JPH0625727B2 - Fluid viscosity measuring device - Google Patents

Fluid viscosity measuring device

Info

Publication number
JPH0625727B2
JPH0625727B2 JP6830590A JP6830590A JPH0625727B2 JP H0625727 B2 JPH0625727 B2 JP H0625727B2 JP 6830590 A JP6830590 A JP 6830590A JP 6830590 A JP6830590 A JP 6830590A JP H0625727 B2 JPH0625727 B2 JP H0625727B2
Authority
JP
Japan
Prior art keywords
compressed air
viscosity
thin tube
measuring device
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6830590A
Other languages
Japanese (ja)
Other versions
JPH03269341A (en
Inventor
祐司 銅冶
泉  信也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Original Assignee
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp filed Critical Toa Corp
Priority to JP6830590A priority Critical patent/JPH0625727B2/en
Publication of JPH03269341A publication Critical patent/JPH03269341A/en
Publication of JPH0625727B2 publication Critical patent/JPH0625727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主として土砂をポンプや、圧縮空気で送る際
にその流量を予測するのに必要な流体の粘度測定装置に
関するものである。
TECHNICAL FIELD The present invention relates to a viscosity measuring device for a fluid, which is necessary for predicting a flow rate when pumping sand or sand by compressed air.

〔従来の技術〕 従来、流体の粘度を測定するのに、例えば、石炭・水ス
ラリーの連続測定法に関する特開昭61-57833の発明のご
とく、石炭と水のスラリーを送る配管の一定区間に、圧
力損失測定器及び流量計を配置し、その配管内にスラリ
ーを流通することにより圧力損失測定器で検出した圧力
損失及び流量計で検出した流量を、ハーゲン・ポワズー
ユの式に当てはめてそのスラリーの粘度を連続的に求め
る方法が提案されている。
[Prior Art] Conventionally, for measuring the viscosity of a fluid, for example, as in the invention of JP-A-61-57833 relating to a continuous measurement method of coal / water slurry, a fixed section of a pipe for sending a slurry of coal and water is used. A pressure loss measuring instrument and a flow meter are placed, and the slurry is applied by applying the pressure loss detected by the pressure loss measuring instrument and the flow rate detected by the flow meter by circulating the slurry through the pipe to the Hagen-Poiseuille formula. There has been proposed a method for continuously obtaining the viscosity of.

また、配管から細管を備えたバイパス管を設け、細管に
圧力損失測定器と流量計とを設置して、ハーゲン・ポワ
ズーユの式からスラリーの粘度を求める方法も提案され
ている。
Further, a method has also been proposed in which a bypass pipe having a thin pipe is provided from the pipe, a pressure loss measuring device and a flowmeter are installed in the thin pipe, and the viscosity of the slurry is obtained from the Hagen-Poiseuille equation.

しかしながら、上記のいずれの方法も、敷設された管路
にスラリーを実際に流して測定するものであり、管路を
敷設する前に粘度の測定ができないという問題がある。
However, in any of the above methods, the slurry is actually flowed in the laid pipeline for measurement, and there is a problem that the viscosity cannot be measured before laying the pipeline.

〔発明の解決しようとする課題〕[Problems to be Solved by the Invention]

本発明は、前記従来の問題点を解決するためになされた
ものであり、流体を搬送する管路を敷設する前に、容易
にその流体の粘度を測定できる装置を提供することを解
決課題としたものである。
The present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to provide an apparatus capable of easily measuring the viscosity of a fluid before laying a pipeline for conveying the fluid. It was done.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の課題を解決するための手段として、本発明の流体
の粘度測定装置は、粘度を測定する試料を入れる2基の
密閉型の容器の間を、両端部にそれぞれ開閉バルブ及び
圧縮空気注入バルブを有し、かつ内径の100倍程度以上
の長さを有する細管で連通すると共に、この細管の両端
の各端部からの影響のない位置にそれぞれ圧力計を、そ
して、その2つの圧力計の間に流速計または流量計を配
設し、さらに各容器のそれぞれの上部に圧縮空気注入用
及び排出用の各バルブを配設することにより構成され
る。
As a means for solving the above-mentioned problems, a fluid viscosity measuring device of the present invention comprises an open / close valve and a compressed air injection valve at both ends between two hermetically-sealed containers containing a sample whose viscosity is to be measured. And communicate with each other by a thin tube having a length of about 100 times the inner diameter, and a pressure gauge at each end of each end of the thin tube that is not affected, and the two pressure gauges A flow velocity meter or a flow meter is disposed between them, and compressed air injecting and exhausting valves are disposed above the respective containers.

なお、上記の各圧縮空気注入用のバルブは、それぞれ管
路を介してコンプレッサーなどの圧縮空気供給源に連絡
するものとする。
It should be noted that each of the above-mentioned valves for injecting compressed air is connected to a compressed air supply source such as a compressor via a pipeline.

以上の構成からなる装置においては、測定する試料を、
一方の容器から他方の容器へ圧縮空気によって細管経由
移動する操作を繰り返し行ない、得られた流速と2点の
圧力の値をハーゲン・ポワズーユの式に当てはめてその
流体の粘度を測定することができる。
In the device having the above configuration, the sample to be measured is
It is possible to measure the viscosity of the fluid by repeating the operation of moving from one container to the other container by compressed air through a narrow tube and applying the obtained flow velocity and the pressure value at two points to the Hagen-Poiseuille equation. .

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例を説明するが、第1
図は本発明の一実施例における流体の粘度測定装置の側
面図であり、この装置は粘度を測定する試料を入れる密
閉型の2基の容器11,12を配設し、これらの容器11と12
との間を、内径Dの100倍から200倍程度以上の長さl
を有する細管13で連通している。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a side view of a fluid viscosity measuring device according to an embodiment of the present invention, in which two sealed containers 11 and 12 for containing a sample whose viscosity is to be measured are provided. 12
The length l is between 100 times and 200 times the inner diameter D
It is communicated with a thin tube 13 having.

次に、この細管13の両端の各端部からの影響のない位
置、すなわち、各端部から細管13の内径Dの約60倍以上
離れた位置にそれぞれ圧力計14A,14Bを、そしてこれ
ら圧力計14A,14Bの間にドップラー型などの流速計15
または流量計を配設している。
Next, pressure gauges 14A and 14B are placed at positions where there is no influence from the ends of the thin tube 13, that is, at positions away from each end by about 60 times or more of the inner diameter D of the thin tube 13, and these pressures are applied. Flowmeter 15 such as Doppler type between 14A and 14B in total
Or a flow meter is installed.

さらに、各容器11と12のそれぞれの上部に、圧縮空気注
入バルブ3,4及び圧縮空気排出バルブ5,6を設ける
と共に、細管13の両端部に、開閉バルブ1,2及び圧縮
空気注入バルブ7,8を設けている。
Further, the compressed air injection valves 3 and 4 and the compressed air discharge valves 5 and 6 are provided on the upper portions of the respective containers 11 and 12, and the opening / closing valves 1 and 2 and the compressed air injection valve 7 are provided at both ends of the thin tube 13. , 8 are provided.

上記の各圧縮空気注入バルブ3,4及び7,8は管路9
を介してそれぞれコンプレッサーなどの圧縮空気供給源
10に連絡されているが、細管13の両端に設けた圧縮空気
注入バルブ7,8を開けて細管13内に注入される圧縮空
気は容器11,12及び細管13内の試料を撹拌する機能をす
る。
Each of the compressed air injection valves 3, 4 and 7, 8 described above is provided with a line 9
Compressed air supply source such as compressor via
The compressed air injected into the thin tube 13 by opening the compressed air injection valves 7 and 8 provided at both ends of the thin tube 13 has a function of stirring the samples in the vessels 11 and 12 and the thin tube 13. To do.

次に、上記の構成からなる流体の粘度測定装置の使用手
順について説明すると、まず全てのバルブ、即ち、開閉
バルブ1,2と圧縮空気注入バルブ3,4と圧縮空気排
出バルブ5,6ならびに圧縮空気注入バルブ7,8を閉
じて、容器11内に粘度を測定する土砂などの試料を入
れ、両方の容器11,12ともにそれぞれの蓋11A,11Bを
して密閉する。
Next, the procedure of using the fluid viscosity measuring device having the above-described configuration will be described. First, all valves, that is, the opening / closing valves 1 and 2, the compressed air injection valves 3 and 4, the compressed air discharge valves 5 and 6, and the compression valve are described. The air injection valves 7 and 8 are closed, a sample such as earth and sand whose viscosity is to be measured is put in the container 11, and both the containers 11 and 12 are closed with respective lids 11A and 11B.

そこで、圧縮空気注入バルブ3と開閉バルブ1,2とを
開けると、試料は細管13を経由して容器11から容器12へ
と移動するが、試料が細管13を流れている間の流速を流
速計15で、そして細管13の両端側の2点の圧力を各圧力
計14A,14Bで測定し、ペンレコーダ等に記録し、それ
らの流速と圧力損失をハーゲン・ポワズーユの式に当て
はめて粘度を算出する。
Therefore, when the compressed air injection valve 3 and the opening / closing valves 1 and 2 are opened, the sample moves from the container 11 to the container 12 via the thin tube 13, but the flow velocity is changed while the sample is flowing through the thin tube 13. The pressure at two points on both ends of the thin tube 13 was measured with each pressure gauge 14A and 14B, recorded on a pen recorder, etc., and the flow velocity and pressure loss were applied to the Hagen-Poiseuille formula to determine the viscosity. calculate.

次に、開閉バルブ2と圧縮空気注入バルブ3を閉じて、
圧縮空気排出バルブ5,6を開けて容器11,12及び細管
13内の圧縮空気を矢印Aのごとく排出する。
Next, close the open / close valve 2 and the compressed air injection valve 3,
Open the compressed air discharge valves 5 and 6 and containers 11 and 12 and thin tubes.
The compressed air in 13 is discharged as shown by arrow A.

さらに、圧縮空気排出バルブ5,6を閉じ、開閉バルブ
2と圧縮空気注入バルブ4とを開けて、試料を容器12か
ら細管13を経由して容器11に移動する。
Further, the compressed air discharge valves 5 and 6 are closed, the open / close valve 2 and the compressed air injection valve 4 are opened, and the sample is moved from the container 12 to the container 11 via the thin tube 13.

そこで、試料が細管13を流れている間の流速を流速計15
で、そして2点の圧力を圧力計14A,14Bでそれぞれ測
定し、ペンレコーダ等に記録し、それらの流速と圧力損
失から前記と同様に粘度を算出する。
Therefore, the flow velocity of the sample while flowing through the thin tube 13
Then, the pressures at the two points are measured with the pressure gauges 14A and 14B, recorded on a pen recorder or the like, and the viscosity is calculated from the flow velocity and the pressure loss thereof in the same manner as described above.

以上の操作を、試料の粘度が定常化するまで繰り返して
行なうことになる。
The above operation is repeated until the viscosity of the sample becomes steady.

なお、試料の粒度分布が広い場合には、試料を容器11に
入れた後、試料を移動する前に開閉バルブ1と圧縮空気
注入バルブ3を閉じ、圧縮空気排出バルブ5と圧縮空気
注入バルブ7とを開けて容器11内に圧縮空気を注入する
ことにより、試料を撹拌して試料を一様にすることが必
要である。
When the particle size distribution of the sample is wide, after opening the sample in the container 11 and before moving the sample, the open / close valve 1 and the compressed air injection valve 3 are closed, and the compressed air discharge valve 5 and the compressed air injection valve 7 are closed. It is necessary to stir and homogenize the sample by opening and and injecting compressed air into the container 11.

以上の粘度測定装置によれば、浚渫した土砂を搬送する
管路を敷設する時の土砂の粘度を知ることができ、それ
によりその搬送距離と土砂の土量などの設計の計算を事
前に行なうことができる。
According to the above viscosity measuring device, it is possible to know the viscosity of the sediment when laying the pipeline for conveying the dredged sediment, and the calculation of the design such as the transportation distance and the volume of the sediment can be performed in advance. be able to.

上記粘度の算出に使用されるハーゲン・ポワズーユ式に
おいて、粘度ηは、細管13の半径をa、細管13の圧力損
失を△P、細管13の長さをl、そして細管13内の流量を
Qとすれば、 で表わされ、 細管13内の流速をv、細管13の内径をDとすると、細管
13内の流量Qは、 D=2a、または なので、粘度ηは、 と変形でき、上記の分母 をX軸に、そして分子 をY軸にした第2図においてプロットすれば、測定した
流体の粘度ηを求めることができる。
In the Hagen-Poiseuille formula used to calculate the above viscosity, the viscosity η is the radius of the thin tube 13, the pressure loss of the thin tube 13 is ΔP, the length of the thin tube 13 is 1, and the flow rate in the thin tube 13 is Q. given that, , Where v is the flow velocity in the thin tube 13 and D is the inner diameter of the thin tube 13,
The flow rate Q in 13 is D = 2a, or Therefore, the viscosity η is Can be transformed into the above denominator On the X-axis, and the molecule Is plotted on the Y axis in FIG. 2, the viscosity η of the measured fluid can be obtained.

ここで、Y=AXのニュートン流体の場合は、Y切片が
0であるので一度測定すればその粘度線図が得られ、一
方、Y=AX+Bの非ニュートン流体の場合には、何度
か上記の測定を行ない、プロットをすることにより線図
が得られる。
Here, in the case of Y = AX Newtonian fluid, since the Y intercept is 0, the viscosity diagram can be obtained by measuring once, while in the case of Y = AX + B non-Newtonian fluid, the above is repeated several times. A line diagram is obtained by measuring and plotting.

〔発明の効果〕〔The invention's effect〕

以上に説明した本発明の流体の粘度測定装置によれば、
流体を搬送するために敷設された管路を使用せずに、粘
度を測定できるので、浚渫した土砂などをポンプや圧縮
空気で管内を搬送する際の流量を事前に予測することが
容易に可能になるという効果がある。
According to the fluid viscosity measuring device of the present invention described above,
Since the viscosity can be measured without using the pipe line laid to convey the fluid, it is possible to easily predict the flow rate when the dredged soil is transported by the pump or the compressed air in the pipe. Has the effect of becoming.

また、圧縮空気を使用しているので、ピストンポンプ等
の他の手段に比べ、経済的であり、また、試料の一様化
のための撹拌にも圧縮空気を利用できるという利点があ
る。
Further, since compressed air is used, it is more economical than other means such as a piston pump, and there is an advantage that the compressed air can be used for stirring for homogenizing the sample.

さらに、試料の繰り返し測定ができるので、試料の定常
化するまでの時間を計測することにより、試料の時間依
存性を求めることができる。
Further, since the sample can be repeatedly measured, the time dependence of the sample can be obtained by measuring the time until the sample becomes stationary.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例における流体の粘度測定装置
の配置側面図、第2図は第1図の装置で測定して求めら
れる粘度の線図である。 1,2……開閉バルブ、3,4……圧縮空気注入バル
ブ、5,6……圧縮空気排出バルブ、7,8……圧縮空
気注入バルブ、11,12……容器、13……細管、14A,14
B……圧力計、15……流速計、D……内径、l……長
さ。
FIG. 1 is a side view of the arrangement of a fluid viscosity measuring device according to an embodiment of the present invention, and FIG. 2 is a diagram of the viscosity obtained by measuring with the device of FIG. 1, 2 ... open / close valve, 3, 4 ... compressed air injection valve, 5, 6 ... compressed air discharge valve, 7, 8 ... compressed air injection valve, 11, 12 ... container, 13 ... thin tube, 14A, 14
B ... pressure gauge, 15 ... velocity meter, D ... inner diameter, l ... length.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】粘度を測定する試料を入れる2基の密閉型
の容器の間を、両端部にそれぞれ開閉バルブを設け、か
つ内径の100倍程度以上の長さを有する細管で連通する
と共に、この細管の両端の各端部からの影響のない位置
にそれぞれ圧力計を、そして、その2つの圧力計の間に
流速計または流量計を配設し、さらに各容器のそれぞれ
の上部に圧縮空気注入用及び排出用の各バルブを配設し
た流体の粘度測定装置。
1. An open / close valve is provided at each end between two closed containers for containing a sample whose viscosity is to be measured, and a thin tube having a length of about 100 times the inner diameter or more is connected to each other. A pressure gauge is placed at a position where there is no influence from each end of the thin tube, and a velocity meter or a flow meter is arranged between the two pressure gauges, and compressed air is further provided above each vessel. Fluid viscosity measuring device with valves for injection and discharge.
JP6830590A 1990-03-20 1990-03-20 Fluid viscosity measuring device Expired - Lifetime JPH0625727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6830590A JPH0625727B2 (en) 1990-03-20 1990-03-20 Fluid viscosity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6830590A JPH0625727B2 (en) 1990-03-20 1990-03-20 Fluid viscosity measuring device

Publications (2)

Publication Number Publication Date
JPH03269341A JPH03269341A (en) 1991-11-29
JPH0625727B2 true JPH0625727B2 (en) 1994-04-06

Family

ID=13369952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6830590A Expired - Lifetime JPH0625727B2 (en) 1990-03-20 1990-03-20 Fluid viscosity measuring device

Country Status (1)

Country Link
JP (1) JPH0625727B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19958489A1 (en) 1999-12-04 2001-06-21 Dupont Performance Coatings Method and device for shear stressing liquid media, in particular coating agents
US7752895B2 (en) * 2006-11-30 2010-07-13 Chevron Oronite S.A. Method for using an alternate pressure viscometer
JP4853927B2 (en) * 2007-08-09 2012-01-11 独立行政法人産業技術総合研究所 Viscosity measurement method
CN102183675A (en) * 2011-01-24 2011-09-14 黑龙江大学 Polyacrylamide aqueous solution fluid ultra low flow velocity measuring method and polyacrylamide aqueous solution viscosity measuring method using same
JP7332055B2 (en) * 2020-09-28 2023-08-23 株式会社村田製作所 Fluid property sensor

Also Published As

Publication number Publication date
JPH03269341A (en) 1991-11-29

Similar Documents

Publication Publication Date Title
CN107976223B (en) A kind of high-precision leakage amount detector
CA1284431C (en) Slurry viscometer
US3457768A (en) Meter proving
CN105136195A (en) Porous medium penetration slip-casting multi-parameter monitoring device and test method thereof
US3488996A (en) Determination of oil in a flowing stream
Haldenwang et al. An experimental study of non-Newtonian fluid flow in rectangular flumes in laminar, transition and turbulent flow regimes
CN108119132B (en) Tight sandstone gas reservoir near-wellbore-zone radial seepage water saturation simulation device and method
JPH0625727B2 (en) Fluid viscosity measuring device
CN208383646U (en) A kind of solution density on-line measuring device
RU2378638C2 (en) Density metre-flow metre of fluid media
CN110441229A (en) A kind of horizontal RTP tube road friction test experimental system and method
CN216051134U (en) Multifunctional fracturing simulation experiment system
Parsi et al. Experimental study of erosion in vertical slug/churn flow
CN209485930U (en) A kind of measuring system of the water plugging effect of profile-controlling and plugging agent
CN113945459A (en) Multifunctional fracturing simulation experiment system and method
CN109900590B (en) Method for measuring liquid holdup of gas-liquid two-phase flow pipeline
CN204514403U (en) A kind of differential pressure mass flowmeter for vortex street
Abesekera et al. Liquid flow measurement by cross-correlation of temperature fluctuations
RU73485U1 (en) DENSITY-FLOW METER FLUID
RU50653U1 (en) TEST STAND FOR MEASUREMENTS OF OIL CONSUMPTION AND AMOUNT OF FREE GAS USING THE EXISTING OIL ACCOUNTING DIAGRAM (OUN) AND TUBE-PISTON CHECKING INSTALLATION (TPU)
RU164946U1 (en) DEVICE FOR MEASURING PARAMETERS OF LOW-VISCOUS AND VISCOUS FLUIDS IN A PIPELINE
RU2679462C1 (en) Method of research of injection wells
GB2584830A (en) Injection apparatus and method
CN220120650U (en) Visual CO 2 Imbibition system
RU2289796C2 (en) Device for calibrating well flow meters (variants)