the bypass pipe of FIG.
The control circuit diagram of the FF valve, the figure (B) is the figure which showed the exclusive OR table.

【図3】図1の動作状態を説明するための図。FIG. 3 is a diagram for explaining an operation state of FIG.

【図4】本発明の他の実施例の系統構成図。FIG. 4 is a system configuration diagram of another embodiment of the present invention.

【図5】従来の軸冷却水システムの系統構成図。FIG. 5 is a system configuration diagram of a conventional shaft cooling water system.

【符号の説明】[Explanation of symbols]

1…系列入口軸冷ヘッダ、2…軸入口流量調節元弁、3
…軸入口軸冷ヘッダ、4…軸受潤滑油冷却器、5…冷却
用機器、6…軸冷却水供給母管、7…バイパス配管、8
…ON/OFF弁、9…軸受冷却水供給ライン、10…
逆止弁、11…機器入口調節弁、12…各軸出口軸冷ヘ
ッダ、13…系列出口軸冷ヘッダ、15…ガスタービン
軸受部、16…温度検出器、20…制御回路。
1 ... Series inlet shaft cooling header, 2 ... Shaft inlet flow rate control valve, 3
... Shaft inlet shaft cooling header, 4 ... Bearing lubricating oil cooler, 5 ... Cooling device, 6 ... Shaft cooling water supply mother pipe, 7 ... Bypass pipe, 8
… ON / OFF valve, 9… Bearing cooling water supply line, 10…
Check valve, 11 ... Equipment inlet control valve, 12 ... Each shaft outlet shaft cooling header, 13 ... Series outlet shaft cooling header, 15 ... Gas turbine bearing section, 16 ... Temperature detector, 20 ... Control circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷却水を原動機と発電機からなる軸へ送
るポンプと、この冷却水の冷却を行う熱交換器と冷却水
の圧力を均一にするヘッダ部を有する複数の軸で1系列
としたコンバインドサイクル発電プラントの軸冷却水系
統において、各軸入口流量調節元弁前と高温部品冷却ラ
インとを、軸停止時,各軸入口流量調節元弁がミニマム
開度になったことを検知して開、軸停止後,残熱をもつ
高温部品の温度が十分冷えたことを温度検知器により検
知して閉とする制御回路により制御される弁を設けたバ
イパス管を接続し、軸停止後も残熱をもつ高温部品に安
定して必要冷却水量を供給するように構成したことを特
徴とするコンバインドサイクル発電プラント用軸冷却水
制御装置。
1. A pump for sending cooling water to a shaft composed of a prime mover and a generator, a heat exchanger for cooling the cooling water, and a plurality of shafts each having a header section for equalizing the pressure of the cooling water. In the shaft cooling water system of the combined cycle power plant, the front of each shaft inlet flow rate control valve and the high temperature component cooling line were detected when the shaft was stopped and each shaft inlet flow control source valve reached the minimum opening degree. After the shaft is stopped and the shaft is stopped, the temperature detector detects that the temperature of the high temperature component with residual heat has cooled sufficiently and closes it.Connect the bypass pipe with the valve controlled by the control circuit. A shaft cooling water controller for a combined cycle power plant, which is configured to stably supply a required amount of cooling water to high temperature parts having residual heat.
JP4402093A 1993-03-04 1993-03-04 Shaft cooling water control device for combined cycle power plant Pending JPH06257416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4402093A JPH06257416A (en) 1993-03-04 1993-03-04 Shaft cooling water control device for combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4402093A JPH06257416A (en) 1993-03-04 1993-03-04 Shaft cooling water control device for combined cycle power plant

Publications (1)

Publication Number Publication Date
JPH06257416A true JPH06257416A (en) 1994-09-13

Family

ID=12679988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4402093A Pending JPH06257416A (en) 1993-03-04 1993-03-04 Shaft cooling water control device for combined cycle power plant

Country Status (1)

Country Link
JP (1) JPH06257416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109209608A (en) * 2018-10-17 2019-01-15 山东赛马力动力科技有限公司 A kind of more generating sets share the connection system of a radiator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109209608A (en) * 2018-10-17 2019-01-15 山东赛马力动力科技有限公司 A kind of more generating sets share the connection system of a radiator
CN109209608B (en) * 2018-10-17 2023-10-13 山东速力动力科技有限公司 Connection system for sharing one radiator by multiple generator sets

Similar Documents

Publication Publication Date Title
EP1374252B1 (en) A nuclear power plant and a method of conditioning its power generation circuit
RU2476687C2 (en) Method to control turbine plant and turbine plant
JP2005508492A5 (en)
US5758502A (en) Gas turbine intake air cooling system and operating method thereof
JPH0353443B2 (en)
JP2012194194A (en) Nuclear reactor
KR101674804B1 (en) Supercritical CO2 generation system
US5097669A (en) Control of hydrogen cooler employed in power generators
JPWO2003074854A1 (en) Turbine equipment, combined power generation equipment and turbine operating method
US20050013402A1 (en) Method of operating a nuclear power plant
JP3597552B2 (en) City gas pressure regulator with energy recovery device
JP3774487B2 (en) Combined cycle power plant
JPH06257416A (en) Shaft cooling water control device for combined cycle power plant
CN113266442B (en) Supercritical carbon dioxide recompression power generation system and operation control method thereof
CN113864020B (en) Boiler continuous blowdown waste heat and residual pressure comprehensive utilization system and control method thereof
JP2632147B2 (en) Combined cycle plant
JPS5965507A (en) Operation of complex cycle power generating plant
JP3559672B2 (en) Operation control device for thermal power plant
JPH0327724B2 (en)
JPH10131721A (en) Gas turbine steam system
JPH02163402A (en) Compound electric power plant and its operation
JPS6079107A (en) Turbine starting method
JPH01163407A (en) Circulating system for cooling water for bearing oil
JPS635103A (en) Auxiliary steam supply method of combined cycle power plant
JPH07270096A (en) Cooling water cooler bypass controller