JP2907673B2 - Ferritic stainless steel excellent in high-temperature salt damage resistance and its manufacturing method - Google Patents

Ferritic stainless steel excellent in high-temperature salt damage resistance and its manufacturing method

Info

Publication number
JP2907673B2
JP2907673B2 JP6551493A JP6551493A JP2907673B2 JP 2907673 B2 JP2907673 B2 JP 2907673B2 JP 6551493 A JP6551493 A JP 6551493A JP 6551493 A JP6551493 A JP 6551493A JP 2907673 B2 JP2907673 B2 JP 2907673B2
Authority
JP
Japan
Prior art keywords
temperature
salt damage
damage resistance
pickling
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6551493A
Other languages
Japanese (ja)
Other versions
JPH06279949A (en
Inventor
展弘 藤田
圭一 大村
正道 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6551493A priority Critical patent/JP2907673B2/en
Publication of JPH06279949A publication Critical patent/JPH06279949A/en
Application granted granted Critical
Publication of JP2907673B2 publication Critical patent/JP2907673B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車のエキゾースト
パイプやセンターパイプ、エキゾーストマニホールドの
インシュレータ等の高温かつ塩害環境にさらされる高温
または中温部材として用いられ、かつ耐高温塩害性に優
れたフェライト系ステンレス鋼とその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferritic stainless steel which is used as a high-temperature or medium-temperature member exposed to a high-temperature and salt-hazardous environment, such as an exhaust pipe and a center pipe of an automobile, and an insulator of an exhaust manifold, and has excellent high-temperature salt damage resistance. It relates to steel and its manufacturing method.

【0002】[0002]

【従来の技術】近年、自動車の燃費向上、高出力化が望
まれている。また、公害規制の強化から、排ガスの浄化
も強く要請されている。このような背景から、自動車の
排気ガス温度は最高温度が900℃前後にまで上昇して
きている。これらの薄板構造物に使用される耐熱材料に
は、高い高温強度と熱疲労特性と高温疲労特性が要求さ
れ、さらにはこれらの構造物は軽量化の観点から薄肉化
傾向にある。
2. Description of the Related Art In recent years, there has been a demand for improved fuel efficiency and higher output of automobiles. Also, purifying exhaust gas has been strongly demanded due to the strengthening of pollution regulations. Against this background, the maximum exhaust gas temperature of automobiles has risen to around 900 ° C. The heat-resistant materials used for these thin plate structures are required to have high high-temperature strength, high thermal fatigue characteristics, and high-temperature fatigue characteristics. Further, these structures tend to be thin from the viewpoint of weight reduction.

【0003】また、海岸地域や北米においては融雪材の
散布等によって高温下での塩に対する腐食性が、高温強
度に加えて重要な特性の1つになってきている。高温塩
害腐食は一般的には全面腐食であり、板厚の全面的な減
肉につながる。このような使用環境にある部材としては
エキゾーストマニホールドのインシュレーターやフロン
トパイプ・センターパイプ等がその典型例であると言え
る。従来、これらの用途にはAISI409やSUS4
30JILやこれらのAlメッキ材が使用されている。
Alメッキ材については、Al自体融点が低いため、高
温部材としては600℃程度までしか使用できず、今後
の排ガス温度の上昇に耐え得るものではない。また、A
ISI409やSUS430JILの裸材についても十
分な耐高温塩害特性を有したものではなく、高温強度や
疲労強度の観点から既存材として使用されているのが現
状である。
[0003] In coastal areas and North America, the corrosiveness to salt at high temperatures due to the spraying of snow-melting material and the like has become one of the important characteristics in addition to the high-temperature strength. High-temperature salt damage corrosion is generally a general corrosion, which leads to a total reduction in the thickness of the plate. Typical examples of the members in such a use environment include an insulator of an exhaust manifold, a front pipe, a center pipe, and the like. Conventionally, AISI409 or SUS4
30JIL and these Al plating materials are used.
Since the Al plating material itself has a low melting point, it can only be used as a high-temperature member up to about 600 ° C., and cannot withstand a future rise in exhaust gas temperature. Also, A
Even bare materials such as ISI409 and SUS430JIL do not have sufficient high-temperature salt damage resistance, and are currently used as existing materials from the viewpoint of high-temperature strength and fatigue strength.

【0004】今後は排ガス温の高温化に加えて薄肉化傾
向にあるため、高温強度のみならず高温塩害による全面
減肉量を抑制する必要があり、既存材以上の耐高温塩害
性を有した材料が必要となってくる。かゝる耐高温塩害
性に関する公知例は、特に自動車フレキシブルチューブ
用材料に関するものがほとんどで、例えば、「材料とプ
ロセス」(1991)vol.4,p.1808〜1815
に示されている。しかしこれらの公知例はいずれもオー
ステナイト系ステンレス鋼に関するものであり、フェラ
イト系ステンレス鋼に関するものはほとんど無いのが現
状である。
[0004] In the future, since the exhaust gas temperature tends to become thinner in addition to the high temperature, it is necessary to suppress not only the high-temperature strength but also the total thickness loss due to the high-temperature salt damage, and the high-temperature salt damage resistance is higher than that of existing materials. Materials are needed. Most of the known examples of such high-temperature salt damage resistance particularly relate to materials for automobile flexible tubes. For example, "Materials and Processes" (1991) vol. 1808-1815
Is shown in However, all of these known examples relate to austenitic stainless steel, and at present there is almost nothing related to ferritic stainless steel.

【0005】[0005]

【発明が解決しようとする課題】このように、従来鋼や
公知例中には、耐高温塩害特性を特に考慮したフェライ
ト系ステンレス鋼やその製造方法に関する例はほとんど
ない。本発明者らは、フェライト系ステンレス鋼の耐高
温塩害性について以前より注目し、特願平4−0891
21号明細書に示すように耐高温塩害性に優れるフェラ
イト系ステンレス鋼を見出している。
As described above, there are few examples of ferritic stainless steels and methods for producing ferritic stainless steels in which special consideration is given to high-temperature salt damage resistance among conventional steels and known examples. The present inventors have paid much attention to the high-temperature salt damage resistance of ferritic stainless steel, and have filed Japanese Patent Application No. 4-0891.
As shown in the specification of Japanese Patent No. 21, a ferritic stainless steel excellent in high-temperature salt damage resistance has been found.

【0006】本発明は、耐高温塩害性をさらに向上させ
るための成分と製造方法に関するもので、排気系部品の
軽量化(薄肉化)および高耐熱化に対応可能なフェライ
ト系ステンレス鋼を提供する。
The present invention relates to a component and a production method for further improving high-temperature salt damage resistance, and provides a ferritic stainless steel capable of coping with a reduction in the weight (thickness) and a high heat resistance of exhaust system components. .

【0007】[0007]

【課題を解決するための手段】本発明の特徴は、重量%
で、C:0.003〜0.015、N:0.02以下、
C+N:0.03以下、Si:0.5超〜2以下、M
n:0.1〜1、P:0.01〜0.1、S:0.01
以下、Cr:13〜17未満、Al:0.02〜0.
3、Mg:0.001〜0.05、Nb:0.1〜0.
5未満を含み、Zr:0.01〜0.5またはTi:
0.01〜0.5の1種を、あるいは2種の場合は0.
01≦Ti+Zr≦0.5の範囲で含み、さらに、M
o:0.1〜2.0またはW:0.1〜2.0の1種
を、あるいは2種の場合は0.1≦Mo+W≦3.0の
範囲で含み、残部実質的にFeからなる耐高温塩害性に
優れたフェライト系ステンレス鋼、および上述の化学成
分を有するフェライト系ステンレス鋼に、残留酸素濃度
が2vol.%以上の雰囲気中にて930〜1000℃の温
度範囲で焼鈍を施し、その後ソルト酸洗・硝酸電解・硝
沸酸の順に酸洗して耐高温塩害性に優れたフェライト系
ステンレス鋼を製造するところにある。
The feature of the present invention is that the weight%
And C: 0.003 to 0.015, N: 0.02 or less,
C + N: 0.03 or less, Si: more than 0.5 to 2 or less, M
n: 0.1 to 1, P: 0.01 to 0.1, S: 0.01
Hereinafter, Cr: less than 13 to 17, Al: 0.02 to 0.1.
3, Mg: 0.001-0.05, Nb: 0.1-0.
5 including Zr: 0.01 to 0.5 or Ti:
One kind of 0.01 to 0.5, or 0.1 in the case of two kinds.
01 ≦ Ti + Zr ≦ 0.5.
o: 0.1 to 2.0 or W: 0.1 to 2.0, or in the case of two, in the range of 0.1 ≦ Mo + W ≦ 3.0, and the balance substantially from Fe The ferrite stainless steel excellent in high-temperature salt damage resistance and the ferritic stainless steel having the above-mentioned chemical components are annealed in an atmosphere having a residual oxygen concentration of 2 vol. And then pickling in the order of salt pickling, nitric acid electrolysis and nitric acid to produce a ferritic stainless steel excellent in high-temperature salt damage resistance.

【0008】以下、本発明を詳細に説明する。本発明者
らは耐熱フェライト系ステンレス鋼の耐高温塩害性の向
上に主にMo,WおよびSiが効果的であることを見出
し、さらに、製造工程の中で最終製品の表面状態を決定
する最終焼鈍工程および酸洗工程の条件を最適化するこ
とで、一層耐高温塩害性に優れた表面状態を造り込むこ
とに成功した。
Hereinafter, the present invention will be described in detail. The present inventors have found that Mo, W and Si are mainly effective in improving the high-temperature salt damage resistance of a heat-resistant ferritic stainless steel, and furthermore, determine the surface condition of the final product in the manufacturing process. By optimizing the conditions of the annealing step and the pickling step, we succeeded in creating a surface state with even better high-temperature salt damage resistance.

【0009】化学成分としては、Mo,WおよびSiを
常温延性を劣化させない程度の添加量とし、さらにMo
およびWについては、過剰添加は耐高温塩害性を劣化さ
せるため最適値範囲を設けた。また、Mo,WおよびS
iの耐高温塩害性の向上効果を阻害することなく、さら
なる耐高温塩害性向上を図るために、AlおよびMgを
常温延性を劣化させない程度の添加量とした。これら元
素の添加は、特に中温から高温での表面の酸化皮膜を強
固にするとともに母材金属との密着性を向上させるた
め、耐高温塩害性を向上させると考えられる。
As the chemical components, Mo, W and Si are added in such an amount that the ductility at room temperature is not deteriorated.
As for W and W, an excessive addition deteriorates the high-temperature salt damage resistance, so that an optimum value range is provided. Mo, W and S
In order to further improve the high-temperature salt damage resistance without hindering the effect of improving the high-temperature salt damage resistance of i, Al and Mg were added in such an amount that the room-temperature ductility was not deteriorated. It is considered that the addition of these elements enhances the high-temperature salt damage resistance in order to strengthen the oxide film on the surface particularly at a medium temperature to a high temperature and improve the adhesion to the base metal.

【0010】製造条件は、前述の成分範囲のフェライト
系ステンレス鋼スラブを、熱間圧延し、または熱延板と
ほゞ同等の厚さの連続鋳造鋳片を得、必要によって焼鈍
した後、酸洗を施して冷間圧延し、その後最終焼鈍とし
て、残留酸素濃度が2vol.%以上の雰囲気で930℃〜
1000℃の温度範囲にて焼鈍し、これにより酸洗前の
酸化皮膜および皮膜形成に伴うCr欠乏層の厚さを制御
し、次いで下記に示す工程の酸洗を施して、耐高温塩害
性に優れた表面状態を造り込むものである。 酸洗工程(→→の順に行う3段階の酸洗): ソルト酸洗:アルカリ濃度30〜40%(重量
%)、含水率50〜60%、温度350〜450℃ 硝酸電解:硝酸濃度80〜120g/l、温度45
〜75℃、電流3〜60mA/cm2 硝沸酸 :硝酸濃度30〜100g/l、沸酸濃度
10〜80g/l、温度40〜70℃ 以上のように、本発明は、耐高温塩害性を向上させる観
点からSi,W,Mo,MgおよびAlの添加範囲を設
定し、さらにその製造工程条件を提示するものである。
The production conditions are as follows. A ferritic stainless steel slab having the above-mentioned composition range is hot-rolled, or a continuous cast slab having a thickness substantially equal to that of a hot-rolled sheet is obtained, and if necessary, annealed. After washing and cold rolling, the final annealing is carried out in an atmosphere having a residual oxygen concentration of 2 vol.
Anneal in a temperature range of 1000 ° C., thereby controlling the thickness of the oxide film before pickling and the thickness of the Cr-deficient layer accompanying the film formation. It creates excellent surface conditions. Pickling process (three stages of pickling performed in the order of →→): Salt pickling: alkali concentration 30-40% (weight%), water content 50-60%, temperature 350-450 ° C. Nitric acid electrolysis: nitric acid concentration 80- 120 g / l, temperature 45
-75 ° C., current 3-60 mA / cm 2 nitric acid: nitric acid concentration 30-100 g / l, hydrofluoric acid concentration 10-80 g / l, temperature 40-70 ° C. From the viewpoint of improving Si, W, Mo, Mg, and Al are set, and the manufacturing process conditions are presented.

【0011】[0011]

【作用】以下、本発明鋼の化学成分について説明する。 C:本鋼はTiまたはZrの炭窒化物にて高温強度の一
部を支えており、0.003%以上は必要であるが、低
温から高温に至る耐粒界腐食性を考慮するとともに加工
性および熱延板靱性の向上の観点から上限を0.015
%とした。また、Nと合わせて;C+N≦0.03%と
した。 Si:脱酸材として有効であると共に、耐酸化性および
耐高温塩害性を向上させる元素である。特に耐高温塩害
性にも有効な元素であるので0.5%超は必要である。
また、本発明鋼は、SUS430J1Lに比べ低Crと
しているため耐酸化性の保持、特に排ガス中での耐酸化
性の確保の点からも必要な添加元素である。また、一方
では、加工性や溶接性を低下させるため2%以下とし
た。 Mn:脱酸元素であるので最低0.1%は必要である。
また、オーステナイト形成元素でありマルテンサイト変
態を阻止するために上限を1%とした。 P:高温高強度化(固溶強化)に有用であるが、溶接性
劣化を招くので0.01〜0.1%とした。 S:MnSの形成元素で、ステンレス鋼の基本特性であ
る耐食性を低下させるため0.01%以下とした。 Cr:耐酸化性および耐高温塩害性向上に有効であり、
900℃付近での耐酸化性を確保するため13%以上と
した。また、本鋼の使用環境として最高温度を900℃
付近と考えると17%以上の添加はあまり有効ではない
ので、上限を17%未満とした。 Nb:溶接部および溶接影響部での粒成長の防止および
高温強度の確保のための添加元素である。しかし、C,
NおよびFeとの親和力が強く、使用中に析出物を形成
するため、Nbの固溶強化の効果をより有効に働かせる
範囲として0.1〜0.5%未満とした。 Ti:C+Nを固着し、加工性の向上および母相組織の
長時間安定性の確保のために必要な元素である。Ti
は、W,MoおよびNbよりもC,Nとの親和力が強い
ため、使用中のNb,MoおよびWの炭窒化物の析出を
抑える働きがある。これにより、使用中の固溶W,Mo
およびNbを確保でき、使用中の高温強度および耐高温
塩害性を確保できる。母相中に固溶しないCおよびNを
固着するために、最低添加量を0.01%とした。ま
た、使用前の高温強度の一部をTiの炭窒化物で支えて
いることから、0.5%を越えるTiの添加は炭窒化物
を粗大化させるため使用前の高温強度を低下させる。こ
のため、上限を0.5%とした。また、Zrとの複合の
場合は0.01≦Zr+Ti≦0.5とした。 Zr:C+Nを固着し、加工性の向上および母相組織の
長時間安定性の確保のために必要な元素である。Zr
は、W,MoおよびNbよりもC,Nとの親和力が強い
ため、使用中のNb,MoおよびWの炭窒化物の析出を
抑える働きがある。これにより、使用中の固溶W,Mo
およびNbを確保でき、使用中の高温強度および耐高温
塩害性を確保できる。母相中に固溶しないCおよびNを
固着するために、最低添加量を0.01%とした。ま
た、使用前の高温強度の一部をZrの炭窒化物で支えて
いることから、0.5%を越えるZrの添加は炭窒化物
を粗大化させるため使用前の高温強度を低下させる。こ
のため、上限を0.5%とした。また、Tiとの複合の
場合は0.01≦Zr+Ti≦0.5とした。 W:高温強度および耐高温塩害性を高める添加元素であ
り、0.1%以上の添加は必要である。また、Nbに比
べ、析出しにくいため使用中でも固溶量を確保できるた
め、使用中の高温強度および耐高温塩害性の保持に有効
である。しかし、過剰添加は耐高温塩害性を劣化させる
ため単独で2%を、Moと複合で3%を上限とした。ま
た、Wは再結晶温度を上昇させる元素の1つであり、か
つFeとの金属間化合物や炭窒化物が析出し易い元素な
ので、これらが多量に析出し難い範囲も考慮して上記範
囲が定められた。 Mo:高温強度および耐高温塩害性を高める添加元素で
あり、本発明鋼は低Crとしているためステンレス鋼の
基本的特性である耐食性の確保からも0.1%以上の添
加は必要である。また、Nbに比べ、析出しにくいため
使用中でも固溶量を確保できるため、使用中の高温強度
および耐高温塩害性の保持に有効である。しかし、多量
添加は耐高温塩害性を劣化させるため単独で2%を、W
と複合で3%を上限とした。また、Moは再結晶温度を
上昇させる元素の1つであり、かつFeとの金属間化合
物や炭窒化物が析出し易い元素なので、これらが多量に
析出し難い範囲も考慮して上記範囲が定められた。 Al:脱酸材として有効であると共に、耐酸化性および
耐高温塩害性を向上させる元素である。耐高温塩害性に
も有効な元素であるので0.02%以上は必要である。
また、本鋼はSUS430J1Lに比べ低Crとしてい
るため耐酸化性向上、特に排ガス中での耐酸化性向上の
観点から必要な添加元素である。また、一方では、加工
性の劣化や溶接ビード形状を悪くするため0.3%以下
とした。 Mg:耐高温塩害性を向上させる元素であるので0.0
01%以上は必要である。また、一方では、延性・靱性
を悪くするため0.05%以下とした。 N:本発明鋼はTiまたはZrの炭窒化物にて高温強度
の一部を支えているが、低温から高温に至る耐粒界腐食
性を考慮するとともに加工性および熱延板靱性の向上の
観点から上限を0.02%とした。また、Cと合わせ
て;C+N≦0.03とした。
The chemical components of the steel of the present invention will be described below. C: This steel supports a part of high-temperature strength by carbonitride of Ti or Zr, and 0.003% or more is necessary. However, considering the intergranular corrosion resistance from low temperature to high temperature, it is processed. The upper limit is 0.015 from the viewpoint of the improvement of the ductility and toughness of the hot rolled sheet.
%. In addition, N + C was set to 0.03%. Si: an element that is effective as a deoxidizing material and improves oxidation resistance and high-temperature salt damage resistance. In particular, it is an element effective for high-temperature salt damage resistance, so that it needs to exceed 0.5%.
Further, since the steel of the present invention has a lower Cr content than SUS430J1L, it is an additional element necessary for maintaining oxidation resistance, particularly for ensuring oxidation resistance in exhaust gas. On the other hand, the content is set to 2% or less to reduce workability and weldability. Mn: Since it is a deoxidizing element, at least 0.1% is required.
The upper limit is set to 1% in order to prevent martensitic transformation as an austenite forming element. P: Useful for increasing the strength at high temperatures (solid solution strengthening), but deteriorates the weldability, so it was made 0.01 to 0.1%. S: An element forming MnS, and is set to 0.01% or less to reduce corrosion resistance, which is a basic characteristic of stainless steel. Cr: effective for improving oxidation resistance and high-temperature salt damage resistance,
The content is set to 13% or more in order to secure oxidation resistance around 900 ° C. In addition, the maximum operating temperature of this steel is 900 ° C.
Considering the vicinity, addition of 17% or more is not very effective, so the upper limit was set to less than 17%. Nb: an additional element for preventing grain growth and ensuring high-temperature strength in a weld and a weld-affected zone. However, C,
Since the affinity for N and Fe is strong and precipitates are formed during use, the content of Nb is set to 0.1 to less than 0.5% as a range in which the effect of solid solution strengthening works more effectively. Ti: An element necessary for fixing C + N and improving workability and ensuring long-term stability of the matrix structure. Ti
Has a stronger affinity for C and N than W, Mo and Nb, and thus has the function of suppressing the precipitation of carbonitrides of Nb, Mo and W during use. Thereby, the solid solution W, Mo in use is used.
And Nb can be secured, and high-temperature strength and high-temperature salt damage resistance during use can be secured. In order to fix C and N which do not form a solid solution in the mother phase, the minimum addition amount was 0.01%. Further, since a part of the high-temperature strength before use is supported by the carbonitride of Ti, the addition of Ti exceeding 0.5% lowers the high-temperature strength before use to coarsen the carbonitride. Therefore, the upper limit is set to 0.5%. Further, in the case of a composite with Zr, 0.01 ≦ Zr + Ti ≦ 0.5. Zr: An element necessary for fixing C + N and improving workability and ensuring long-term stability of the matrix structure. Zr
Has a stronger affinity for C and N than W, Mo and Nb, and thus has the function of suppressing the precipitation of carbonitrides of Nb, Mo and W during use. Thereby, the solid solution W, Mo in use is used.
And Nb can be secured, and high-temperature strength and high-temperature salt damage resistance during use can be secured. In order to fix C and N which do not form a solid solution in the mother phase, the minimum addition amount was 0.01%. Further, since a part of the high-temperature strength before use is supported by the carbonitride of Zr, the addition of Zr exceeding 0.5% lowers the high-temperature strength before use to coarsen the carbonitride. Therefore, the upper limit is set to 0.5%. In the case of a composite with Ti, the relation is 0.01 ≦ Zr + Ti ≦ 0.5. W: an additive element that enhances high-temperature strength and high-temperature salt damage resistance, and needs to be added in an amount of 0.1% or more. Further, since it is harder to precipitate than Nb, the amount of solid solution can be ensured even during use, which is effective for maintaining high-temperature strength and high-temperature salt damage resistance during use. However, excessive addition degrades high-temperature salt damage resistance, so the upper limit is 2% alone, and the upper limit is 3% in combination with Mo. In addition, W is one of the elements that raise the recrystallization temperature, and is an element in which an intermetallic compound or a carbonitride with Fe is easily precipitated. It was decided. Mo: an additive element that enhances high-temperature strength and high-temperature salt damage resistance. Since the steel of the present invention has low Cr, addition of 0.1% or more is necessary in order to ensure corrosion resistance, which is a basic characteristic of stainless steel. Further, since it is harder to precipitate than Nb, the amount of solid solution can be ensured even during use, which is effective for maintaining high-temperature strength and high-temperature salt damage resistance during use. However, the addition of a large amount deteriorates high-temperature salt damage resistance by 2% alone,
And the upper limit of 3% in the composite. In addition, Mo is one of the elements that raise the recrystallization temperature, and is an element in which an intermetallic compound or a carbonitride with Fe is easily precipitated. It was decided. Al: An element that is effective as a deoxidizing material and improves oxidation resistance and high-temperature salt damage resistance. 0.02% or more is necessary because it is an element effective for high-temperature salt damage resistance.
In addition, since the present steel has a lower Cr content than SUS430J1L, it is an additional element necessary from the viewpoint of improving oxidation resistance, particularly from the viewpoint of improving oxidation resistance in exhaust gas. On the other hand, the content is set to 0.3% or less in order to deteriorate workability and deteriorate the shape of a weld bead. Mg: an element that improves high-temperature salt damage resistance, and thus 0.0
01% or more is necessary. On the other hand, the content is set to 0.05% or less in order to deteriorate ductility and toughness. N: The steel of the present invention supports a part of the high temperature strength by the carbonitride of Ti or Zr. From the viewpoint, the upper limit is set to 0.02%. In addition, C + N ≦ 0.03 together with C.

【0012】次に本発明の製造条件について説明する。
前述の化学成分を有する溶鋼からスラブを形成し、加熱
処理を施した後熱間圧延して所望の板厚を得るか、また
は連続鋳造によっで熱延板に相当する厚さの薄鋼板を鋳
造した後、必要により焼鈍を施して冷間圧延を行い、か
ゝる鋼板に最終焼鈍を施す。この焼鈍は酸洗前に改質し
易い酸化皮膜およびCr欠乏層を生成させるため、残留
酸素濃度を2vol.%以上の雰囲気中で930〜1000
℃の温度範囲で行う。この条件で焼鈍することで、脱ス
ケール性に優れた酸化皮膜およびCr欠乏層が形成する
と考えられる。このメカニズムは明らかされてはいない
が、酸化皮膜がソルト酸洗時に改質し易い状態、すなわ
ち強アルカリ中(ソルト中)でCrが6価になり易い状
態で存在していると推定できる。このため、後の酸洗で
の脱スケール性が極めて良好なものとなるのである。酸
洗工程条件は下記の条件により、→→の順で行わ
れる。これにより十分な溶削量を確保すると共に耐高温
塩害性に優れた表面状態にすることができる。 ソルト酸洗:アルカリ濃度30〜40%(重量
%)、含水率50〜60%、温度350〜450℃ 硝酸電解 :硝酸濃度90〜120g/l、温度4
5〜75℃、電流3〜60mA/cm2 硝沸酸 :硝酸濃度30〜100g/l、沸酸濃
度10〜80g/l、温度40〜70℃ 上記条件での脱スケールの機構についても明かではない
が、つぎのように考えられる。
Next, the manufacturing conditions of the present invention will be described.
A slab is formed from molten steel having the above-described chemical components, and a heat treatment is performed and then hot-rolled to obtain a desired sheet thickness, or a thin steel sheet having a thickness corresponding to a hot-rolled sheet by continuous casting. After casting, if necessary, annealing is performed, cold rolling is performed, and such a steel sheet is subjected to final annealing. This annealing forms an oxide film and a Cr-depleted layer which are easily modified before pickling, so that the residual oxygen concentration is 930 to 1000 in an atmosphere of 2 vol.% Or more.
Perform in the temperature range of ° C. It is considered that annealing under these conditions forms an oxide film and a Cr-deficient layer having excellent descalability. Although this mechanism has not been elucidated, it can be assumed that the oxide film exists in a state where the oxide film is easily modified at the time of salt pickling, that is, in a strong alkali (in the salt), Cr is likely to become hexavalent. For this reason, the descaling property in the subsequent pickling becomes extremely good. The pickling process is performed in the order of →→ according to the following conditions. As a result, a sufficient cutting amount can be ensured and a surface state excellent in high-temperature salt damage resistance can be obtained. Salt pickling: alkali concentration 30 to 40% (% by weight), water content 50 to 60%, temperature 350 to 450 ° C Nitric acid electrolysis: nitric acid concentration 90 to 120 g / l, temperature 4
5 to 75 ° C, current 3 to 60 mA / cm 2 nitric acid: nitric acid concentration 30 to 100 g / l, hydrofluoric acid concentration 10 to 80 g / l, temperature 40 to 70 ° C The mechanism of descaling under the above conditions is apparent. No, but it is considered as follows.

【0013】 ソルト酸洗に於いては、焼鈍によって
形成された酸化皮膜を脱スケール性を良好な状態に改質
するものと考えられる。すなわち、酸化皮膜形成元素で
あるCrを3価から6価に酸化させることで、後工程で
の脱スケール性を高めていると現在は推定されている。 硝酸電解酸洗においては、ソルト後、脱スケール性
が良好な状態に改質された表面皮膜を取り除く。さら
に、最表面近傍のCr欠乏層を溶解し、表面近傍のCr
欠乏層の領域を減少させる。
[0013] In the salt pickling, it is considered that the oxide film formed by the annealing is modified to have a good descaling property. That is, it is currently estimated that the descalability in the subsequent process is enhanced by oxidizing Cr, which is an oxide film forming element, from trivalent to hexavalent. In the nitric acid electrolytic pickling, after the salt is removed, the surface film modified to have a good descaling property is removed. Further, the Cr-deficient layer near the outermost surface is dissolved, and the Cr near the surface is dissolved.
The area of the depletion layer is reduced.

【0014】 硝沸酸酸洗においては、一部残ったC
r欠乏層を完全に取り除く。このように、上記請求項
(2)にある処理工程を行うことで脱スケールが良好と
なり、またCr欠乏層をほぼ取り除くことで表面Cr濃
度が均一な表面を作ることができると考えられ、耐高温
塩害性に優れた表面になっていると考えられる。
[0014] In the pickling with nitric acid, the remaining C
Completely remove the r-deficient layer. As described above, it is considered that descaling is improved by performing the processing step according to claim (2), and a surface having a uniform surface Cr concentration can be formed by substantially removing the Cr-depleted layer. It is considered that the surface is excellent in high-temperature salt damage.

【0015】[0015]

【実施例】表1に示す化学成分の供試鋼を真空溶解にて
溶製しスラブ形状とし、その後、スラブ加熱−熱間圧延
−最終焼鈍−酸洗を経て4mmの板を作製した。また、K
l、3および5についてはスラブ加熱−熱間圧延−ショ
ットまたは酸洗−冷延−最終焼鈍−酸洗を施し2mmの冷
延焼鈍板も作製した。引張り試験および高温塩害試験を
行い、その諸特性を表2に示す。また、表3にKl、K
3およびK5について製造条件と耐高温塩害性との関係
について示す。
EXAMPLES Test steels having the chemical components shown in Table 1 were melted by vacuum melting to form slabs, and then subjected to slab heating-hot rolling-final annealing-pickling to produce 4 mm plates. Also, K
Samples 1, 3 and 5 were subjected to slab heating-hot rolling-shot or pickling-cold rolling-final annealing-pickling to produce 2 mm cold-rolled annealed sheets. A tensile test and a high-temperature salt damage test were performed, and various characteristics are shown in Table 2. Table 3 shows Kl, K
3 and K5 show the relationship between the production conditions and the high-temperature salt damage resistance.

【0016】表2より、Mgを添加したK1〜6はMg
無添加のH2に比べ耐高温塩害性が良好である。Siの
低いH1、A1およびMgの低いH2、Moの高いH
3、Wの高いH4は、本発明鋼に比べ耐高温塩害性が劣
っている。一方、H5はMgが多量添加されているため
耐高温塩害性は良好であるが、常温延性が低い値となっ
ている。
According to Table 2, K1 to 6 to which Mg was added were Mg
High temperature salt damage resistance is better than H2 without addition. Low H1, A1 with Si and low H2 with Mg, high H with Mo
3. H4 having a high W is inferior in high-temperature salt damage resistance as compared with the steel of the present invention. On the other hand, H5 has high resistance to high-temperature salt damage due to the addition of a large amount of Mg, but has a low value of room-temperature ductility.

【0017】表3より、焼鈍温度が1000℃を越える
と、K1−4の例から判るように、酸洗条件を満たして
いても耐高温塩害性が悪くなる傾向にある。また、焼鈍
温度が930℃より低くてもK5−1の例から判るよう
に酸洗条件を満たしていても耐高温塩害性が悪くなる傾
向にある。本発明の請求範囲を満たす焼鈍および酸洗条
件であるK1−3、K3−3およびK5−4は耐高温塩
害性が良好であることが判り、3段階の酸洗条件を1つ
でも欠く条件は、耐高温塩害性が悪くなる。
From Table 3, when the annealing temperature exceeds 1000 ° C., as can be seen from the example of K1-4, the high-temperature salt damage resistance tends to deteriorate even if the pickling conditions are satisfied. Further, even if the annealing temperature is lower than 930 ° C., as shown in the example of K5-1, even if the pickling condition is satisfied, the high-temperature salt damage resistance tends to be deteriorated. The annealing and pickling conditions K1-3, K3-3 and K5-4 satisfying the claims of the present invention were found to have good resistance to high-temperature salt damage, and the conditions lacking any one of the three stages of pickling conditions. Has poor high-temperature salt damage resistance.

【0018】またK1C、K3CおよびK5Cの2mm冷
延板についても表2より熱延板同様の耐高温塩害性特性
が得られていることが判り、また、表3から焼鈍温度を
930〜1000℃にすることで耐高温塩害性特性を向
上可能なことが判る。
Table 2 shows that the cold-rolled sheets of K1C, K3C and K5C have the same high-temperature salt damage resistance characteristics as the hot-rolled sheets, and Table 3 shows that the annealing temperature was 930-1000 ° C. It can be understood that the high temperature salt damage resistance characteristics can be improved by setting the temperature to.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】本発明は、高温での塩害腐食環境下にさ
らされる部材、特に自動車排気系材料として、使用環境
を考慮し、かつ耐高温塩害性の優れたフェライト系ステ
ンレス鋼を提供するもので、これにより今後の自動車の
高熱費化・高出力化・排ガス浄化性能等の向上に十分対
応できるものである。
According to the present invention, there is provided a ferrite stainless steel which is exposed to a salt corrosion environment at a high temperature, particularly a material for an automobile exhaust system, in consideration of a use environment and excellent in high temperature salt damage resistance. Thus, it is possible to sufficiently cope with the future improvement of heat consumption, high output, and exhaust gas purification performance of automobiles.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−248394(JP,A) 特開 平5−125491(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 302 C21D 6/00 102 C21D 8/02 C22C 38/34 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-248394 (JP, A) JP-A-5-125491 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 38/00 302 C21D 6/00 102 C21D 8/02 C22C 38/34

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C:0.003〜0.015 N:0.02以下 C+N:0.03以下 Si:0.5超〜2以下 Mn:0.1〜1 P:0.01〜0.1 S:0.01以下 Cr:13〜17未満 Al:0.02〜0.3 Mg:0.001〜0.05 Nb:0.1〜0.5未満を含み、 Zr:0.01〜0.5、Ti:0.01〜0.5の1
種を、また2種の場合は0.01≦Ti+Zr≦0.5
の範囲で含み、 さらに Mo:0.1〜2.0、W:0.1〜2.0の1種を、
また2種の場合は0.1≦Mo+W≦3.0の範囲で含
み、残部実質的にFeからなることを特徴とする耐高温
塩害性に優れたフェライト系ステンレス鋼。
1. In weight%, C: 0.003 to 0.015 N: 0.02 or less C + N: 0.03 or less Si: more than 0.5 to 2 Mn: 0.1 to 1 P: 0. 01 to 0.1 S: 0.01 or less Cr: 13 to less than 17 Al: 0.02 to 0.3 Mg: 0.001 to 0.05 Nb: 0.1 to less than 0.5, Zr: 0.01 to 0.5, Ti: 1 of 0.01 to 0.5
Species and, in the case of two, 0.01 ≦ Ti + Zr ≦ 0.5
And Mo: 0.1 to 2.0, W: 0.1 to 2.0,
A ferritic stainless steel excellent in high-temperature salt damage resistance, wherein two types are included in the range of 0.1 ≦ Mo + W ≦ 3.0, and the balance is substantially composed of Fe.
【請求項2】 請求項1記載の化学成分を有するフェラ
イト系ステンレス鋼スラブを熱間圧延し、次いで該熱延
板に残留酸素濃度が2vol.%以上の雰囲気中にて930
〜1000℃の温度範囲で焼鈍を施し、その後ソルト酸
洗・硝酸電解・硝沸酸の順に酸洗することを特徴とする
耐高温塩害性に優れたフェライト系ステンレス鋼の製造
方法。
2. The ferritic stainless steel slab having the chemical composition according to claim 1 is hot-rolled, and then the hot-rolled sheet is heated to 930 in an atmosphere having a residual oxygen concentration of 2 vol.
A method for producing a ferritic stainless steel excellent in high-temperature salt damage resistance, comprising annealing in a temperature range of up to 1000 ° C., and thereafter pickling in the order of salt pickling, nitric acid electrolysis, and nitric acid.
【請求項3】 前記熱延板に必要により焼鈍した後酸洗
を施して冷間圧延し、次いで残留酸素濃度が2vol.%以
上の雰囲気中にて930〜1000℃の温度範囲で焼鈍
を施し、その後ソルト酸洗・硝酸電解・硝沸酸の順に酸
洗する請求項2記載の製造方法。
3. The hot-rolled sheet is annealed if necessary, pickled, cold-rolled, and then annealed in an atmosphere having a residual oxygen concentration of 2 vol. 3. The production method according to claim 2, wherein acid pickling is performed in the order of salt pickling, nitric acid electrolysis, and nitric acid.
【請求項4】 前記化学成分を有し、かつ熱間圧延板と
ほゞ同等の厚さを有する連続鋳造鋳片を必要により焼鈍
した後酸洗を施して冷間圧延する請求項2又は3記載の
製造方法。
4. A continuous cast slab having the chemical composition and having a thickness substantially equal to that of a hot-rolled plate, if necessary, is subjected to pickling and then cold-rolled. The manufacturing method as described.
JP6551493A 1993-03-24 1993-03-24 Ferritic stainless steel excellent in high-temperature salt damage resistance and its manufacturing method Expired - Lifetime JP2907673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6551493A JP2907673B2 (en) 1993-03-24 1993-03-24 Ferritic stainless steel excellent in high-temperature salt damage resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6551493A JP2907673B2 (en) 1993-03-24 1993-03-24 Ferritic stainless steel excellent in high-temperature salt damage resistance and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH06279949A JPH06279949A (en) 1994-10-04
JP2907673B2 true JP2907673B2 (en) 1999-06-21

Family

ID=13289227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6551493A Expired - Lifetime JP2907673B2 (en) 1993-03-24 1993-03-24 Ferritic stainless steel excellent in high-temperature salt damage resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2907673B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690997A (en) * 2011-03-25 2012-09-26 Posco公司 Ferritic stainless steel and method of manufacturing the same
MX2020001521A (en) 2017-09-29 2020-03-20 Jfe Steel Corp Annealed hot-rolled ferritic stainless steel sheet and method for producing same.

Also Published As

Publication number Publication date
JPH06279949A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
US9279172B2 (en) Heat-resistance ferritic stainless steel
JP3041050B2 (en) Duplex stainless steel and its manufacturing method
TWI496899B (en) Ferritic stainless steel
JP7238161B2 (en) Ferritic stainless steel plate
WO2012063613A1 (en) Ferritic stainless steel with excellent oxidation resistance
KR101658872B1 (en) Ferritic stainless steel
JP6858056B2 (en) Low specific gravity ferritic stainless steel sheet and its manufacturing method
JP7009278B2 (en) Ferritic stainless steel sheets with excellent heat resistance and exhaust parts and their manufacturing methods
JP3269799B2 (en) Ferritic stainless steel for engine exhaust parts with excellent workability, intergranular corrosion resistance and high-temperature strength
JPH08144021A (en) Production of ferritic stainless steel and cold rolled sheet therefrom
JP2013133482A (en) Ferritic stainless steel excellent in corrosion resistance at welded part
JP3247244B2 (en) Fe-Cr-Ni alloy with excellent corrosion resistance and workability
JP2907673B2 (en) Ferritic stainless steel excellent in high-temperature salt damage resistance and its manufacturing method
JPH0641695A (en) Ferritic stainless steel for exhaust gas passage member and its production
JPH0472013A (en) Manufacture of two phase stainless steel having excellent corrosion resistance to concentrated sulfuric acid
JPH02156048A (en) Chromium steel excellent in corrosion resistance
JPH11279682A (en) High strength steel sheet good in workability and spot weldability and its production
JPH10237602A (en) Niobium-containing ferritic stainless steel excellent in low temperature toughness of hot rolled sheet
WO2014045476A1 (en) Ferritic stainless steel
KR100389322B1 (en) Cold rolled steel with good sulfar corrosion resistance and method of manufacturing the same
JP2012107314A (en) Ferritic stainless steel excellent in thermal fatigue characteristics and high temperature fatigue characteristics
JPH06256841A (en) Production of ferritic stainless steel having excellent high-temperature salt damage resistance
JPH0534419B2 (en)
JPH055129A (en) Production of hot rolled multilayer steel plate having surface layer composed of austenitic stainless steel and excellent in corrosion resistance and deep drawability
CN113166877A (en) Acid-resistant steel plate and preparation method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990223

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 14