JPH06254540A - Production of pure water - Google Patents

Production of pure water

Info

Publication number
JPH06254540A
JPH06254540A JP6301293A JP6301293A JPH06254540A JP H06254540 A JPH06254540 A JP H06254540A JP 6301293 A JP6301293 A JP 6301293A JP 6301293 A JP6301293 A JP 6301293A JP H06254540 A JPH06254540 A JP H06254540A
Authority
JP
Japan
Prior art keywords
water
belt
raw water
ice
pure water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6301293A
Other languages
Japanese (ja)
Other versions
JP3336065B2 (en
Inventor
Keisuke Kasahara
敬介 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP06301293A priority Critical patent/JP3336065B2/en
Publication of JPH06254540A publication Critical patent/JPH06254540A/en
Application granted granted Critical
Publication of JP3336065B2 publication Critical patent/JP3336065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To produce high-purity pure water with inexpensive equipment by successively laminating and freezing raw water while imparting refrigerating load on the rear surface side of a supporting body consisting of a good heat conductor and while allowing the raw water to flow down along the surface of this supporting body, then melting the obtained transparent ice. CONSTITUTION:The raw water 5 flows down on a stainless belt 1 while its width is regulated by a waterproof dike when the raw water 5 is sprinkled onto the front surface side of the belt 1 by sprinkling pipe 4. A plate cooler 3 in which brine 19 cooled to about -12 deg.C is circulated by an evaporator 21 of a heat pump cycle is pressed to the rear surface of the belt 1 and, therefore, the raw water 5 is frozen at the time of dropping on the belt 1. The freezing is thereafter repeated while the flowing down raw water 5 is successively laminated. A planar body 5A having the thickness increasing nearer the bottom end is produced. This planar body 5A is peeled at the bottom end of the belt 1 and is separated from the water in a water/ice separating section 7; thereafter, the planar body is melted in a heating and melting layer B, by which the pure water is taken out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水の凍結/溶融を効果的
に組合せた純水製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pure water production method which effectively combines freezing / melting of water.

【0002】[0002]

【従来の技術】従来より純水の製造は、凝集沈殿処理、
カチオン、アニオン等のイオン交換樹脂処理、逆浸透膜
処理等により一次純水を製造した後、更に目的に応じて
精密濾過、紫外線照射等の処理を行ない、例えば半導体
洗浄水として好適に利用可能な二次純水(高純な純水)
を製造している。
2. Description of the Related Art Conventionally, pure water has been produced by coagulating sedimentation treatment,
After producing primary pure water by ion exchange resin treatment of cations, anions, etc., reverse osmosis membrane treatment, etc., it is further subjected to treatments such as microfiltration and ultraviolet irradiation according to the purpose, and can be suitably used as semiconductor washing water, for example. Secondary pure water (highly pure water)
Are manufactured.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来の処理システムは例え一次純水を製造する場合でも凝
集沈殿処理、イオン交換樹脂処理、逆浸透膜処理と、夫
々除去しようとする目的不純物に対応させて数工程の処
理工程を必要とし再生処理によるバッジ再生方式とな
り、結果として工程の煩雑化と処理設備の大形化につな
がる。而も例えば、前記イオン交換樹脂槽では水中の微
粒子や有機物の吸着を行なうが、該イオン交換樹脂は使
用により劣化するために、適宜再生処理を行なう必要が
あり、一般に該再生処理は中和剤を用いて行なうが、中
和剤は劇薬であり、この為再生処理後の中和剤の廃棄処
分が面倒である。
However, the above-mentioned conventional treatment system is capable of coagulating and precipitating treatment, ion-exchange resin treatment, reverse osmosis membrane treatment and target impurities to be removed, even when producing primary pure water. As a result, a badge recycling system by a recycling process is required, which requires several processing steps, resulting in a complicated process and an increase in size of processing equipment. Further, for example, fine particles and organic substances in water are adsorbed in the ion exchange resin tank, but since the ion exchange resin deteriorates due to use, it is necessary to appropriately regenerate it. In general, the regenerating treatment is a neutralizing agent. However, since the neutralizing agent is a powerful drug, it is troublesome to dispose of the neutralizing agent after the regeneration treatment.

【0004】本発明はかかる従来技術に鑑み、前記した
イオン交換樹脂槽を用いない場合にも水中の微粒子や有
機物の除去を行ない得ると共に、更に従来その除去が困
難とされたコロイダルシリカその他のコロイダル状金属
成分をも有効に除去し得る純水製造方法を提供する事を
目的とする。本発明の他の目的は、凝集沈殿、濾過、吸
着等の複数の異種処理工程を組合せる事なく、単一の処
理工程で一次純水を得る事の出来る純水製造方法を提供
する事を目的とする。
In view of such prior art, the present invention is capable of removing fine particles and organic substances in water even without using the above-mentioned ion exchange resin tank, and further it is difficult to remove the colloidal silica or other colloidal particles. An object of the present invention is to provide a method for producing pure water that can effectively remove even metal components. Another object of the present invention is to provide a pure water production method capable of obtaining primary pure water in a single treatment step without combining a plurality of different treatment steps such as coagulation sedimentation, filtration and adsorption. To aim.

【0005】[0005]

【課題を解決する為の手段】本発明に至った経過を順を
追って説明する。本発明者は商業用若しくは工業用に行
なわれている製氷函による凍結を行なう場合、前記製氷
函の内壁に順次透明氷が凍結して行くに従い、中央の未
結氷部分の原料水(中芯水)側に前記原水中の塩素や空
気、塵埃等の溶解ガスや不純物が濃縮されることが知見
されている。
The process leading to the present invention will be described step by step. When the present inventor performs freezing in an ice making box that is commercially or industrially used, as the transparent ice successively freezes on the inner wall of the ice making box, the raw water of the unfrozen portion in the center (core water It has been found that dissolved gas and impurities such as chlorine, air, and dust in the raw water are concentrated on the () side.

【0006】そして前記中芯水は一般に製氷途中で前記
中芯水を脱水し、原水を注水して、攪拌手段を停止し、
透明氷の製造を行なうものであるが、このようにして製
造された氷について外側から中心層に至る断面層部位
(図3参照)の水質を分析したところ、図4のようにな
った。(:外層の透明氷部位、:中央の白氷部位、
:原水)
[0006] Generally, the core water is dehydrated during ice making, raw water is poured, and the stirring means is stopped.
Although transparent ice is manufactured, the water quality of the cross-sectional layer portion (see FIG. 3) from the outside to the central layer of the ice thus manufactured is analyzed and the result is as shown in FIG. (: Transparent ice part of the outer layer ,: white ice part in the center,
: Raw water)

【0007】本表より理解される如く、函氷外側の透明
氷部分では電気伝導率及びシリカについて、純水として
の基準適合値を十分満足しており、又金属イオン、及び
陰イオンについても原水に比較していずれも1PPM以
下に低減しており、十分純水としての要件を満足する事
が理解できる。従って水道水を凍結し、該凍結により得
られた透明氷部分を再溶融する事により、純水若しくは
これに近似する純度の高い水が得られる事が理解でき
る。
As can be seen from this table, the transparent ice portion outside the ice box sufficiently satisfies the standard conformity values for pure water with respect to electrical conductivity and silica, and metal ions and anions also have raw water. It can be understood that all of them are reduced to 1 PPM or less, and the requirements for pure water are sufficiently satisfied. Therefore, it can be understood that pure water or highly pure water similar to this can be obtained by freezing tap water and remelting the transparent ice portion obtained by the freezing.

【0008】しかしながら前記商業用若しくは工業用の
製氷方式で得られた氷から透明氷のみを取り出す事は中
々困難である。製氷函氷は肉厚が大で結氷時間が長く経
済的でない。而も前記製氷函方式で高品質の透明氷を製
造するには緩慢凍結法を採用せざるを得ず、結果として
製氷時間が大幅に大になる。この為、本発明者は原水若
しくは前処理水を一旦凍結し、該凍結により得られた氷
を再溶融して純水若しくはこれに近似する純度の高い水
を得る方法を検討し、ようやくにしてその完成に至った
ものである。
However, it is quite difficult to take out only clear ice from the ice obtained by the commercial or industrial ice making method. Ice making ice box is thick and has a long freezing time and is not economical. Moreover, in order to produce high-quality transparent ice by the ice box method, the slow freezing method must be adopted, and as a result, the ice making time becomes significantly long. Therefore, the present inventor studied a method of once freezing the raw water or the pretreated water and remelting the ice obtained by the freezing to obtain pure water or highly pure water close to this, and finally That was the completion.

【0009】即ち本発明は、良熱伝導体からなる支持体
の背面側に冷凍負荷を付与しつつ、該支持体表面に沿っ
て原水若しくは前処理水を流下させながら順次積層氷結
させて製造した透明氷を溶融させて純水を製造方法にあ
る。この場合、透明氷の支持体には、ベルト搬送方向に
沿って所定角度傾斜させ、その背面側に冷凍負荷を付与
させた良熱伝導体からなる無端状ベルト体で構成するの
がよい。又前記純水製造工程には原水の冷凍と透明氷の
加熱という奪熱と熱付与という正逆2つの熱サイクルが
あるために前記冷凍負荷の冷却に蒸発熱源を、一方前記
透明氷の溶融に凝縮熱源を夫々利用したヒートポンプサ
イクルを用いることにより熱バランスが極めて良好にな
る。又本発明は前記冷凍負荷の冷却に蒸発熱源を、一方
前記透明氷の溶融に他の冷却目的に利用するようにした
ことによって効率を上げ純水コストの低減を計ったもの
である。
That is, the present invention was manufactured by applying a refrigerating load to the back side of a support made of a good heat conductor while successively flowing raw water or pretreated water along the surface of the support to successively freeze the layers. In the method of producing pure water by melting transparent ice. In this case, the transparent ice support is preferably composed of an endless belt made of a good heat conductor which is tilted at a predetermined angle along the belt transport direction and has a refrigeration load applied to its back side. In the pure water production process, there are two heat cycles of freezing the raw water and heating the transparent ice to remove heat and to apply heat. Therefore, an evaporation heat source is used to cool the refrigeration load, while a heat is used to melt the transparent ice. The heat balance becomes extremely good by using the heat pump cycle that uses the respective condensation heat sources. Further, the present invention is to improve the efficiency and reduce the cost of pure water by using the evaporation heat source for cooling the refrigerating load and using it for other cooling purposes for melting the transparent ice.

【0010】[0010]

【作用】本発明は例えば良熱伝導体からなり背面側に冷
凍負荷が付与された支持体上を清水を流下させる事によ
り、支持体上に氷が順次積層して凍結される訳である
が、形成された氷表面には常に清水が流下する構造とな
るために、結果として0℃で連続的な緩慢凍結を可能に
する。而も板状氷のため薄氷であるため結氷時間が早く
効率が良い。又板状氷表面には常に清水が流下しながら
被覆されている為に、該凍結中に不純物が付着する恐れ
もなく、高純度の透明氷の製造が可能となる。そして前
記の方法で製造された氷は全てが透明氷であるために、
これをそのまま溶融する事により1次純水が簡単に製造
できる。又製氷工程が連続的であって脱氷も他のデフロ
ストの如き熱手段は要らない。尚、本発明に用いる原水
は前処理が不用であり、水道水をそのまま利用する事が
出来、而も単一の処理工程で足りる為に、経済的であ
る。又フィルタ等を用いる事がないためにその再生処理
も必要なく、保守の容易化と保守費用が大幅に低減す
る。
According to the present invention, for example, ice is sequentially laminated on a support to be frozen by letting fresh water flow down on the support made of a good heat conductor and having a refrigeration load applied to the back side. Since the formed ice surface has a structure in which fresh water always flows down, as a result, continuous slow freezing at 0 ° C. is possible. Moreover, since it is plate-shaped ice, it is thin and quick to freeze, so it is efficient. Also, since the plate-like ice surface is coated with fresh water while flowing down, there is no fear of impurities adhering during the freezing, and high-purity transparent ice can be produced. And since all the ice produced by the above method is transparent ice,
By melting this as it is, primary pure water can be easily produced. Further, the ice making process is continuous, and de-icing does not require heat means such as other defrosting. The raw water used in the present invention does not require pretreatment, tap water can be used as it is, and it is economical because a single treatment step is sufficient. Further, since no filter or the like is used, there is no need to regenerate it, facilitating maintenance and greatly reducing maintenance costs.

【0011】[0011]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。図1
乃至図2は本発明の実施例にかかる1次純水製造装置を
示す。本システムは、原水から透明氷を製造する連続製
氷機A、該製氷機により製氷された透明氷を溶融するた
めの加熱溶融槽B、及びこれらに熱供給(奪熱)するた
めのヒートポンプサイクルCからなる。
Embodiments of the present invention will now be illustratively described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative positions and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely examples, unless otherwise specified. Not too much. Figure 1
2 shows a primary pure water producing apparatus according to an embodiment of the present invention. The present system comprises a continuous ice making machine A for producing transparent ice from raw water, a heating and melting tank B for melting the transparent ice produced by the ice making machine, and a heat pump cycle C for supplying heat to these (heat removal). Consists of.

【0012】先ず連続製氷機Aについて説明する。1は
搬送方向に向け下方に僅かに傾斜させた無端状のステン
レスベルトで、上部ロータ2と下部ロータ2’により連
続的若しくは間欠的に駆動される。又前記ベルト1の傾
き角度αは、緩慢凍結により透明氷が製造可能な程度に
設定しているが、基本的には後記する原水の散布量と、
プレートクーラ3よりの冷却温度と前記傾きに起因する
原水の流下速度の三者により最も効率よく透明氷が製造
可能な条件を求めるのがよい。前記ステンレスベルト1
の上面両側には原水が流下中に左右に水漏れがないよう
に、図2に示すようにベルト1上面の両側にゴムベルト
状水漏れ防止堤17を設ける。又防止堤18はベルト1
下面の両側にも設ける事によりステンレスベルト1を駆
動するゴムベルトであり、後記するステンレスベルト1
とプレートクーラ3間の隙間を通過するブラインのベル
ト1側部より漏れを防止すると共に、更に上部ロータ2
と下部ロータ2’にも防止堤18が嵌合されるリング状
凹溝18Aを形成する事により、前記防止堤18がガイ
ド条としても機能し、円滑なベルト1の周回を可能とす
る。
First, the continuous ice making machine A will be described. Reference numeral 1 denotes an endless stainless belt that is slightly inclined downward in the conveying direction, and is continuously or intermittently driven by an upper rotor 2 and a lower rotor 2 '. Further, the inclination angle α of the belt 1 is set to such an extent that transparent ice can be produced by slow freezing.
It is preferable to determine the conditions under which the transparent ice can be produced most efficiently by the three factors of the cooling temperature from the plate cooler 3 and the flow rate of the raw water caused by the inclination. The stainless belt 1
As shown in FIG. 2, rubber belt-like water leakage prevention ridges 17 are provided on both sides of the upper surface of the belt 1 so that the raw water does not leak to the left and right while the raw water flows down. Also, the bank 18 is the belt 1.
It is a rubber belt that drives the stainless belt 1 by providing it on both sides of the lower surface.
The leakage from the side of the belt 1 of the brine passing through the gap between the plate cooler 3 and the plate cooler 3
By forming the ring-shaped recessed groove 18A into which the prevention bank 18 is fitted in the lower rotor 2 ', the prevention bank 18 also functions as a guide strip, and allows the belt 1 to smoothly circulate.

【0013】3は前記往動方向(上側)のベルト1背面
(下面)に摺動可能に当接させたプレートクーラで、ヒ
ートポンプサイクルの蒸発器として機能する熱交換器2
1により−12℃前後に冷却したブライン19が循環可
能に構成されている。又3は冷媒直接膨脹であってもよ
い。又ステンレスベルト1とプレートクーラ3との間は
ステンレスベルト1自体が周回しながら当接する構成を
取るために、必ずしも全面に亙って均等に当接せず、隙
間が生じて伝熱効率を大幅に低下させる場合がある。そ
こで本実施例においては、前記ブライン19の一部を分
流するか、若しくはエチレングリコール等の他のブライ
ン19を独立回路より前記プレートクーラ3取付け位置
の上端より噴射ノズル23を利用して隙間に流して該ブ
ライン19を介しての伝熱を行なう事により、ステンレ
スベルト1とプレートクーラ3間の伝熱効率の向上と熱
接触の平準化を図るのがよい。
Reference numeral 3 denotes a plate cooler slidably brought into contact with the back surface (lower surface) of the belt 1 in the forward direction (upper side), and the heat exchanger 2 functioning as an evaporator of a heat pump cycle.
1, the brine 19 cooled to around -12 ° C is circulated. Further, 3 may be the direct expansion of the refrigerant. Further, the stainless belt 1 itself and the plate cooler 3 are in contact with each other while circling, so that the stainless belt 1 does not necessarily contact evenly over the entire surface, and a gap is generated to greatly improve heat transfer efficiency. It may decrease. Therefore, in the present embodiment, a part of the brine 19 is diverted, or another brine 19 such as ethylene glycol is flowed from an independent circuit into the gap from the upper end of the plate cooler 3 attachment position using the injection nozzle 23. It is preferable to improve the heat transfer efficiency between the stainless belt 1 and the plate cooler 3 and level the thermal contact by transferring heat through the brine 19 through the brine 19.

【0014】4はベルト1上端側の上方位置に配設した
原水散布管で、下向きに多数の噴射ノズル6を取付けた
管体をベルト1幅全域に亙って延在し、氷/水分離器7
の貯水槽11の冷水は、熱交換器15を介して原水を予
冷して供給されており、予冷された原水5を散布管4よ
りベルト1上面にベルト1幅全域に亙って平均して散水
可能に構成し、ポンプにより循環する。特に前記熱交換
器15にブライン19を通すことによって原水を予冷す
る事により、冷却に必要な温度差が小さくなり、一層の
緩慢凍結が容易となる。7は前記ベルト1下端側下方位
置に配設した氷/水分離器で、上面にメッシュ板8を設
けた貯水槽11からなり、前記メッシュ板8は搬送コン
ベア10側に向け僅かに下方に傾斜させると共に、その
傾斜下端においてガイド板8Aと連設し、該ガイド板8
Aに沿って水を分離した透明氷12はコンベア10を介
して加熱溶融槽B内に投入可能に構成されている。
Reference numeral 4 denotes a raw water spray pipe arranged at an upper position on the upper end side of the belt 1, and a pipe body having a large number of downward jet nozzles 6 attached thereto extends over the entire width of the belt 1 for ice / water separation. Bowl 7
The cold water in the water tank 11 is supplied by precooling the raw water via the heat exchanger 15, and the precooled raw water 5 is averaged over the entire width of the belt 1 from the spray pipe 4 to the upper surface of the belt 1. It is constructed so that it can be sprayed with water and is circulated by a pump. In particular, by precooling the raw water by passing the brine 19 through the heat exchanger 15, the temperature difference required for cooling is reduced, and slower freezing is facilitated. Reference numeral 7 denotes an ice / water separator disposed at a lower position on the lower end side of the belt 1, which comprises a water storage tank 11 having a mesh plate 8 provided on the upper surface thereof, and the mesh plate 8 is inclined slightly downward toward the transport conveyor 10 side. At the same time, the lower end of the tilt is connected to the guide plate 8A,
The transparent ice 12 from which water has been separated along A is configured so as to be thrown into the heating and melting tank B via the conveyor 10.

【0015】そして前記加熱溶融槽Bは内壁面をテフロ
ンコーティングすると共に、その壁面内周に沿ってステ
ンレス製の加熱パイプ31をスパイラル状に囲繞してあ
る。そして前記加熱パイプ31内の加熱用負荷流体は、
ヒートポンプサイクルCの凝縮器として機能する熱交換
器32により10〜20℃前後に加熱しながらポンプ3
3により循環可能に構成している。加熱パイプ31は凝
縮器32と兼用しても良い。ヒートポンプサイクルCは
公知の様に圧縮機41、凝縮器32、受液器42、膨張
弁43及び蒸発器21からなり、該サイクルC内を冷媒
が循環して蒸発、圧縮、凝縮を繰り返しながら熱交換を
行なう。
The inner wall surface of the heating and melting tank B is coated with Teflon, and a stainless steel heating pipe 31 is spirally surrounded along the inner circumference of the inner wall surface. The heating load fluid in the heating pipe 31 is
The pump 3 while heating to around 10 to 20 ° C. by the heat exchanger 32 that functions as the condenser of the heat pump cycle C.
It is configured to be able to circulate by 3. The heating pipe 31 may also be used as the condenser 32. As is well known, the heat pump cycle C comprises a compressor 41, a condenser 32, a liquid receiver 42, an expansion valve 43, and an evaporator 21, and a refrigerant circulates in the cycle C to repeat heat evaporation while repeating evaporation, compression and condensation. Exchange.

【0016】次に本実施例の作用を説明する。散水管4
よりステンレスベルト1上面側に水道水若しくは前処理
水その他の原水5を散水すると、該ベルト1は適当な傾
斜角度に傾斜して設置されている為に、該原水5は防水
堤17により幅規制されながら、ベルト1上を流下す
る。一方、ベルト1の下面にはプレートクーラ3が当接
しているために、前記原水5はベルト1上を流下しなが
ら凍結し、以下後から流下する原水5が順次積層しなが
ら凍結を繰り返し、ベルト1の下端側にいくほど厚みの
ある板状氷5Aが製造できる。この際ベルト1上面は流
下する原水5は、プレートクーラ3よりの冷熱によっ
て、ほぼ0℃〜−3℃となって流水し、プレートクーラ
上に薄氷となって結氷し、その上に原水5が流下して急
速凍結にならず、−5〜8℃で緩慢凍結、即ち結氷の際
に原水5中の前記空気、窒素、炭酸ガス等の混入を排除
しながら、純度の高い透明な板状氷5Aの製造が可能と
なる。
Next, the operation of this embodiment will be described. Sprinkler pipe 4
When tap water, pretreatment water, or other raw water 5 is sprinkled on the upper surface of the stainless belt 1, the belt 1 is installed at an appropriate inclination angle. While flowing, it flows down on the belt 1. On the other hand, since the plate cooler 3 is in contact with the lower surface of the belt 1, the raw water 5 freezes while flowing down on the belt 1, and the raw water 5 that flows down afterwards is repeatedly laminated and freezes repeatedly. It is possible to manufacture the plate-shaped ice 5A that becomes thicker toward the lower end side of 1. At this time, the raw water 5 flowing down on the upper surface of the belt 1 flows to about 0 ° C. to −3 ° C. due to the cold heat from the plate cooler 3 and flows to form thin ice on the plate cooler, and the raw water 5 is formed thereon. It does not become a quick freezing by flowing down, but is slowly frozen at -5 to 8 ° C, that is, a transparent plate-like ice with high purity while eliminating contamination of the raw water 5 with the above-mentioned air, nitrogen, carbon dioxide and the like. 5A can be manufactured.

【0017】又前記凍結は緩慢凍結であるが、製氷函の
様に肉厚の原水5を一気に凍結させるのではなく、繰り
返し流下される薄層の原水5を凍結するものである為
に、凍結時間は大幅に短くてすみ、高い製氷効率が得ら
れる。又、より精度よく高純度の透明氷を製造するに
は、後記する原水5の散布量と、プレートクーラ3より
の冷却温度と前記傾きに起因する原水5の流下速度の三
者により最も効率よく透明氷が製造可能な条件を求める
のがよい。
Although the freezing is slow freezing, it does not freeze the thick raw water 5 all at once as in an ice making box, but it freezes a thin layer of raw water 5 that is repeatedly flown down. The time is much shorter, and high ice-making efficiency can be obtained. Further, in order to produce highly pure clear ice with higher accuracy, it is most efficient to use the following three factors: the spray amount of the raw water 5, the cooling temperature from the plate cooler 3 and the flow rate of the raw water 5 due to the inclination. It is recommended to find the conditions under which clear ice can be produced.

【0018】又板状氷5A表面には常に原水5が流下し
ながら被覆されている為に、該凍結中に不純物が付着す
る恐れもなく、高品質の高純度の氷5Aの製造が可能と
なる。そして前記ステンレスベルト1上で、所定の肉厚
に生成された板状氷5Aは、ステンレスベルト1の下端
側で下部ロータ2’を周回する際に該ベルト1の曲折力
を利用して所定幅に割れながら剥離され、その下方のメ
ッシュ板8上に落下する。該メッシュ板8では水と氷5
Aを分離した後、ガイド板8Aに沿って搬送コンベア1
0を介して加熱溶融槽に投入され、前記透明氷が溶融さ
れ、純水が製造される。そして前記の様にして製造され
た純水について、同様に水質分析を行なったところ、別
表図4の項に示す水質分析値が得られ、電気伝導率、
シリカ、金属イオン、及び陰イオンについて、十分一次
純水としての要件を満足する高品質の純水が得られた。
又透明氷溶融に使用する氷の潛熱を他の冷却目的、例え
ば除湿、乾燥、空調等の冷却に利用することが更に純水
の製造コストを低減する。尚、前記ステンレスベルトの
代りに表面をフッ素樹脂加工したスチールベルトを用い
てもよい。
Further, since the surface of the plate-shaped ice 5A is coated with the raw water 5 while flowing down at all times, it is possible to produce high-quality, high-purity ice 5A without fear of impurities adhering during the freezing. Become. The plate-shaped ice 5A generated on the stainless belt 1 to have a predetermined thickness has a predetermined width by utilizing the bending force of the belt 1 when the lower rotor 2'circulates on the lower end side of the stainless belt 1. It is cracked and peeled off and falls on the mesh plate 8 below it. In the mesh plate 8 water and ice 5
After separating A, the conveyor 1 along the guide plate 8A
Then, the transparent ice is melted by pouring into the heating and melting tank through 0 to produce pure water. Then, when the water quality analysis was similarly performed on the pure water manufactured as described above, the water quality analysis values shown in the section of FIG.
With respect to silica, metal ions, and anions, high-quality pure water sufficiently satisfying the requirements as primary pure water was obtained.
Further, the heat of the ice used for melting the transparent ice is used for other cooling purposes, such as dehumidification, drying, cooling for air conditioning, etc., to further reduce the production cost of pure water. A steel belt whose surface is treated with a fluororesin may be used instead of the stainless belt.

【0019】[0019]

【効果】以上記載した如く本発明によれば、原水を緩慢
凍結/溶融する事により純水を製造するために、水中の
微粒子や有機物の除去と共に、従来その除去が困難とさ
れたコロイダルシリカその他のコロイダル状金属成分を
も有効に除去し得る。本発明によれば、凝集沈殿、濾
過、吸着等の複数の異種処理工程を組合せる事なく、単
一の処理工程で一次純水を得る事の出来る為に、純水製
造コストと共に、保守費用が大幅に低減する。又前記凍
結溶融はヒートポンプサイクルを用いて行なうために、
熱エネルギーの有効利用が図れる。等の種々の著効を有
す。
[Effects] As described above, according to the present invention, since pure water is produced by slowly freezing / melting raw water, it is difficult to remove fine particles and organic substances in water, and colloidal silica and the like which are conventionally difficult to remove. The colloidal metal component of can be effectively removed. According to the present invention, it is possible to obtain primary pure water in a single treatment step without combining a plurality of different treatment steps such as coagulation-sedimentation, filtration, and adsorption. Is greatly reduced. Also, since the freeze-thawing is performed using a heat pump cycle,
Effective use of heat energy can be achieved. It has various remarkable effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかる純水製造システムを示
す全体図である。
FIG. 1 is an overall view showing a pure water production system according to an embodiment of the present invention.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】製氷函方式で製造した氷の断面層部位を示す断
面図である。
FIG. 3 is a cross-sectional view showing a cross-section layer portion of ice manufactured by an ice box method.

【図4】本実施例、製氷函方式、、及び原水の
夫々の水質分析値である。
FIG. 4 is a water quality analysis value for each of the present embodiment, the ice box method, and the raw water.

【符号の説明】[Explanation of symbols]

A 透明氷製造装置 B 加熱溶融槽 C ヒートポンプサイクル 1 ステンレスベルト、 4 散水管 5 原水 3 プレートクーラ 7 水/氷分離器 5A 透明氷 A transparent ice making device B heating and melting tank C heat pump cycle 1 stainless belt, 4 sprinkling pipe 5 raw water 3 plate cooler 7 water / ice separator 5A transparent ice

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 良熱伝導体からなる支持体の背面側に冷
凍負荷を付与しつつ、該支持体表面に沿って原水若しく
は前処理水を流下させながら順次積層氷結させて製造し
た透明氷を溶融させて純水を得ることを特徴とする純水
製造方法。
1. Transparent ice produced by successively laminating and freezing ice while allowing raw water or pretreated water to flow down along the surface of the support while applying a refrigeration load to the back side of the support made of a good heat conductor. A method for producing pure water, which comprises melting and obtaining pure water.
【請求項2】 前記透明氷の支持体が、ベルト搬送方向
に沿って所定角度傾斜させ、その背面側に冷凍負荷を付
与させた良熱伝導体からなる無端状ベルト体である請求
項1記載の純水製造方法
2. The transparent ice support is an endless belt made of a good heat conductor which is inclined at a predetermined angle along the belt conveyance direction and has a refrigeration load applied to its back side. Pure water production method
【請求項3】 前記冷凍負荷の冷却に蒸発熱源を、一方
前記透明氷の溶融に凝縮熱源を夫々利用したヒートポン
プサイクルを用いた事を特徴とする請求項1記載の高純
度水製造方法。
3. The method for producing high-purity water according to claim 1, wherein a heat pump cycle using an evaporation heat source for cooling the refrigerating load and a condensation heat source for melting the transparent ice is used.
【請求項4】 前記冷凍負荷の冷却に蒸発熱源を、一方
前記透明氷の溶融に他の冷却目的に利用した事を特徴と
する請求項1記載の高純度水製造方法。
4. The method for producing high-purity water according to claim 1, wherein an evaporation heat source is used for cooling the refrigerating load, and another cooling purpose is used for melting the transparent ice.
JP06301293A 1993-02-26 1993-02-26 Pure water production method Expired - Fee Related JP3336065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06301293A JP3336065B2 (en) 1993-02-26 1993-02-26 Pure water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06301293A JP3336065B2 (en) 1993-02-26 1993-02-26 Pure water production method

Publications (2)

Publication Number Publication Date
JPH06254540A true JPH06254540A (en) 1994-09-13
JP3336065B2 JP3336065B2 (en) 2002-10-21

Family

ID=13216989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06301293A Expired - Fee Related JP3336065B2 (en) 1993-02-26 1993-02-26 Pure water production method

Country Status (1)

Country Link
JP (1) JP3336065B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212774A (en) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd Freeze concentration type wastewater treatment apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212774A (en) * 2007-02-28 2008-09-18 Mitsubishi Heavy Ind Ltd Freeze concentration type wastewater treatment apparatus

Also Published As

Publication number Publication date
JP3336065B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
CN104803433B (en) A kind of freeze concentration processes the method for brine waste
CN104891593A (en) High-desalting-rate seawater desalination method and device based on liquefied natural gas cold energy
US4341085A (en) Freeze concentration apparatus and method
CN106865670B (en) Freezing seawater desalination device system using heterogeneous sedimentation crystallization nucleation mode
JPH05200247A (en) Method for recovering solvent from waste gas
CN109574334B (en) Method for carrying out deep concentration and solid-liquid separation on strong brine
JPH06254540A (en) Production of pure water
CN110407289B (en) Seawater desalination and natural air conditioning refrigeration device and method based on ultrasonic waves
US3442801A (en) Process and apparatus for separating water from an aqueous solution
JP2003265150A (en) Method of freeze concentration for vegetable/fruit juice and freeze concentrated product and equipment for the same
CN215571425U (en) Teflon running water type ice tray
US20220073374A1 (en) Recrystallization Water Treatment System and Heat-Exchange Devices (Embodiments) for Its Implementation
JPH06277655A (en) Concentration of solution and seawater desalting system
US2988895A (en) Process for low temperature dehydration
JP2001525671A (en) Apparatus and method for passage refrigeration of non-solid materials
JPS61282739A (en) Ice slurry thermal accumulation device
JPH0616811B2 (en) Liquid spray cooling method and device
WO2004045738A2 (en) Freeze concentration system
US4809519A (en) Methods and apparatuses for conducting solid-liquid-vapor multiple phase transformation operations
JPH06123533A (en) Method of making transparent ice and device therefor
CN215516716U (en) Semi-continuous contact freezing type sewage/wastewater separation treatment device
JP3584671B2 (en) Cooling system in production process
US11851349B2 (en) Controlled-type, non-decomposable, high-concentration process water freeze-separation apparatus
JPH01107802A (en) Method and device for freeze concentration
JPH08261611A (en) Heat supply and distilling compound system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees