JPH06256841A - Production of ferritic stainless steel having excellent high-temperature salt damage resistance - Google Patents

Production of ferritic stainless steel having excellent high-temperature salt damage resistance

Info

Publication number
JPH06256841A
JPH06256841A JP4678893A JP4678893A JPH06256841A JP H06256841 A JPH06256841 A JP H06256841A JP 4678893 A JP4678893 A JP 4678893A JP 4678893 A JP4678893 A JP 4678893A JP H06256841 A JPH06256841 A JP H06256841A
Authority
JP
Japan
Prior art keywords
high temperature
salt damage
stainless steel
damage resistance
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4678893A
Other languages
Japanese (ja)
Inventor
Nobuhiro Fujita
展弘 藤田
Keiichi Omura
圭一 大村
Masamichi Ogawa
政道 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4678893A priority Critical patent/JPH06256841A/en
Publication of JPH06256841A publication Critical patent/JPH06256841A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PURPOSE:To develop the ferritic stainless steel having high-temp. salt damage resistance by annealing and pickling the ferritic stainless steel contg. specific elements under specific conditions. CONSTITUTION:The hot rolled material of the ferritic stainless steel composed of the compsn. contg., by weight%, <0.02% C, <0.02% N, 0.1 to 2% Si, 0.1 to 1% Mn, 0.01 to 0.1% P, <0.01% S, 11 to 20% Cr, 0.01 to 0.3% Al, contg. one or >=2 kinds of 0.1 to 0.5% Nb, 0.01 to 0.5% Zr and 0.01 to 0.5% Ti so as to satisfy C/12+N/14<=Nbh93+Ti/48+Zn/91<=2.0, further, contg. one or >=2 kinds of 0.1 to 2.0% Mo and 0.1 to 2.0% W so as to satisfy 0.1<=Mo+W<=3.0 is annealed at 930 to 1000 deg.C in an atmosphere of >2vol.% residual oxygen concn. The ferritic stainless steel having the excellent high-temp. salt damage resistance is produced even if the rolled material is subjected to pickling treatments in order of salt pickling, nitric acid electrolying and mixture of hydrofluoric acid with nitric acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車のエキゾースト
パイプやセンターパイプ、エキゾーストマニホールドの
インシュレータ等の高温かつ塩害環境にさらされる高温
または中温部材として用いられ、かつ耐高温塩害性に優
れたフェライト系ステンレス鋼の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferritic stainless steel which is used as a high temperature or medium temperature member exposed to a high temperature and salt damage environment such as an exhaust pipe and a center pipe of an automobile and an insulator of an exhaust manifold, and which is excellent in high temperature salt damage resistance. The present invention relates to a method for manufacturing steel.

【0002】[0002]

【従来の技術】近年、自動車の燃費向上、高出力化が望
まれている。また、公害規制の強化から、排ガスの浄化
も強く要請されている。このような背景から、自動車の
排気ガス温度は最高温度が900℃前後にまで上昇して
きている。これらの薄板構造物に使用される耐熱材料に
は、高い高温強度と熱疲労特性と高温疲労特性が要求さ
れ、さらにはこれらの構造物は軽量化の観点から薄肉化
傾向にある。
2. Description of the Related Art In recent years, it has been desired to improve the fuel efficiency and output of automobiles. In addition, purification of exhaust gas is strongly demanded due to stricter pollution regulations. Against this background, the maximum exhaust gas temperature of automobiles has risen to around 900 ° C. The heat-resistant materials used for these thin plate structures are required to have high high-temperature strength, thermal fatigue properties and high-temperature fatigue properties, and these structures tend to be thinned from the viewpoint of weight reduction.

【0003】また、海岸地域や北米においては融雪材の
散布等によって高温下での塩に対する腐食性が、高温強
度に加えて重要な特性の1つになってきている。高温塩
害腐食は一般的には全面腐食であり、板厚の全面的な減
肉につながる。このような使用環境にある部材としては
エキゾーストマニホールドのインシュレーターやフロン
トパイプ・センターパイプ等がその典型例であると言え
る。従来、これらの用途にはAISI409やSUS4
30JILやこれらのAlメッキ材が使用されている。
Alメッキ材については、Al自体融点が低いため、高
温部材としては600℃程度までしか使用できず、今後
の排ガス温度の上昇に耐え得るものではない。また、A
ISI409やSUS430JILの裸材についても十
分な耐高温塩害特性を有したものではなく、高温強度や
疲労強度の観点から既存材として使用されているのが現
状である。
Further, in coastal areas and North America, the corrosiveness against salt at high temperatures has become one of the important characteristics in addition to the high temperature strength due to the spraying of snow melting materials. Hot salt corrosion is generally general corrosion, which leads to a total reduction in plate thickness. It can be said that insulators of the exhaust manifold, front pipes, center pipes and the like are typical examples of the members in such a use environment. Conventionally, AISI409 and SUS4 have been used for these applications.
30 JIL and these Al plated materials are used.
Since the Al-plated material itself has a low melting point, it can be used only up to about 600 ° C. as a high-temperature member, and cannot withstand a future rise in exhaust gas temperature. Also, A
The bare materials of ISI409 and SUS430JIL also do not have sufficient high temperature salt damage resistance properties, and are currently used as existing materials from the viewpoint of high temperature strength and fatigue strength.

【0004】今後は排ガス温の高温化に加えて薄肉化傾
向にあるため、高温強度のみならず高温塩害による全面
減肉量を抑制する必要があり、既存材以上の耐高温塩害
性を有した材料が必要となってくる。かゝる耐高温塩害
性に関する公知例は、特に自動車フレキシブルチューブ
用材料に関するものがほとんどで、例えば、材料とプロ
セス(1991)vol.4,p.1808〜1815
に示されている。しかしこれらの公知例はいずれもオー
ステナイト系ステンレス鋼に関するものであり、フェラ
イト系ステンレス鋼に関するものはほとんど無いのが現
状である。
In the future, since the exhaust gas temperature is becoming higher and the wall thickness is becoming thinner, it is necessary to suppress not only the high temperature strength but also the total amount of metal thinning due to high temperature salt damage, and the high temperature salt damage resistance is higher than that of existing materials. Materials are needed. Most of the publicly known examples of such high temperature salt damage resistance particularly relate to materials for automobile flexible tubes, for example, Materials and Processes (1991) vol. 4, p. 1808-1815
Is shown in. However, all of these publicly known examples relate to austenitic stainless steels, and there is almost nothing related to ferritic stainless steels.

【0005】[0005]

【発明が解決しようとする課題】このように、従来鋼や
公知例中には、耐高温塩害特性を特に考慮したフェライ
ト系ステンレス鋼やその製造方法に関する例はほとんど
ない。本発明者らは、フェライト系ステンレス鋼の耐高
温塩害性について以前より注目し、特願平4−0891
21号明細書で示すように耐高温塩害性に優れるフェラ
イト系ステンレス鋼を見出している。
As described above, in the conventional steels and the known examples, there are few examples regarding the ferritic stainless steel and the manufacturing method thereof in which the high temperature salt damage resistance is particularly taken into consideration. The present inventors have been paying attention to the high temperature salt damage resistance of ferritic stainless steels, and have filed a patent application No. 4-0891.
As shown in the specification No. 21, a ferritic stainless steel having excellent high temperature salt damage resistance has been found.

【0006】本発明は、耐高温塩害性をさらに向上させ
るための製造方法に関するもので、特に排気系部品の軽
量化(薄肉化)および高耐熱化に対応可能なフェライト
系ステンレス鋼の製造方法を提供する。
The present invention relates to a manufacturing method for further improving high temperature salt damage resistance, and more particularly to a manufacturing method of ferritic stainless steel capable of coping with weight reduction (thinning) and high heat resistance of exhaust system parts. provide.

【0007】[0007]

【課題を解決するための手段】本発明の特徴とする処
は、重量%で、C:0.02以下、N:0.02以下、
Si:0.1〜2以下、Mn:0.1〜1,P:0.0
1〜0.1,S:0.01以下、Cr:11〜20,A
l:0.01〜0.3を含有し、かつNb:0.1〜
0.5,Zr:0.01〜0.5,Ti:0.01〜
0.5の1種を、また2種以上の場合はC/12+N/
14≦Nb/93+Ti/48+Zr/91≦2.0の
範囲で含有するとともに、Mo:0.1〜2.0,W:
0.1〜2.0の1種を、また2種の場合は0.1≦M
o+W≦3.0の範囲で含有する鋼に残留酸素濃度が2
vol.%以上の雰囲気中にて930〜1000℃の温度範
囲で焼鈍を施し、その後ソルト酸洗・硝酸電解・硝沸酸
の順に酸洗して耐高温塩害性に優れたフェライト系ステ
ンレス鋼を製造するところにある。
A feature of the present invention is that, in% by weight, C: 0.02 or less, N: 0.02 or less,
Si: 0.1 to 2 or less, Mn: 0.1 to 1, P: 0.0
1 to 0.1, S: 0.01 or less, Cr: 11 to 20, A
1: 0.01-0.3, and Nb: 0.1-
0.5, Zr: 0.01 to 0.5, Ti: 0.01 to
0.5 of 1 type, and in the case of 2 or more types, C / 12 + N /
14 ≦ Nb / 93 + Ti / 48 + Zr / 91 ≦ 2.0, and Mo: 0.1-2.0, W:
0.1 to 2.0, and if two, 0.1 ≦ M
The residual oxygen concentration in the steel contained in the range of o + W ≦ 3.0 is 2
Annealing is performed in a temperature range of 930 to 1000 ° C in an atmosphere of vol.% or more, and then salt pickling, nitric acid electrolysis, and nitric acid are pickled in this order to obtain ferritic stainless steel with excellent high temperature salt damage resistance. In production.

【0008】以下、本発明を詳細に説明する。本発明者
らは耐熱フェライト系ステンレス鋼の耐高温塩害性の向
上に主にMo,W,AlおよびSiが効果的であること
を見出し、さらに、製造工程の中で最終製品の表面状態
を決定する最終焼鈍工程および酸洗工程の条件を最適化
することで、一層耐高温塩害性に優れた表面状態を造り
込むことに成功した。
The present invention will be described in detail below. The present inventors have found that Mo, W, Al and Si are mainly effective in improving the high temperature salt damage resistance of heat resistant ferritic stainless steel, and further determine the surface state of the final product during the manufacturing process. By optimizing the conditions of the final annealing process and the pickling process, we succeeded in creating a surface condition that was more resistant to high temperature salt damage.

【0009】化学成分としては、SiおよびAlを常温
延性を劣化させない程度の添加量とし、さらに選択元素
としてのMoおよびWについては、過剰添加は耐高温塩
害性を劣化させるため最適値範囲を設けた成分とした。
これら元素の添加は、特に中温から高温での表面の酸化
皮膜を強固にするとともに母材金属との密着性を向上さ
せるため、耐高温塩害性を向上させると考えられる。
As chemical components, Si and Al are added in such an amount that does not deteriorate the normal temperature ductility, and with respect to Mo and W as selective elements, excessive addition deteriorates the high temperature salt damage resistance, so an optimum value range is set. The ingredients
It is considered that the addition of these elements improves the high temperature salt damage resistance because it strengthens the oxide film on the surface particularly at moderate to high temperatures and improves the adhesion to the base metal.

【0010】製造条件として、前述の成分範囲のフェラ
イト系ステンレス鋼スラブを熱間圧延し、または熱延板
とほゞ同等の厚さの連続鋳造鋳片を得、この鋼板に残留
酸素濃度が2vol.%以上の雰囲気で930℃〜1000
℃の温度範囲にて焼鈍を施して酸洗前の酸化皮膜および
皮膜形成に伴うCr欠乏層の厚さを制御し、その後、次
のような酸洗工程で、耐高温塩害性に優れた表面状態を
造り込むものである。酸洗工程(→→の順に行う
3段階の酸洗): ソルト酸洗:アルカリ濃度30〜40%(重量
%)、含水率50〜60%、温度350〜450℃ 硝酸電解 :硝酸濃度80〜120g/l、温度4
5〜75℃、電流3〜60mA/cm2 硝沸酸 :硝酸濃度30〜100g/l、沸酸濃
度10〜80g/l、温度40〜70℃ 以上のように、本発明は、耐高温塩害性を向上させる観
点からSi,W,MoおよびAl等の添加範囲を設定し
た鋼についての製造工程条件を提示するものである。
As a manufacturing condition, a ferritic stainless steel slab having the above-mentioned composition range is hot-rolled or a continuously cast slab having a thickness almost equal to that of a hot-rolled sheet is obtained, and the residual oxygen concentration of this steel sheet is 2 vol. 930 ° C to 1000 in an atmosphere of.% Or more
The thickness of the oxide film before pickling and the Cr-deficient layer accompanying the film formation is controlled by annealing in the temperature range of ℃, and then the surface is excellent in high temperature salt damage resistance in the following pickling step. It builds the condition. Pickling step (3 steps of pickling performed in the order of →→): Salt pickling: Alkali concentration 30-40% (wt%), Water content 50-60%, Temperature 350-450 ° C Nitric acid electrolysis: Nitric acid concentration 80- 120g / l, temperature 4
5 to 75 ° C., current 3 to 60 mA / cm 2 nitric acid: nitric acid concentration 30 to 100 g / l, hydrofluoric acid concentration 10 to 80 g / l, temperature 40 to 70 ° C. As described above, the present invention is resistant to high temperature salt damage. From the viewpoint of improving the property, the manufacturing process conditions for steel in which the addition ranges of Si, W, Mo, Al, etc. are set are presented.

【0011】[0011]

【作用】以下、本発明に用いる鋼の化学成分について説
明する。 C:低温から高温に至る耐粒界腐食性を考慮するととも
に加工性および熱延板靱性の向上の観点から上限を0.
02%とした。 N:加工性および熱延板靱性の向上の観点から上限を
0.02%とした。 Si:脱酸材として有効であると共に、耐酸化性および
耐高温塩害性を向上させる元素である。また、一方で
は、加工性や溶接性を低下させるため0.1〜2%の範
囲とした。 Mn:脱酸元素であるので最低0.1%は必要である。
また、オーステナイト形成元素でありマルテンサイト変
態を阻止するために上限を1%とした。 P:高温高強度化(固溶強化)に有用であるが、溶接性
劣化を招くので0.01〜0.1%の範囲とした。 S:MnSの形成元素で、ステンレス鋼の基本特性であ
る耐食性を低下させるため0.01%以下とした。 Cr:耐酸化性および耐高温塩害性向上に有効であり、
800℃以上での耐酸化性およびステンレス鋼としての
基本特性である耐食性を確保するため11%以上とし、
20%を越える添加は耐酸化性および耐食性の改善効果
が小さくなるため上限を20%とした。 Al:脱酸材として有効であると共に、耐酸化性および
耐高温塩害性を向上させる元素である。耐高温塩害性に
も有効な元素であるので0.01%以上は必要である。
また、耐酸化性向上、特に排ガス中での耐酸化性向上の
観点から必要な添加元素である。一方では、加工性の劣
化や溶接ビード形状を悪くするため0.3%以下とし
た。 Nb:溶接部および溶接影響部での粒成長の防止、耐粒
界腐食性および高温強度の確保に有効な添加元素であ
る。しかし、C,NおよびFeとの親和力が強く、使用
中に析出物を形成するため粒界腐食を抑える効果や固溶
強化による高温強化効果をより有効に働かせる範囲とし
て0.1〜0.5%とし、Tiおよび、またはZrと複
合する場合はC/12+N/14≦Ti/48+Nb/
93+Zr/91≦2.0とした。 Ti:C+Nを固着し、加工性の向上、耐粒界腐食性お
よび金相組織の長時間安定性の確保のために有効な元素
である。Tiは、W,MoおよびNbよりもC,Nとの
親和力が強いため、使用中のNb,MoおよびWの炭窒
化物の析出を抑える働きがある。これにより、使用中の
固溶W,MoおよびNbを確保でき、使用中の高温強度
および耐高温塩害性を確保できる。母相中に固溶しない
CおよびNを固着するために、最低添加量を0.01%
とした。また、使用前の高温強度の一部をTiの炭窒化
物で支えていることから、0.5%を越えるTiの添加
は炭窒化物を粗大化させるため使用前の高温強度を低下
させる。このため、上限を0.5%とした。また、Nb
および、またはZrとの複合の場合はC/12+N/1
4≦Ti/48+Nb/93+Zr/91≦2.0とし
た。 Zr:C+Nを固着し、加工性の向上、耐粒界腐食性お
よび金相組織の長時間安定性の確保のために有効な元素
である。Zrは、W,MoおよびNbよりもC,Nとの
親和力が強いため、使用中のNb,MoおよびWの炭窒
化物の析出を抑える働きがある。これにより、使用中の
固溶W,MoおよびNbを確保でき、使用中の高温強度
および耐高温塩害性を確保できる。母相中に固溶しない
CおよびNを固着するために、最低添加量を0.01%
とした。また、使用前の高温強度の一部をZrの炭窒化
物で支えていることから、0.5%を越えるZrの添加
は炭窒化物を粗大化させるため使用前の高温強度を低下
させる。このため、上限を0.5%とした。また、Ti
および、またはNbと複合する場合はC/12+N/1
4≦Ti/48+Nb/93+Zr/91≦2.0とし
た。 W:高温強度および耐高温塩害性を高める添加元素であ
る。また、Nbに比べ、析出しにくいため使用中でも固
溶量を確保できるため、使用中の高温強度および耐高温
塩害性の保持に有効である。このため下限値を0.1%
とした。しかし、過剰添加は耐高温塩害性を劣化させる
ため単独で2%を、Moと複合で3%を上限とした。ま
た、Wは再結晶温度を上昇させる元素の1つであり、か
つFeとの金属間化合物や炭窒化物が析出し易い元素な
ので、これらを多量に析出し難い範囲も考慮して上記範
囲が定められた。 Mo:高温強度および耐高温塩害性を高める添加元素で
あり、ステンレス鋼の基本的特性である耐食性の確保に
ついても有効である。このため、下限値を0.1%とし
た。また、Nbに比べ、析出しにくいため使用中でも固
溶量を確保できるため、使用中の高温強度および耐高温
塩害性の保持に有効である。しかし、多量添加は耐高温
塩害性を劣化させるため単独で2%を、Wと複合で3%
を上限とした。また、MoはWと同様再結晶温度を上昇
させる元素の1つであり、かつFeとの金属間化合物や
炭窒化物が析出し易い元素なのでこれらを多量に析出し
難い範囲も考慮して上記範囲が定められた。
The chemical composition of the steel used in the present invention will be described below. C: Taking the intergranular corrosion resistance from low temperature to high temperature into consideration, and from the viewpoint of improving workability and hot-rolled sheet toughness, the upper limit is set to 0.
It was set to 02%. N: From the viewpoint of improving workability and toughness of hot-rolled sheet, the upper limit was made 0.02%. Si: An element that is effective as a deoxidizer and improves oxidation resistance and high temperature salt damage resistance. On the other hand, in order to reduce the workability and weldability, the range is 0.1 to 2%. Mn: Since it is a deoxidizing element, at least 0.1% is necessary.
Further, it is an austenite forming element and the upper limit was set to 1% in order to prevent martensitic transformation. P: It is useful for high temperature strengthening (solid solution strengthening), but it deteriorates weldability, so it was made 0.01 to 0.1% in range. S: An element forming MnS, which is 0.01% or less in order to reduce the corrosion resistance which is a basic characteristic of stainless steel. Cr: Effective in improving oxidation resistance and high temperature salt damage resistance,
In order to secure the oxidation resistance at 800 ° C or higher and the corrosion resistance which is a basic characteristic of stainless steel, it is set to 11% or higher,
The addition of more than 20% reduces the effect of improving the oxidation resistance and corrosion resistance, so the upper limit was made 20%. Al: An element that is effective as a deoxidizing agent and improves oxidation resistance and high temperature salt damage resistance. Since it is an element effective for high temperature salt damage resistance, 0.01% or more is necessary.
Further, it is an additional element necessary from the viewpoint of improving the oxidation resistance, particularly, the oxidation resistance in exhaust gas. On the other hand, it is set to 0.3% or less in order to deteriorate the workability and the weld bead shape. Nb: an additive element effective in preventing grain growth in the welded portion and the weld affected zone, and ensuring intergranular corrosion resistance and high temperature strength. However, it has a strong affinity with C, N and Fe and forms a precipitate during use, so that the effect of suppressing intergranular corrosion and the high temperature strengthening effect by solid solution strengthening can be more effectively exerted in a range of 0.1 to 0.5. %, And when compounded with Ti and / or Zr, C / 12 + N / 14 ≦ Ti / 48 + Nb /
93 + Zr / 91 ≦ 2.0. Ti: C + N is an element that is effective for fixing workability, improving workability, intergranular corrosion resistance, and ensuring long-term stability of the metallic phase structure. Since Ti has a stronger affinity for C and N than W, Mo and Nb, it has a function of suppressing precipitation of carbonitrides of Nb, Mo and W during use. As a result, the solid solution W, Mo and Nb can be secured during use, and the high temperature strength and high temperature salt damage resistance during use can be secured. In order to fix C and N that do not form a solid solution in the mother phase, the minimum addition amount is 0.01%.
And Further, since part of the high temperature strength before use is supported by Ti carbonitride, addition of Ti in excess of 0.5% coarsens the carbonitride and therefore lowers the high temperature strength before use. Therefore, the upper limit is set to 0.5%. Also, Nb
And / or C / 12 + N / 1 when combined with Zr
4 ≦ Ti / 48 + Nb / 93 + Zr / 91 ≦ 2.0. Zr: An element effective for fixing C + N, improving workability, intergranular corrosion resistance, and ensuring long-term stability of the metallic phase structure. Since Zr has a stronger affinity for C and N than W, Mo and Nb, it has a function of suppressing precipitation of carbonitrides of Nb, Mo and W during use. As a result, the solid solution W, Mo and Nb can be secured during use, and the high temperature strength and high temperature salt damage resistance during use can be secured. In order to fix C and N that do not form a solid solution in the mother phase, the minimum addition amount is 0.01%.
And Further, since a part of the high temperature strength before use is supported by the carbonitride of Zr, addition of Zr in excess of 0.5% coarsens the carbonitride and therefore lowers the high temperature strength before use. Therefore, the upper limit is set to 0.5%. Also, Ti
And / or C / 12 + N / 1 when combined with Nb
4 ≦ Ti / 48 + Nb / 93 + Zr / 91 ≦ 2.0. W: An additive element that enhances high temperature strength and high temperature salt damage resistance. Further, compared to Nb, it is less likely to precipitate, so that the amount of solid solution can be secured even during use, which is effective in maintaining high temperature strength and high temperature salt damage resistance during use. Therefore, the lower limit is 0.1%
And However, since excessive addition deteriorates the high temperature salt damage resistance, the upper limit was 2% alone and 3% in combination with Mo. Further, W is one of the elements that raises the recrystallization temperature, and is an element in which an intermetallic compound with Fe and carbonitride are easily deposited. Specified Mo: An additive element that enhances high-temperature strength and high-temperature salt damage resistance, and is also effective in ensuring the corrosion resistance, which is a basic characteristic of stainless steel. Therefore, the lower limit value is set to 0.1%. Further, compared to Nb, it is less likely to precipitate, so that the amount of solid solution can be secured even during use, which is effective in maintaining high temperature strength and high temperature salt damage resistance during use. However, addition of a large amount deteriorates high temperature salt damage resistance, so 2% alone, 3% in combination with W
Was set as the upper limit. Further, Mo is one of the elements that raises the recrystallization temperature like W, and since an intermetallic compound with Fe and carbonitrides are easily deposited, considering the range where it is difficult to deposit a large amount of these, The range was set.

【0012】次に本発明の製造条件について説明する。
前述した化学成分を有する溶鋼からスラブを成形して加
熱処理を施した後熱間圧延して所望の板厚を得るか、ま
たは連続鋳造によって熱延板に相当する厚さの鋳片を鋳
造した後、必要により焼鈍を施した後冷間圧延し、かゝ
る鋼板に最終焼鈍を施す。この焼鈍は酸洗前に改質し易
い酸化皮膜およびCr欠乏層を生成させるため、残留酸
素濃度を2vol.%以上の雰囲気中で930〜1000℃
の温度範囲で行う。この最終焼鈍にて生成する酸化皮膜
がソルト酸洗時に改質し易い状態となる。すなわち、形
成した酸化皮膜が強アルカリ中(ソルト中)でCrが6
価になり易い状態になっていると推定できる。このた
め、後の酸洗での脱スケール性が極めて良好になるので
ある。
Next, the manufacturing conditions of the present invention will be described.
A slab is formed from molten steel having the above-mentioned chemical composition, subjected to heat treatment, and then hot rolled to obtain a desired sheet thickness, or a cast piece having a thickness corresponding to a hot rolled sheet is cast by continuous casting. After that, if necessary, annealing is performed and then cold rolling is performed, and then such steel sheet is subjected to final annealing. Since this annealing produces an oxide film and a Cr-deficient layer that are easily modified before pickling, the residual oxygen concentration is 930 to 1000 ° C in an atmosphere of 2 vol.% Or more.
Perform within the temperature range. The oxide film formed by this final annealing is in a state of being easily modified during salt pickling. That is, the formed oxide film contained 6 in Cr in a strong alkali (in salt).
It can be inferred that the price is likely to be high. Therefore, the descaling property in the subsequent pickling becomes extremely good.

【0013】酸洗工程は下記の条件により→→の
順で行われる。これにより十分な溶削量を確保するとと
もに、耐高温塩害性に優れた表面状態にすることができ
る。 ソルト酸洗:アルカリ濃度30〜40%(重量
%)、含水率50〜60%、温度350〜450℃ 硝酸電解 :硝酸濃度90〜120g/l、温度4
5〜75℃、電流3〜60mA/cm2 硝沸酸 :硝酸濃度30〜100g/l、沸酸濃
度10〜80g/l、温度40〜70℃ 上記条件での脱スケールの機構について明かではない
が、次のように考えられる。
The pickling step is performed in the order of →→ under the following conditions. This makes it possible to secure a sufficient amount of fusing and to make the surface state excellent in high temperature salt damage resistance. Salt pickling: Alkali concentration 30-40% (wt%), Water content 50-60%, Temperature 350-450 ° C Nitric acid electrolysis: Nitric acid concentration 90-120g / l, Temperature 4
5 to 75 ° C., current 3 to 60 mA / cm 2 nitric acid: nitric acid concentration 30 to 100 g / l, hydrofluoric acid concentration 10 to 80 g / l, temperature 40 to 70 ° C. Descaling mechanism under the above conditions is not clear. However, it is considered as follows.

【0014】 ソルト酸洗に於いては、焼鈍によって
形成された酸化皮膜を脱スケール性を良好な状態に改質
するものと考えられる。すなわち、酸化皮膜形成元素で
あるCrを3価から6価に酸化させることで、後工程で
の脱スケール性を高めていると現在は推定している。 硝酸電解酸洗においては、ソルト後、脱スケール性
が良好な状態に改質された表面皮膜を取り除く。さら
に、最表面近傍のCr欠乏層を溶解し、表面近傍のCr
欠乏層の領域を減少させる。
In the salt pickling, it is considered that the oxide film formed by annealing is modified to have a good descaling property. That is, it is currently estimated that the oxide, which is an oxide film forming element, is oxidized from trivalent to hexavalent to enhance the descaling property in the subsequent step. In the nitric acid electrolytic pickling, after the salt, the surface film modified to have a good descaling property is removed. Furthermore, the Cr-deficient layer near the outermost surface is dissolved, and Cr near the surface is dissolved.
Reduce the area of the depletion layer.

【0015】 硝沸酸酸洗においては、一部残ったC
r欠乏層を完全に取り除く。 このように、上記酸洗処理工程を行うことで脱スケール
が良好となり、また、Cr欠乏層をほぼ取り除くこと
で、表面Cr濃度が均一な表面を作ることができるよう
になった。また、表面粗度についても耐高温塩害性に有
効な程度となるものと推定でき、これらの理由から本製
造方法によって、耐高温塩害性に優れた表面が作成可能
になった。
In the nitric acid pickling, part of the remaining C
Completely remove the r-deficient layer. As described above, by performing the above-mentioned pickling treatment step, the descaling was improved, and by almost removing the Cr deficient layer, it became possible to form a surface having a uniform surface Cr concentration. Also, it can be estimated that the surface roughness is effective for high temperature salt damage resistance, and for these reasons, the manufacturing method of the present invention enabled the production of a surface excellent in high temperature salt damage resistance.

【0016】[0016]

【実施例】表1に示す化学成分の供試鋼を真空溶解にて
スラブ形状に溶製し、その後、スラブ加熱−熱間圧延−
焼鈍−酸洗を経て4mmの板を作製した。この焼鈍はLN
G燃焼ガス雰囲気で残留酸素濃度は2〜7vol.%として
行い、この板を用いて、高温塩害試験を行い、その諸特
性と酸洗条件との関係を表2に示した。
EXAMPLE A sample steel having the chemical composition shown in Table 1 was melted into a slab shape by vacuum melting, and then slab heating-hot rolling-
A 4 mm plate was produced through annealing-pickling. This annealing is LN
The residual oxygen concentration was set to 2 to 7 vol.% In the G combustion gas atmosphere, a high temperature salt damage test was conducted using this plate, and the relationship between various characteristics and pickling conditions is shown in Table 2.

【0017】表2より、焼鈍温度が1000℃を越える
と、A−4およびC−4の例で示すように、酸洗条件を
満しても耐高温塩害性が悪くなる傾向にあり、また、焼
鈍温度が930℃より低いとB−5の例で示すように酸
洗条件を満しても耐高温塩害性が悪くなる傾向にあっ
た。本発明の請求範囲を満す焼鈍および酸洗条件である
A−3,B−4およびC−4は耐高温塩害性が良好であ
り、3段階の酸洗条件を1つでも欠く条件は、耐高温塩
害性が悪くなることが判明した。
From Table 2, when the annealing temperature exceeds 1000 ° C., as shown in the examples of A-4 and C-4, the high temperature salt damage resistance tends to deteriorate even if the pickling conditions are satisfied, and When the annealing temperature was lower than 930 ° C., the high temperature salt damage resistance tended to deteriorate even if the pickling conditions were satisfied as shown in the example of B-5. A-3, B-4 and C-4, which are annealing and pickling conditions satisfying the claims of the present invention, have good high temperature salt damage resistance, and a condition that lacks any one of the three stages of pickling conditions is: It was found that the high temperature salt damage resistance deteriorates.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】本発明は、高温での塩害腐食環境下にさ
らされる部材、特に自動車排気系材料として、使用環境
を考慮し、かつ耐高温塩害性の優れたフェライト系ステ
ンレス鋼を提供するもので、これにより今後の自動車の
高燃費化・高出力化・排ガス浄化性能等の向上に十分対
応することができるものである。
INDUSTRIAL APPLICABILITY The present invention provides a ferritic stainless steel which is exposed to a salt corrosion environment at high temperature, especially as an automobile exhaust system material, considering the use environment and having excellent high temperature salt corrosion resistance. With this, it will be possible to sufficiently cope with future improvements in fuel efficiency, output, and exhaust gas purification performance of automobiles.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.02以下 N:0.02以下 Si:0.1〜2以下 Mn:0.1〜1 P:0.01〜0.1 S:0.01以下 Cr:11〜20 Al:0.01〜0.3を含有し、かつ Nb:0.1〜0.5,Zr:0.01〜0.5,T
i:0.01〜0.5の1種を、また2種以上の場合は
C/12+N/14≦Nb/93+Ti/48+Zr/
91≦2.0の範囲で含有するとともに、Mo:0.1
〜2.0,W:0.1〜2.0の1種を、また2種の場
合は0.1≦Mo+W≦3.0の範囲で含有し、残部実
質的にFeからなる鋼に残留酸素濃度が2vol.%以上の
雰囲気中にて930〜1000℃の温度範囲で焼鈍を施
し、その後ソルト酸洗・硝酸電解・硝沸酸の順に酸洗す
ることを特徴とする耐高温塩害性に優れたフェライト系
ステンレス鋼の製造方法。
1. C .: 0.02 or less N: 0.02 or less Si: 0.1-2 or less Mn: 0.1-1 P: 0.01-0.1 S: 0.01 The following Cr: 11-20 Al: 0.01-0.3 is contained, and Nb: 0.1-0.5, Zr: 0.01-0.5, T
i: 0.01 to 0.5, and in the case of 2 or more, C / 12 + N / 14 ≦ Nb / 93 + Ti / 48 + Zr /
91 ≦ 2.0, and Mo: 0.1
.About.2.0, W: 0.1 to 2.0, and in the case of 2 kinds, contained in the range of 0.1.ltoreq.Mo + W.ltoreq.3.0 with the balance remaining in the steel consisting essentially of Fe. High temperature salt damage resistance, characterized by annealing in a temperature range of 930 to 1000 ° C in an atmosphere with an oxygen concentration of 2 vol.% Or more, and then performing pickling in order of salt pickling, nitric acid electrolysis, and nitric acid. Excellent ferritic stainless steel manufacturing method.
JP4678893A 1993-03-08 1993-03-08 Production of ferritic stainless steel having excellent high-temperature salt damage resistance Withdrawn JPH06256841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4678893A JPH06256841A (en) 1993-03-08 1993-03-08 Production of ferritic stainless steel having excellent high-temperature salt damage resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4678893A JPH06256841A (en) 1993-03-08 1993-03-08 Production of ferritic stainless steel having excellent high-temperature salt damage resistance

Publications (1)

Publication Number Publication Date
JPH06256841A true JPH06256841A (en) 1994-09-13

Family

ID=12757075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4678893A Withdrawn JPH06256841A (en) 1993-03-08 1993-03-08 Production of ferritic stainless steel having excellent high-temperature salt damage resistance

Country Status (1)

Country Link
JP (1) JPH06256841A (en)

Similar Documents

Publication Publication Date Title
JP3041050B2 (en) Duplex stainless steel and its manufacturing method
JP7238161B2 (en) Ferritic stainless steel plate
TWI496899B (en) Ferritic stainless steel
JP5435179B2 (en) Ferritic stainless steel
JP6858056B2 (en) Low specific gravity ferritic stainless steel sheet and its manufacturing method
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
JP5903881B2 (en) Ferritic stainless steel with excellent corrosion resistance of welds
JPH08144021A (en) Production of ferritic stainless steel and cold rolled sheet therefrom
JP3269799B2 (en) Ferritic stainless steel for engine exhaust parts with excellent workability, intergranular corrosion resistance and high-temperature strength
KR101787282B1 (en) Steel having excellent corrosion resistance and method of manufacturing the same
JP3263469B2 (en) Ferritic stainless steel for exhaust gas flow path member and manufacturing method
JP3251672B2 (en) Ferritic stainless steel for exhaust gas flow path member and manufacturing method
JP3247244B2 (en) Fe-Cr-Ni alloy with excellent corrosion resistance and workability
JP4457492B2 (en) Stainless steel with excellent workability and weldability
JPH02156048A (en) Chromium steel excellent in corrosion resistance
JP3941267B2 (en) High corrosion-resistant chromium-containing steel with excellent oxidation resistance and intergranular corrosion resistance
JP2907673B2 (en) Ferritic stainless steel excellent in high-temperature salt damage resistance and its manufacturing method
JPH06172935A (en) High cr-p-added ferritic stainless steel excellent in weather resistance and rusting resistance
JPH06256841A (en) Production of ferritic stainless steel having excellent high-temperature salt damage resistance
JPH0635615B2 (en) Manufacturing method of ferritic stainless steel with excellent corrosion resistance of welds
JP7465955B2 (en) Low Cr ferritic stainless steel sheet with improved pipe expansion workability and its manufacturing method
JP7479210B2 (en) Ferritic stainless steel sheet, method for producing the same, and automobile exhaust system part
JP7475205B2 (en) Ferritic stainless steel sheet, method for producing the same, and automobile exhaust system part
JPH11229034A (en) Working method for ferritic stainless steel pipe
JPH0534419B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509