JPH06256082A - Apparatus for producing compound semiconductor single crystal - Google Patents

Apparatus for producing compound semiconductor single crystal

Info

Publication number
JPH06256082A
JPH06256082A JP6765193A JP6765193A JPH06256082A JP H06256082 A JPH06256082 A JP H06256082A JP 6765193 A JP6765193 A JP 6765193A JP 6765193 A JP6765193 A JP 6765193A JP H06256082 A JPH06256082 A JP H06256082A
Authority
JP
Japan
Prior art keywords
heater
crystal
furnace
compound semiconductor
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6765193A
Other languages
Japanese (ja)
Inventor
Makoto Sato
佐藤  誠
Koichi Murata
浩一 村田
Tomoyuki Ishihara
知幸 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP6765193A priority Critical patent/JPH06256082A/en
Publication of JPH06256082A publication Critical patent/JPH06256082A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To make the form of the growing interface to be symmetrical in lateral direction during the crystal growth and to enable the stable growth of a compound semiconductor single crystal using a boat method by symmetrically arranging plural power-supply terminals with respect to the center line of the heater. CONSTITUTION:The heater part for the heating of a growing crystal in an apparatus for the production of a compound semiconductor single crystal by a boat method is composed of plural zones. Plural terminals for the independent supply of power to each zone are arranged in the form of a straight line at a position immediately above the heater. As an alternative, the attaching positions 3 are made to be symmetrical with respect to the center line A of the heater in the longitudinal direction of the furnace when viewed from above. The thermocouples 4 for the temperature determination are also placed at positions symmetrical with respect to the center line A of the heater in the longitudinal direction of the furnace when viewed from above. Electric power is supplied to the heater through each terminal and a compound semiconductor single crystal is grown by a boat method. The temperature difference generating in the lateral direction in the furnace can be decreased to prevent the generation of troubles such as defective lineage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水平ブリッジマン法
(HB法)や温度傾斜法(GF法)等のボート法による
化合物半導体単結晶の製造装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a compound semiconductor single crystal by a boat method such as a horizontal Bridgman method (HB method) or a temperature gradient method (GF method).

【0002】[0002]

【従来の技術】ボート法には水平ブリッジマン法(HB
法)と温度傾斜法(GF法)があるが、いずれも長尺な
ボートに原料を入れ、その長手方向に温度勾配を設けた
横型炉内でボート一端から結晶固化して単結晶を製造す
る方法である。
2. Description of the Related Art The boat method is a horizontal Bridgman method (HB
Method) and a temperature gradient method (GF method). In both cases, the raw material is put into a long boat and crystallized from one end of the boat in a horizontal furnace having a temperature gradient in the longitudinal direction to produce a single crystal. Is the way.

【0003】ボート法は結晶成長部分の温度勾配が小さ
いために、炉内の温度分布、特に固液界面近傍の温度分
布を精密に制御することが必要である。ここで、重要と
なる温度勾配は、炉長手方向、上下方向に加えて炉長手
方向に垂直な水平方向(以後左右方向と記す)も重要と
なる。この左右方向に温度差があると、結晶成長界面が
左右に曲がり結晶欠陥であるリネージなどが発生しやす
くなる。
Since the boat method has a small temperature gradient in the crystal growth portion, it is necessary to precisely control the temperature distribution in the furnace, particularly in the vicinity of the solid-liquid interface. Here, the important temperature gradient is important not only in the furnace longitudinal direction and the vertical direction but also in the horizontal direction perpendicular to the furnace longitudinal direction (hereinafter referred to as the horizontal direction). If there is a temperature difference in the left-right direction, the crystal growth interface bends left and right, and lineage, which is a crystal defect, is likely to occur.

【0004】ボート法による化合物半導体単結晶を製造
する装置において、ヒーター線に電力を供給する端子位
置は、従来適当な位置に設けることが一般的で、炉内の
温度分布を考慮して端子位置を設定することはなかっ
た。この端子はヒーター線に直接溶接されているため
に、端子溶接部のヒーター温度が局部的に低くなり、炉
内の温度分布にも影響を与えていた。このため、前記端
子の取付け位置が左右方向で非対称の場合、左右方向に
温度差が発生し前述の理由でリネージ欠陥が発生するこ
とがしばしばあった。
In the apparatus for producing a compound semiconductor single crystal by the boat method, the terminal position for supplying electric power to the heater wire has generally been conventionally provided at an appropriate position. In consideration of the temperature distribution in the furnace, the terminal position is considered. Was never set. Since this terminal is directly welded to the heater wire, the heater temperature at the terminal welded portion was locally lowered, which also affected the temperature distribution in the furnace. Therefore, when the mounting position of the terminal is asymmetrical in the left-right direction, a temperature difference occurs in the left-right direction, and a lineage defect often occurs due to the above reason.

【0005】また、ヒーター部に取り付けられる温度測
定用センサー(熱電対等)の取付け位置も従来適当に設
定されているために、熱電対部が局部的に冷却され、炉
内の温度分布に影響を与えていた。
Further, since the mounting position of the temperature measuring sensor (thermocouple, etc.) mounted on the heater part has been conventionally set appropriately, the thermocouple part is locally cooled, which affects the temperature distribution in the furnace. I was giving.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来技術の
前述の欠点を解消しようとするものである。
SUMMARY OF THE INVENTION The present invention seeks to overcome the aforementioned drawbacks of the prior art.

【0007】[0007]

【課題を解決するための手段】本発明は、前述の問題点
を解決すべくなされたものであり、化合物半導体単結晶
をボート法を用いて製造する装置において、少なくとも
結晶成長中に育成すべき結晶を直接加熱する部分のヒー
ターに電力を供給する端子の取付け位置が、鉛直方向か
らみて炉長手方向のヒーター中心線に対して実質的に左
右対称な位置に設けられてなることを特徴とする化合物
半導体単結晶の製造装置を提供するものである。
The present invention has been made to solve the above-mentioned problems, and should be grown at least during crystal growth in an apparatus for producing a compound semiconductor single crystal using the boat method. The mounting position of the terminal for supplying electric power to the heater in the portion for directly heating the crystal is provided at a position substantially symmetrical with respect to the heater center line in the furnace longitudinal direction when viewed from the vertical direction. An apparatus for producing a compound semiconductor single crystal is provided.

【0008】また、本発明の好ましい1態様として、化
合物半導体単結晶をボート法を用いて製造する装置にお
いて、少なくとも結晶成長中に育成すべき結晶を直接加
熱する部分のヒーター付近に沿って設けられた温度測定
用センサーが、鉛直方向からみて炉長手方向のヒーター
中心線に対して実質的に左右対称な位置に設けられてな
る化合物半導体単結晶の製造装置を提供するものであ
る。
Further, as a preferred embodiment of the present invention, in a device for producing a compound semiconductor single crystal by using a boat method, it is provided along at least a portion near a heater for directly heating a crystal to be grown during crystal growth. Another object of the present invention is to provide an apparatus for producing a compound semiconductor single crystal, in which a temperature measuring sensor is provided at a position substantially symmetrical with respect to a heater center line in the furnace longitudinal direction when viewed from the vertical direction.

【0009】さらに、本発明の好ましい他の1態様とし
て、前記電力供給用の端子と温度測定用センサーの少な
くともいずれか一方が、前記ヒーターのほぼ鉛直上方
(ほぼ炉体の最上部)るいは鉛直下方(ほぼ炉体の最下
部)に設けられてなる化合物半導体単結晶の製造装置を
提供するものである。
Further, as another preferred embodiment of the present invention, at least one of the power supply terminal and the temperature measuring sensor is provided substantially vertically above the heater (approximately the uppermost portion of the furnace body) or vertically. An apparatus for producing a compound semiconductor single crystal provided below (almost at the bottom of the furnace body).

【0010】以下、本発明の構成を図を使用して詳しく
説明する。図2はヒーター線及び断熱材からなるヒータ
ー部を炉長手方向からみた断面図を示す。この例では、
ヒーター線に取り付けられた端子との接合部はすべてヒ
ーターのほぼ鉛直上部に配置する。好ましくは、断熱材
外部で電源と接続する端子も同じくヒーターのほぼ鉛直
上部に配置した方が炉内温度分布を対称に保ちやすいた
めに好ましい。
The configuration of the present invention will be described in detail below with reference to the drawings. FIG. 2 is a cross-sectional view of a heater portion composed of a heater wire and a heat insulating material as viewed from the furnace longitudinal direction. In this example,
All joints with the terminals attached to the heater wire shall be placed almost vertically above the heater. It is preferable that the terminal connected to the power source outside the heat insulating material is also arranged almost vertically above the heater because it is easy to keep the temperature distribution in the furnace symmetrical.

【0011】図1は、ヒーター線及び断熱材からなるヒ
ーター部を上方から見た平面図である。図中、炉長手方
向のヒーター中心線は矢印Aで示される方向である。こ
のヒーター部は、炉内の長手方向の温度分布を任意に制
御するために10個のゾーンから構成されている。その
10個のゾーンにそれぞれ独立に電力を供給するため
に、11個の端子がヒーター上部に取り付けられてい
る。また、温度センサーとしての熱電対も同様にヒータ
ー上部に取り付けられている。特に、端子の取付位置が
重要となるのは、結晶育成中に結晶が存在する部分であ
るが、結晶が存在しない炉の両端部分の端子位置及び熱
電対位置も炉芯管を通じた伝熱により温度差が生じるた
めに、図1のように対称に取り付ける方が好ましい。
FIG. 1 is a plan view of a heater portion composed of a heater wire and a heat insulating material as viewed from above. In the figure, the heater center line in the furnace longitudinal direction is the direction indicated by arrow A. This heater section is composed of 10 zones in order to arbitrarily control the temperature distribution in the longitudinal direction in the furnace. Eleven terminals are attached to the top of the heater to supply power to the ten zones independently. A thermocouple as a temperature sensor is also attached to the upper part of the heater. Especially, the position where the terminal is attached is important in the part where the crystal exists during the crystal growth, but the terminal position and the thermocouple position at both ends of the furnace where the crystal does not exist also depend on the heat transfer through the furnace core tube. Due to the temperature difference, it is preferable to mount them symmetrically as shown in FIG.

【0012】図3は、別のタイプのヒーター線及び断熱
材からなるヒーター部の平面図である。このヒーター部
は、炉内の長手方向の温度分布を正確に制御するため
に、10個のゾーンから構成され、炉長手方向において
炉端からほぼ同じ距離の位置に2個の端子を取り出す必
要がある場合の例を示した。この2個の端子のヒーター
線への取付け位置が、鉛直方向からみて炉長手方向のヒ
ーター中心線に対して実質的に左右対称な位置であり、
他の端子の位置はすべてヒーターのほぼ鉛直上部に配置
される。
FIG. 3 is a plan view of a heater portion composed of another type of heater wire and heat insulating material. This heater part is composed of 10 zones in order to accurately control the temperature distribution in the longitudinal direction in the furnace, and it is necessary to take out two terminals at positions approximately the same distance from the furnace end in the furnace longitudinal direction. An example of the case is shown. The mounting position of these two terminals to the heater wire is substantially symmetrical with respect to the heater center line in the furnace longitudinal direction when viewed from the vertical direction,
All other terminals are located almost vertically above the heater.

【0013】また、温度測定用センサーとしての熱電対
4も同様にヒーターのほぼ鉛直上部あるいは鉛直下部に
設けることが好ましい。炉体の側面に熱電対を取り付け
る場合には左右方向で対称になるように設ける。その場
合、温度測定は行わなくてもダミーの熱電対4aを左右
対称な位置に配置することもできる。
It is also preferable that the thermocouple 4 serving as a temperature measuring sensor is also provided substantially above or below the heater. When installing a thermocouple on the side of the furnace body, install it so that it is symmetrical in the left-right direction. In that case, the dummy thermocouples 4a can be arranged in symmetrical positions without performing temperature measurement.

【0014】[0014]

【作用】ボート法による化合物半導体単結晶の製造装置
において、ヒーター線に電力を供給する端子はヒーター
線に直接溶接されているために、端子溶接部のヒーター
温度が局部的に低くなり、炉内の温度分布にも影響を与
える。このため、端子取付位置を前述のように左右対称
にすることにより、炉内の左右方向に発生する温度差を
小さくすることができる。このため左右方向に温度勾配
がある場合に発生する結晶成長界面の左右方向での曲が
り及び結晶欠陥であるリネージなどを抑制することがで
き、歩留良く結晶を育成することができる。
In the apparatus for producing a compound semiconductor single crystal by the boat method, since the terminal for supplying electric power to the heater wire is directly welded to the heater wire, the heater temperature at the terminal welded portion is locally lowered, and It also affects the temperature distribution of. Therefore, by making the terminal mounting positions symmetrical as described above, it is possible to reduce the temperature difference generated in the horizontal direction in the furnace. Therefore, it is possible to suppress the bending of the crystal growth interface in the left-right direction, which occurs when there is a temperature gradient in the left-right direction, and lineage, which is a crystal defect, and to grow the crystal with a high yield.

【0015】また、同様の理由でヒーター部に取り付け
られる温度センサー(熱電対等)の位置も左右対称な位
置にすることにより、炉内の左右方向の温度分布を小さ
くすることができ、歩留が向上する。
For the same reason, the temperature sensors (thermocouples, etc.) attached to the heater section are also symmetrically arranged, so that the temperature distribution in the horizontal direction in the furnace can be reduced and the yield can be improved. improves.

【0016】[0016]

【実施例】以下、GaAsの単結晶を製造する場合の実
施例について説明する。
EXAMPLES Examples for producing a GaAs single crystal will be described below.

【0017】(実施例1)図1は、ヒーター線及び断熱
材からなるヒーター部の平面図を、図2はその炉長手方
向(図1のA方向)からみた断面図を示す。図1及び2
において、1はヒーター線、2は端子接合部、3は端子
取り出し部、4は熱電対、4aはダミー熱電対、5は断
熱材、6は炉芯管、7は結晶観察窓である。このヒータ
ー部は、全体として細長い筒状形状をなす断熱材を有
し、断熱材の上壁部には結晶観察用窓が形成されてい
る。断熱材の内周には10個のゾーンを持つヒーター線
が巻かれている。
(Embodiment 1) FIG. 1 is a plan view of a heater portion composed of a heater wire and a heat insulating material, and FIG. 2 is a sectional view seen from the furnace longitudinal direction (direction A in FIG. 1). 1 and 2
In FIG. 1, 1 is a heater wire, 2 is a terminal joining portion, 3 is a terminal lead-out portion, 4 is a thermocouple, 4 a is a dummy thermocouple, 5 is a heat insulating material, 6 is a furnace core tube, and 7 is a crystal observation window. The heater portion has a heat insulating material having a long and thin tubular shape as a whole, and a crystal observation window is formed on an upper wall portion of the heat insulating material. A heater wire having 10 zones is wound around the inner circumference of the heat insulating material.

【0018】このヒーター線に電力を供給する端子はヒ
ーター部のほぼ鉛直上部(炉体の最上部)に、炉長手方
向に1直線に並んでいる。また、温度測定用熱電対もヒ
ーターのほぼ鉛直上部に、炉の長手方向に1直線に並べ
た。さらにヒーター内周部には炉芯管を配置し、その内
部に反応容器に入れられた結晶育成用ボートを設置し結
晶育成を行う。
The terminals for supplying electric power to the heater wire are arranged in a straight line in the longitudinal direction of the furnace substantially vertically above the heater (uppermost part of the furnace body). The thermocouples for temperature measurement were also arranged in a straight line in the longitudinal direction of the furnace almost above the heater. Further, a furnace core tube is arranged in the inner peripheral portion of the heater, and a crystal growth boat placed in a reaction vessel is installed inside the furnace core tube for crystal growth.

【0019】図4には、育成する場合の反応容器の長手
方向の側断面図を示す。図において8は種結晶、9はボ
ート、10はGa、11は反応容器、12はAsであ
る。
FIG. 4 shows a side sectional view in the longitudinal direction of the reaction container in the case of growing. In the figure, 8 is a seed crystal, 9 is a boat, 10 is Ga, 11 is a reaction vessel, and 12 is As.

【0020】図4のようにボート9の中にGa10を2
100gを入れ、反応容器11の他端にAs12を23
00g入れ反応容器11内を真空状態に減圧し封じき
る。次に反応容器11を結晶育成炉にいれ、反応容器1
1内のAsを600℃に加熱し、反応容器11内のAs
蒸気圧を1atmに維持し、反応容器11内ボート部を
1200℃とし、GaとAs蒸気を反応させGaAsを
合成する。
As shown in FIG. 4, two Ga10 are placed in the boat 9.
Put 100 g, and add As12 to the other end of the reaction vessel 11
The reaction vessel 11 is filled with 00 g, and the inside of the reaction vessel 11 is depressurized to a vacuum state and sealed. Next, the reaction vessel 11 is put into a crystal growth furnace, and the reaction vessel 1
As in 1 is heated to 600 ° C., As in reaction vessel 11 is heated.
The vapor pressure is maintained at 1 atm, the boat in the reaction vessel 11 is set to 1200 ° C., and Ga and As vapor are reacted to synthesize GaAs.

【0021】その後、さらに昇温し種結晶温度を123
8℃、GaAs融液中の温度勾配を0.5℃/cm程度
にし、種結晶とGaAs融液を接触させる。その後、融
液の温度を徐々に下げて、冷却し結晶の育成を行う。こ
の際炉体上部の観察窓から観察した結晶固液界面形状
は、ほぼ左右対称なものであった。完全に固化後さらに
温度を室温まで下げて結晶を取り出した。得られた結晶
はリネージ欠陥のないEPD500から1000/cm
2 の良好なものであった。同様の結晶育成を10回繰り
返した結果、平均歩留り90%以上であり再現性も良好
であることが確められた。
Thereafter, the temperature is further raised to set the seed crystal temperature to 123.
At 8 ° C., the temperature gradient in the GaAs melt is set to about 0.5 ° C./cm, and the seed crystal and the GaAs melt are brought into contact with each other. After that, the temperature of the melt is gradually lowered and cooled to grow crystals. At this time, the crystal-solid interface shape observed from the observation window in the upper part of the furnace body was almost symmetrical. After completely solidifying, the temperature was further lowered to room temperature and crystals were taken out. The obtained crystals are EPD500 to 1000 / cm without lineage defects.
2 was good. As a result of repeating the same crystal growth 10 times, it was confirmed that the average yield was 90% or more and the reproducibility was also good.

【0022】この結晶を結晶上部自由表面に平行に切断
し、エッチングにより成長界面形状を観察した典型的な
例を図5に示す。図中左方向が結晶の成長していく方向
である。図5のように成長界面形状は成長方向に対して
ほぼ平行でほぼ左右対称なものであった。
FIG. 5 shows a typical example in which this crystal was cut parallel to the free surface of the crystal upper part and the growth interface shape was observed by etching. The left direction in the figure is the direction of crystal growth. As shown in FIG. 5, the shape of the growth interface was substantially parallel to the growth direction and was substantially symmetrical.

【0023】(比較例)図6には、端子及び熱電対を水
平方向片側に取り出したヒーター線及び断熱材からなる
ヒーター部の平面図を示す。その他の構造は基本的に実
施例と同じである。
(Comparative Example) FIG. 6 shows a plan view of a heater portion composed of a heat insulating material and a heater wire in which a terminal and a thermocouple are taken out to one side in the horizontal direction. The other structure is basically the same as that of the embodiment.

【0024】実施例と同様に図4のようにボート9の中
にGa10を2100gを入れ、反応容器11の他端に
As12を2300g入れ、反応容器11内を真空状態
に減圧し封じきる。次に反応容器11を結晶育成炉にい
れ、反応容器11内のAs12を600℃に加熱し、反
応容器11内のAs蒸気圧を1atmに維持する。反応
容器11内のボート部を1200℃とし、GaとAs蒸
気を反応させGaAsを合成する。
As in the example, as shown in FIG. 4, 2100 g of Ga10 is put in the boat 9, 2300 g of As12 is put in the other end of the reaction vessel 11, and the inside of the reaction vessel 11 is depressurized to a vacuum state and sealed. Next, the reaction vessel 11 is put into a crystal growth furnace, As12 in the reaction vessel 11 is heated to 600 ° C., and the As vapor pressure in the reaction vessel 11 is maintained at 1 atm. The boat inside the reaction vessel 11 is heated to 1200 ° C., and Ga and As vapor are reacted to synthesize GaAs.

【0025】その後、さらに昇温し種結晶温度を123
8℃、GaAs融液中の温度勾配を0.5℃/cm程度
にし、種結晶とGaAs融液を接触させる。その後、融
液の温度を徐々に下げて冷却し結晶の育成を行う。この
際炉上部の観察窓から観察した結晶固液界面形状は、ヒ
ーター端子側に大きく固化が進み左右非対称なもので、
しかも界面形状は安定していなかった。完全に固化後さ
らに温度を室温まで下げて結晶を取り出した。得られた
結晶は、成長の遅れた方向にリネージ欠陥が発生した。
同様の結晶育成を行った結果平均歩留りは50%以下で
あった。
Thereafter, the temperature is further raised to set the seed crystal temperature to 123.
At 8 ° C., the temperature gradient in the GaAs melt is set to about 0.5 ° C./cm, and the seed crystal and the GaAs melt are brought into contact with each other. Then, the temperature of the melt is gradually lowered and cooled to grow crystals. At this time, the crystal solid-liquid interface shape observed from the observation window on the upper part of the furnace is asymmetrical due to large solidification on the heater terminal side.
Moreover, the interface shape was not stable. After completely solidifying, the temperature was further lowered to room temperature and crystals were taken out. The obtained crystal had lineage defects in the direction in which the growth was delayed.
As a result of performing similar crystal growth, the average yield was 50% or less.

【0026】この結晶を結晶上部自由表面に平行に切断
し、エッチングにより成長界面形状を観察した典型的な
例を図7に示す。図7のように成長界面形状は成長方向
に対して傾いた形状で、結晶成長中に観察した形状に似
た形状であった。
FIG. 7 shows a typical example in which this crystal was cut parallel to the free surface of the crystal upper part and the growth interface shape was observed by etching. As shown in FIG. 7, the growth interface shape was tilted with respect to the growth direction, and was similar to the shape observed during crystal growth.

【0027】[0027]

【発明の効果】本発明は、結晶成長中の成長界面形状が
左右対称となり成長が安定し、リネージ欠陥などが発生
せず歩留とスループットが向上する効果がある。
The present invention has an effect that the growth interface shape during crystal growth becomes bilaterally symmetric, growth is stable, lineage defects are not generated, and yield and throughput are improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】対称な形状を持つヒーター部例の平面図。FIG. 1 is a plan view of an example of a heater portion having a symmetrical shape.

【図2】対称な形状を持つヒーター部例の断面図。FIG. 2 is a sectional view of an example of a heater portion having a symmetrical shape.

【図3】対称な形状を持つヒーター部例の平面図。FIG. 3 is a plan view of an example of a heater portion having a symmetrical shape.

【図4】反応容器の長手方向の側断面図。FIG. 4 is a longitudinal sectional side view of a reaction container.

【図5】対称ヒーター部により育成した結晶上部自由表
面に平行断面の成長界面形状観察例の説明図。
FIG. 5 is an explanatory diagram of an example of observing a growth interface shape in a cross section parallel to a crystal upper free surface grown by a symmetrical heater unit.

【図6】非対称な形状を持つヒーター部例の平面図。FIG. 6 is a plan view of an example of a heater portion having an asymmetrical shape.

【図7】非対称ヒーター部により育成した結晶上部自由
表面に平行断面の成長界面形状観察例の説明図。
FIG. 7 is an explanatory diagram of an example of observing a growth interface shape in a cross section parallel to a free upper surface of a crystal grown by an asymmetric heater unit.

【符号の説明】[Explanation of symbols]

1:ヒーター線 2:ヒーター線への端子溶接部 3:端子取り出し部 4:熱電対 4a:ダミー熱電対 5:断熱材 6:炉芯管 7:結晶観察窓 8:種結晶 9:ボート 10:Ga 11:反応容器 12:As 1: Heater wire 2: Terminal welding part to the heater wire 3: Terminal extraction part 4: Thermocouple 4a: Dummy thermocouple 5: Heat insulating material 6: Furnace core tube 7: Crystal observation window 8: Seed crystal 9: Boat 10: Ga 11: reaction vessel 12: As

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】化合物半導体単結晶をボート法を用いて製
造する装置において、少なくとも結晶成長中に育成すべ
き結晶を直接加熱する部分のヒーターに電力を供給する
端子の取付け位置が、鉛直方向からみて炉長手方向のヒ
ーター中心線に対して実質的に左右対称な位置に設けら
れてなることを特徴とする化合物半導体単結晶の製造装
置。
1. An apparatus for producing a compound semiconductor single crystal using a boat method, wherein at least a terminal for supplying electric power to a heater for directly heating a crystal to be grown during crystal growth has a mounting position from a vertical direction. An apparatus for producing a compound semiconductor single crystal, which is provided at positions substantially symmetrical with respect to a heater center line in a furnace longitudinal direction.
【請求項2】化合物半導体単結晶をボート法を用いて製
造する装置において、少なくとも結晶成長中に育成すべ
き結晶を直接加熱する部分のヒーター付近に沿って設け
られた温度測定用センサーが、鉛直方向からみて炉長手
方向のヒーター中心線に対して実質的に左右対称な位置
に設けられてなる請求項1記載の化合物半導体単結晶の
製造装置。
2. In a device for producing a compound semiconductor single crystal by using a boat method, a temperature measuring sensor provided along at least a portion of a heater for directly heating a crystal to be grown during crystal growth is a vertical sensor. The apparatus for producing a compound semiconductor single crystal according to claim 1, wherein the apparatus is provided at a position substantially symmetrical with respect to the heater center line in the longitudinal direction of the furnace when viewed from the direction.
【請求項3】前記電力供給用の端子と温度測定用センサ
ーの少なくともいずれか一方が、前記ヒーターのほぼ鉛
直上方あるいは鉛直下方に設けられてなる請求項1また
は2記載の化合物半導体単結晶の製造装置。
3. The production of a compound semiconductor single crystal according to claim 1, wherein at least one of the power supply terminal and the temperature measuring sensor is provided substantially vertically above or below the heater. apparatus.
JP6765193A 1993-03-03 1993-03-03 Apparatus for producing compound semiconductor single crystal Pending JPH06256082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6765193A JPH06256082A (en) 1993-03-03 1993-03-03 Apparatus for producing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6765193A JPH06256082A (en) 1993-03-03 1993-03-03 Apparatus for producing compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH06256082A true JPH06256082A (en) 1994-09-13

Family

ID=13351147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6765193A Pending JPH06256082A (en) 1993-03-03 1993-03-03 Apparatus for producing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH06256082A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027359A1 (en) * 1999-10-15 2001-04-19 Nikko Materials Co., Ltd. Crystal growing device and method of manufacturing single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001027359A1 (en) * 1999-10-15 2001-04-19 Nikko Materials Co., Ltd. Crystal growing device and method of manufacturing single crystal
US6562134B1 (en) 1999-10-15 2003-05-13 Nikko Materials Co., Ltd. Crystal growing device and method of manufacturing single crystal
EP1143040A4 (en) * 1999-10-15 2004-05-12 Nikko Materials Co Ltd Crystal growing device and method of manufacturing single crystal

Similar Documents

Publication Publication Date Title
EP0992618B1 (en) Method of manufacturing compound semiconductor single crystal
JP6121422B2 (en) System with additional lateral heat source for making crystalline materials by directional solidification
JPH06256082A (en) Apparatus for producing compound semiconductor single crystal
JP3152971B2 (en) Manufacturing method of high purity copper single crystal ingot
JP2758038B2 (en) Single crystal manufacturing equipment
CN115558984B (en) Method for preparing large-size semiconductor crystal without crucible
JPS61201688A (en) Production of iii-v compound semiconductor single crystal
JP2830392B2 (en) Method and apparatus for manufacturing compound semiconductor single crystal
JP3788077B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus
JPH0474788A (en) Production of compound semiconductor single crystal
JPH1129398A (en) Apparatus for producing compound semiconductor single crystal
JPH06234590A (en) Method for producing compound semiconductor single crystal and device therefor
JPS5938184B2 (en) Manufacturing method of saphia single crystal
JPH07242486A (en) Production of iii-v compound semiconductor crystal
JPS5895697A (en) Preparation of compound semiconductor single crystal of groups 3[5 having low dislocation density
JP3640454B2 (en) Single crystal manufacturing method
JPH0362676B2 (en)
JPS6148500A (en) Process and device for preparing single crystal of gaas by horizontal boat process
JPH05319973A (en) Single crystal production unit
JPH05148078A (en) Production of single crystal
JPH06329491A (en) Production device for compound semiconductor crystal and production of compound semiconductor crystal
JPH01167294A (en) Production of single crystal of group iii-v compound
JPH0449185Y2 (en)
JPS61155285A (en) Electric furnace
JPH05139884A (en) Production of single crystal