JP3584671B2 - Cooling system in production process - Google Patents

Cooling system in production process Download PDF

Info

Publication number
JP3584671B2
JP3584671B2 JP10114297A JP10114297A JP3584671B2 JP 3584671 B2 JP3584671 B2 JP 3584671B2 JP 10114297 A JP10114297 A JP 10114297A JP 10114297 A JP10114297 A JP 10114297A JP 3584671 B2 JP3584671 B2 JP 3584671B2
Authority
JP
Japan
Prior art keywords
water
cooling
ice
tank
cooling unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10114297A
Other languages
Japanese (ja)
Other versions
JPH10292964A (en
Inventor
尚之 佐藤
俊英 大園
雅英 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP10114297A priority Critical patent/JP3584671B2/en
Publication of JPH10292964A publication Critical patent/JPH10292964A/en
Application granted granted Critical
Publication of JP3584671B2 publication Critical patent/JP3584671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、氷蓄熱方式を用いた生産工程における冷却システムに関する。
【0002】
【従来の技術】
生産工程における冷却システムには、水道水や工業用水による冷却、冷凍機による冷却、氷蓄熱による冷却等種々ある。この冷却システムを使用する1つにガスタービン発電機がある。このガスタービン発電機は、生産工程で必要な多量な電力を自給するために使用されるが、ガスタービン発電機は、吸入空気の温度が上昇するに伴い、出力が低下するという特性がある。このため、電力需要の多い夏場にガスタービン発電機は十分な性能を発揮できない問題がある。この問題を解決するために、ガスタービン発電機の吸気側の空気を冷却する手段が採られている。
【0003】
この手段には、通常、水道水や工業用水を凍結させる氷蓄熱方式が近年採用されるようになって来た。この氷蓄熱方式は製氷して氷を蓄える製氷部と、この製氷部の氷を融解した冷水をガスタービン発電機の吸気冷却部に循環させる冷水循環部とから構成されている。また、一般に各種の産業の生産工程では、上記ガスタービン発電機の冷却以外にも多量の冷却水として水道水や工業用水が使用されており、ガスタービン発電機以外の生産工程によるこれらの水は各種のリサイクル方法を用いて再利用されている。
【0004】
なお、再利用システムとしては、単なる物理的な沈殿法、中和等の化学的処理法、活性汚泥法等の生物処理法等を用いた水処理法により、冷却水や洗浄水等の工業廃水が再利用されている。
【0005】
【発明が解決しようとする課題】
上述したガスタービン発電機の吸気冷却用に用いた氷蓄熱方式における冷熱水は、その発電機の吸気冷却用としてだけにしか使用されていない。これは、冷熱水を生産工程の冷却工程に流用するには、冷熱水の水質悪化を安価に再生する処理方法が難しいためである。また、上記氷蓄熱方式における冷却水は、特殊な冷媒を含む溶液で、かつ冷却水としての水質レベルが一定していることが条件になっているため、生産工程の冷却工程には流用が難しい問題がある。
【0006】
さらに、生産工程の冷却は、主に工業用水によって冷却している。業種によっては生産工程の冷却中に冷却水が汚濁した排水となり、安価に再利用するには処理方法が難しい問題がある。また、再利用システムとして単なる物理的な沈殿法、中和等の化学的処理方法、活性汚泥等の生物処理方法等を用いた水処理法があるけれども、これらの方法は、業種によっては水質改善の再処理コストが高くなる問題がある。これら両問題の他に、上記生産工程の冷却と再利用システムにおける水処理方法は、簡易処理だけして排出している業種もあり、工業用水の汲み上げによる地盤沈下の原因にもなっている。
【0007】
この発明は上記の事情に鑑みてなされたもので、生産工程で利用し終えた排水から純氷の氷塊と濃縮汚水を分離生成し、その氷塊を氷蓄熱水槽に貯蔵してその水槽の冷熱を生産工程の冷却に使用するようした生産工程における冷却システムを提供することを課題とする。
【0008】
【課題を解決するための手段】
この発明は、上記の課題を達成するために、第1発明は、排水を冷却し、冷却された排水から純氷と濃縮排水とを分離生成する純氷製氷装置と、この純氷製氷装置により生成された純氷を貯蔵するとともに、貯蔵された純氷を融解して冷却水として蓄える氷蓄熱水槽と、この氷蓄熱水槽に蓄えられた冷却水が供給される第1冷却部と、この第1冷却部を冷却し終えた冷却水が供給される生産工程からなる第2冷却部と、この第2冷却部を冷却し終えた排水を前記純氷製氷装置に供給するとともに、復水として蓄えられる復水貯水槽と、蒸発器、凝縮器を有し、蒸発器側で前記純氷製氷装置に供給される排水を冷却し、凝縮器側で前記復水貯水槽の復水を暖めるようにした余剰電力で運転される冷凍装置とを備え、
前記純氷製氷装置は、排水が導入される槽と、この槽内の水中に配設され、外部から供給されるエアで槽内の水に気泡を連続的に吹き出す散気管と、前記槽内の水に一部分が没し、他の部分は水面上に位置するように配設された回転ベルトと、この回転ベルトが前記槽内の水に没する位置に設けられるとともに、この位置の回転ベルトの内側に配設され、前記冷凍装置の蒸発器により冷却される冷却部と、この冷却部により前記回転ベルトが冷却され、前記散気管からの気泡が回転ベルトに吹き付けられて氷の結晶が成長されて氷が生成される氷生成部と、この氷生成部で成長した氷を回転ベルトで搬送し、氷の表面に付着した不純物と純氷とを分離させるヒータとからなる、ことを特徴とするものである。
【0009】
第2発明から第4発明は、第1冷却部が、ガスタービン発電機の吸気冷却部からなり、第2冷却部は、生産工程の冷却工程または洗浄工程からなるとともに、生産工程の冷却工程と洗浄工程とからなり、冷却工程を冷却した冷却水が洗浄工程に供給されるようにしたものである。
【0011】
第5発明は、氷蓄熱水槽に、復水貯水槽から復水を供給して純氷を融解させるようにしたものである。
【0012】
【発明の実施の形態】
以下この発明の実施の形態を図面に基づいて説明する。図1はこの発明の実施の第1形態を示す概略構成図で、図1において、10は氷蓄熱装置で、この氷蓄熱装置10は次のように構成されている。11は詳細を後述する排水から氷塊を生成する純氷製氷装置で、この純氷製氷装置11は、夜間電力や自家発電電力等の安価な余剰電力を利用して冷凍装置12を運転し、冷却側である蒸発器121で排水を冷却して、排水から純度の高い純氷を生成するとともに、高濃度に濃縮された濃縮排水とを分離生成する。そして、生成した濃縮排水は排水処理装置13に送られるとともに、純氷は氷蓄熱水槽14に供給される。
【0013】
排水処理装置13は供給された濃縮排水から、汚泥を回収する。一方、氷蓄熱水槽14には純度の高い純氷が貯蔵される。この氷蓄熱水槽14の純氷は、復水貯水槽15からの復水で融解され、一定温度(約4℃)の冷却水として氷蓄熱水槽14に貯水される。この冷却水はポンプ16で汲み上げられてガスタービン発電機17の吸気冷却部17aに空気冷却用として供給される。なお、17bは圧縮機、17cはタービン、17dは発電機である。
【0014】
ポンプ16で汲み上げられ、ガスタービン発電機17の吸気冷却部17aに供給された冷却水は各業種の生産工程の冷却工程18に供給されて、その冷却工程18の冷却に使用される。冷熱利用が終わった廃熱を含んだ冷却工程18からの排水は復水として復水貯水槽15に貯水される。復水貯水槽15には、冷凍装置12の放熱側である凝縮器122が装着され、貯水槽15の復水を暖めるとともに、凝縮器122の冷却を行って冷凍装置12の効率を向上させるようにしている。
【0015】
次に、上述した純氷製氷装置11の概略構成を図2により述べる。図2において、31は図示しない排水供給管から排水41が導入される槽で、この槽31の内底部には散気管32が配置される。散気管32にはエアポンプ33からエアが供給され、散気管32からは気泡42が連続的に吹き出される。34は回転ベルトで、この回転ベルト34は一部分が排水中に没し、他の部分は槽31の水面上部に出ている。35a、35b、35cはローラで、そのローラの内、少なくとも1つは駆動ローラとして形成される。
【0016】
回転ベルト34の内側には冷却部36とヒータ部37が配設され、図1に示す冷凍装置12の蒸発器121により冷却される冷却部36は、海水中に没する回転ベルト34の内側に、またヒータ部37は槽31の上部の回転ベルト34の内側にそれぞれ配設される。38は温風ヒータ、39は純氷である氷塊、40は氷生成部である
【0017】
上記のように構成された純氷製氷装置11において、エアポンプ33を回転させて散気管32により気泡42を連続的に吹き出させる。この気泡42により排水は撹拌されると同時に、過冷却状態にはならず0℃を保持する。冷却部36の表面では、連続的な気泡42の吹き付けにより不純物を排除しながら、氷の結晶が成長して行く。成長した氷の結晶は回転ベルト34で搬送され、ヒータ部37の位置に到達すると、ヒータ部37と温風ヒータ38により氷が暖められ、特に氷の表面の一部が融けて水となり、氷の表面に付着した不純物はその水で洗われて流れ去ってしまう。このため、純粋な氷塊39となって回転ベルト34から外れて氷塊39が連続的に生成される。このようにして生成された氷塊39が図1に示した氷蓄熱水槽14に貯蔵される。
【0018】
図3および図4はこの発明の実施の第2および第3形態を示す概略構成図で、第1形態と同一部分には同一符号を付して示す。図3の第2形態は、氷蓄熱装置14からポンプ16で汲み上げた冷却水を、ガスタービン発電機17の吸気冷却部17aに供給した後、生産工程の洗浄工程19の冷却用として供給するとともに、洗浄工程19からの排水を復水として復水貯水槽15に供給するように構成したものである。なお、洗浄工程19での冷却が終わった冷却返送水(排水)は、純氷製氷装置11に供給されて、第1形態と同様にして純氷が製氷される。
【0019】
図4の第3形態は、第1形態で示した冷却工程18に冷却水を供給した後、冷却工程18から排出された冷却水は洗浄工程19の冷却用に供給されるようにしたもので、洗浄工程19を冷却した後の排水は、純氷製氷装置11に供給され、以後、第1形態と同様にして純氷が製氷される。
【0020】
【発明の効果】
以上述べたように、この発明によれば、水道水や工業用水を凍結する氷蓄熱方式とは構成が異なり、生産工程で利用し終えた排水を純氷製氷装置により純氷の氷塊と濃縮汚水とに分離生成し、生成した氷塊を氷蓄熱水槽に貯蔵してその冷熱を利用するようにしたので、良好な水質を保持したまま生産工程の冷却が可能となり、しかも生産工程の洗浄工程にその冷熱を利用することができる。また、この発明によれば、夜間電力や自家発電電力等の余剰電力利用して冷凍装置を運転して得られた冷熱で、排水を冷却して純氷製氷装置における純氷と濃縮汚水を分離生成に寄与できる利点がある。さらに、分離された濃縮汚水を汚水処理装置によって、汚水を高濃度汚泥に処理することができる。
【図面の簡単な説明】
【図1】この発明の実施の第1形態を示す概略構成図。
【図2】純氷製氷装置の概略構成図。
【図3】この発明の実施の第2形態を示す概略構成図。
【図4】この発明の実施の第3形態を示す概略構成図。
【符号の説明】
10…氷蓄熱装置
11…純氷製氷装置
12…冷凍装置
13…排水処理装置
14…氷蓄熱水槽
15…復水貯水槽
16…ポンプ
17…ガスタービン発電機
18…冷却工程
19…洗浄工程
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling system in a production process using an ice heat storage system.
[0002]
[Prior art]
There are various cooling systems in the production process, such as cooling with tap water or industrial water, cooling with a refrigerator, cooling with ice heat storage, and the like. One use of this cooling system is a gas turbine generator. This gas turbine generator is used for self-supply of a large amount of electric power required in a production process. However, the gas turbine generator has a characteristic that its output decreases as the temperature of intake air increases. For this reason, there is a problem that the gas turbine generator cannot exhibit sufficient performance in summer when power demand is high. In order to solve this problem, a means for cooling the air on the intake side of the gas turbine generator is employed.
[0003]
For this means, an ice heat storage method for freezing tap water or industrial water has recently been adopted in recent years. The ice heat storage system includes an ice making section for making ice and storing ice, and a cold water circulating section for circulating cold water obtained by melting the ice in the ice making section to an intake cooling section of a gas turbine generator. In general, in the production processes of various industries, tap water and industrial water are used as a large amount of cooling water in addition to the cooling of the gas turbine generator. It has been reused using various recycling methods.
[0004]
In addition, as a reuse system, industrial wastewater such as cooling water and washing water is used by a simple physical precipitation method, a chemical treatment method such as neutralization, and a water treatment method using a biological treatment method such as an activated sludge method. Has been reused.
[0005]
[Problems to be solved by the invention]
The cold and hot water in the ice heat storage system used for cooling the intake of the gas turbine generator described above is used only for cooling the intake of the generator. This is because, in order to divert the cold water into the cooling step of the production process, it is difficult to use a processing method for inexpensively regenerating the deterioration of the cold water quality. Further, since the cooling water in the ice heat storage method is a solution containing a special refrigerant and has a condition that the water quality level as the cooling water is constant, it is difficult to divert the cooling water in the production process. There's a problem.
[0006]
Further, the cooling in the production process is mainly performed by industrial water. Depending on the type of business, the cooling water becomes polluted wastewater during the cooling of the production process, and there is a problem that the treatment method is difficult to reuse at low cost. In addition, as a recycling system, there is a water treatment method using a mere physical precipitation method, a chemical treatment method such as neutralization, a biological treatment method such as activated sludge, etc. However, there is a problem that the reprocessing cost becomes high. In addition to these two problems, in some industries, the water treatment method in the cooling and reuse system in the above-mentioned production process discharges only by simple treatment, and causes the land subsidence due to the pumping of industrial water.
[0007]
The present invention has been made in view of the above circumstances, and separates and generates pure ice ice blocks and concentrated sewage from wastewater that has been used in the production process, and stores the ice blocks in an ice heat storage water tank to reduce the cooling heat of the water tank. An object of the present invention is to provide a cooling system in a production process used for cooling the production process.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a pure ice making apparatus that cools waste water, and separates and generates pure ice and concentrated waste water from the cooled waste water. An ice heat storage water tank that stores the generated pure ice, melts the stored pure ice, and stores it as cooling water; a first cooling unit to which cooling water stored in the ice heat storage water tank is supplied; (1) A second cooling unit comprising a production process in which cooling water after cooling the cooling unit is supplied, and a wastewater after cooling the second cooling unit are supplied to the pure ice making apparatus and stored as condensate water. A condensate storage tank, an evaporator, and a condenser, wherein the evaporator cools the wastewater supplied to the pure ice making device and the condenser side warms the condensate in the condensate water storage tank. And a refrigeration unit operated with surplus power
The pure ice making apparatus includes a tank into which drainage is introduced, an air diffuser disposed in the water in the tank, and continuously blowing bubbles into the water in the tank with air supplied from the outside; A rotating belt disposed so that a part thereof is immersed in water and the other part is located on the water surface, and a rotating belt provided in a position where the rotating belt is immersed in water in the tank, and a rotating belt in this position. A cooling unit disposed inside the cooling unit and cooled by an evaporator of the refrigerating apparatus; and the rotating belt is cooled by the cooling unit, and bubbles from the air diffuser are sprayed on the rotating belt to grow ice crystals. And an ice generator for generating ice by being produced, and a heater for transporting the ice grown in the ice generator by a rotating belt and separating impurities attached to the surface of the ice from pure ice. Is what you do.
[0009]
According to the second to fourth inventions, the first cooling unit includes an intake cooling unit of a gas turbine generator, and the second cooling unit includes a cooling process or a washing process of a production process. The cleaning step is performed, and cooling water cooled in the cooling step is supplied to the cleaning step.
[0011]
According to a fifth aspect of the present invention , pure ice is melted by supplying condensed water from the condensed water storage tank to the ice heat storage water tank.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention. In FIG. 1, reference numeral 10 denotes an ice heat storage device, and the ice heat storage device 10 is configured as follows. Reference numeral 11 denotes a pure ice making device that generates ice blocks from wastewater, which will be described in detail later. The pure ice making device 11 operates the refrigeration unit 12 using inexpensive surplus power such as nighttime power or private power generation, and performs cooling. The wastewater is cooled by the evaporator 121 on the side to generate pure ice with high purity from the wastewater, and separate and generate concentrated wastewater concentrated at a high concentration. Then, the generated concentrated wastewater is sent to the wastewater treatment device 13, and the pure ice is supplied to the ice heat storage water tank 14.
[0013]
The wastewater treatment device 13 collects sludge from the supplied concentrated wastewater. On the other hand, pure ice of high purity is stored in the ice heat storage water tank 14. The pure ice in the ice heat storage tank 14 is melted by the condensate from the condensate water storage tank 15 and stored in the ice heat storage water tank 14 as cooling water at a constant temperature (about 4 ° C.). The cooling water is pumped by a pump 16 and supplied to an intake cooling unit 17a of a gas turbine generator 17 for cooling air. 17b is a compressor, 17c is a turbine, and 17d is a generator.
[0014]
The cooling water pumped by the pump 16 and supplied to the intake cooling unit 17a of the gas turbine generator 17 is supplied to a cooling step 18 of a production process of each type of industry, and is used for cooling the cooling step 18. The wastewater from the cooling process 18 containing the waste heat after the utilization of the cold energy is stored in the condensate water storage tank 15 as condensate water. A condenser 122, which is a heat radiation side of the refrigerating device 12, is attached to the condensate water storage tank 15, so that the condensate in the water storage tank 15 is warmed and the condenser 122 is cooled to improve the efficiency of the refrigerating device 12. I have to.
[0015]
Next, a schematic configuration of the pure ice making apparatus 11 described above will be described with reference to FIG. In FIG. 2, reference numeral 31 denotes a tank into which drainage 41 is introduced from a drainage supply pipe (not shown), and an air diffuser 32 is arranged at an inner bottom of the tank 31. Air is supplied to the diffuser tube 32 from an air pump 33, and bubbles 42 are continuously blown out of the diffuser tube 32. Numeral 34 denotes a rotating belt. A part of the rotating belt 34 is immersed in the drainage water, and the other part is exposed above the water surface of the tank 31. 35a, 35b and 35c are rollers, at least one of which is formed as a driving roller.
[0016]
A cooling unit 36 and a heater unit 37 are disposed inside the rotating belt 34, and the cooling unit 36 cooled by the evaporator 121 of the refrigeration apparatus 12 shown in FIG. The heaters 37 are arranged inside the rotating belt 34 above the tank 31. 38 warm air heater, 39 is a pure ice ice mass, 40 is the ice generating unit.
[0017]
In the pure ice making apparatus 11 configured as described above, the air pump 33 is rotated, and the bubbles 42 are continuously blown out by the air diffuser 32. The waste water is agitated by the bubbles 42, and at the same time, is maintained at 0 ° C. without being supercooled. On the surface of the cooling unit 36, ice crystals grow while removing impurities by continuous blowing of bubbles 42. The grown ice crystals are conveyed by the rotating belt 34, and when they reach the position of the heater section 37, the ice is warmed by the heater section 37 and the hot air heater 38. In particular, a part of the ice surface is melted to become water, and The impurities adhering to the surface are washed away by the water and flow off. As a result, pure ice blocks 39 are removed from the rotating belt 34, and the ice blocks 39 are continuously generated. The ice blocks 39 thus generated are stored in the ice heat storage water tank 14 shown in FIG.
[0018]
FIGS. 3 and 4 are schematic configuration diagrams showing second and third embodiments of the present invention, in which the same parts as those in the first embodiment are denoted by the same reference numerals. In the second embodiment of FIG. 3, after cooling water pumped by the pump 16 from the ice heat storage device 14 is supplied to the intake cooling unit 17 a of the gas turbine generator 17, the cooling water is supplied for cooling in the cleaning process 19 of the production process. The drainage from the washing step 19 is supplied to the condensate water storage tank 15 as condensate water. The cooled return water (drainage) that has been cooled in the washing step 19 is supplied to the pure ice making device 11, and pure ice is made in the same manner as in the first embodiment.
[0019]
In the third embodiment of FIG. 4, after supplying the cooling water to the cooling step 18 shown in the first embodiment, the cooling water discharged from the cooling step 18 is supplied for cooling in the cleaning step 19. The waste water after cooling the washing step 19 is supplied to the pure ice making apparatus 11, and thereafter pure ice is made in the same manner as in the first embodiment.
[0020]
【The invention's effect】
As described above, according to the present invention, the configuration is different from the ice heat storage system that freezes tap water or industrial water, and the wastewater that has been used in the production process is used by the pure ice making apparatus to remove pure ice blocks and concentrated sewage. The generated ice blocks are stored in an ice storage water tank and the cold energy is used to cool the production process while maintaining good water quality. Cold heat can be used. Further, according to the present invention, the wastewater is cooled by the cold heat obtained by operating the refrigerating apparatus using surplus power such as nighttime power or privately generated power to separate pure ice and concentrated sewage in the pure ice making apparatus. There are advantages that can contribute to generation. Further, the separated concentrated sewage can be processed into high-concentration sludge by the sewage treatment apparatus.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of a pure ice making apparatus.
FIG. 3 is a schematic configuration diagram showing a second embodiment of the present invention.
FIG. 4 is a schematic configuration diagram showing a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Ice heat storage device 11 ... Pure ice making device 12 ... Refrigeration device 13 ... Wastewater treatment device 14 ... Ice heat storage water tank 15 ... Condensate water storage tank 16 ... Pump 17 ... Gas turbine generator 18 ... Cooling process 19 ... Cleaning process

Claims (5)

排水を冷却し、冷却された排水から純氷と濃縮排水とを分離生成する純氷製氷装置と、この純氷製氷装置により生成された純氷を貯蔵するとともに、貯蔵された純氷を融解して冷却水として蓄える氷蓄熱水槽と、この氷蓄熱水槽に蓄えられた冷却水が供給される第1冷却部と、この第1冷却部を冷却し終えた冷却水が供給される生産工程からなる第2冷却部と、この第2冷却部を冷却し終えた排水を前記純氷製氷装置に供給するとともに、復水として蓄えられる復水貯水槽と、蒸発器、凝縮器を有し、蒸発器側で前記純氷製氷装置に供給される排水を冷却し、凝縮器側で前記復水貯水槽の復水を暖めるようにした余剰電力で運転される冷凍装置とを備え、
前記純氷製氷装置は、排水が導入される槽と、この槽内の水中に配設され、外部から供給されるエアで槽内の水に気泡を連続的に吹き出す散気管と、前記槽内の水に一部分が没し、他の部分は水面上に位置するように配設された回転ベルトと、この回転ベルトが前記槽内の水に没する位置に設けられるとともに、この位置の回転ベルトの内側に配設され、前記冷凍装置の蒸発器により冷却される冷却部と、この冷却部により前記回転ベルトが冷却され、前記散気管からの気泡が回転ベルトに吹き付けられて氷の結晶が成長されて氷が生成される氷生成部と、この氷生成部で成長した氷を回転ベルトで搬送し、氷の表面に付着した不純物と純氷とを分離させるヒータとからなる、
ことを特徴とする生産工程における冷却システム。
A pure ice making device that cools the waste water, separates and produces pure ice and concentrated waste water from the cooled waste water, stores the pure ice generated by the pure ice making device, and melts the stored pure ice. An ice heat storage water tank for storing cooling water as cooling water, a first cooling unit to which the cooling water stored in the ice heat storage water tank is supplied, and a production process to supply the cooling water after cooling the first cooling unit. A second cooling unit, a condensate water storage tank for supplying waste water having cooled the second cooling unit to the pure ice making device, and storing the water as condensate; an evaporator; and a condenser. A refrigerating device that is operated with surplus power so as to cool wastewater supplied to the pure ice making device on the side and to warm condensate in the condensate storage tank on the condenser side.
The pure ice making apparatus includes a tank into which drainage is introduced, an air diffuser disposed in the water in the tank, and continuously blowing bubbles into the water in the tank with air supplied from the outside; A rotating belt disposed so that a part thereof is immersed in water and the other part is located on the water surface, and a rotating belt provided in a position where the rotating belt is immersed in water in the tank, and a rotating belt in this position. A cooling unit disposed inside the cooling unit and cooled by an evaporator of the refrigerating apparatus; and the rotating belt is cooled by the cooling unit, and bubbles from the air diffuser are sprayed on the rotating belt to grow ice crystals. An ice generating section in which ice is generated by being produced, and a heater that transports the ice grown in the ice generating section by a rotating belt and separates pure ice from impurities adhering to the ice surface.
A cooling system in a production process , characterized in that:
前記第1冷却部は、ガスタービン発電機の吸気冷却部からなることを含む請求項1項記載の生産工程における冷却システム。The cooling system according to claim 1, wherein the first cooling unit includes an intake cooling unit of a gas turbine generator. 前記第2冷却部は、生産工程の冷却工程または洗浄工程からなることを含む請求項1記載の生産工程における冷却システム。The cooling system according to claim 1, wherein the second cooling unit includes a cooling process or a cleaning process in a production process. 前記第2冷却部は、生産工程の冷却工程と洗浄工程とからなり、冷却工程を冷却した冷却水が洗浄工程に供給されるようにした請求項1記載の生産工程における冷却システム。The cooling system according to claim 1, wherein the second cooling unit includes a cooling step of a production step and a cleaning step, and cooling water cooled in the cooling step is supplied to the cleaning step. 前記氷蓄熱水槽には、復水貯水槽から復水を供給して純氷を融解させるようにしたことを含む請求項1〜4のいずれか1項に記載の生産工程における冷却システム。The cooling system in the production process according to any one of claims 1 to 4, further comprising supplying condensed water from the condensed water storage tank to the pure ice storage tank to melt the pure ice.
JP10114297A 1997-04-18 1997-04-18 Cooling system in production process Expired - Fee Related JP3584671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10114297A JP3584671B2 (en) 1997-04-18 1997-04-18 Cooling system in production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10114297A JP3584671B2 (en) 1997-04-18 1997-04-18 Cooling system in production process

Publications (2)

Publication Number Publication Date
JPH10292964A JPH10292964A (en) 1998-11-04
JP3584671B2 true JP3584671B2 (en) 2004-11-04

Family

ID=14292842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10114297A Expired - Fee Related JP3584671B2 (en) 1997-04-18 1997-04-18 Cooling system in production process

Country Status (1)

Country Link
JP (1) JP3584671B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5010113B2 (en) * 2005-06-13 2012-08-29 三菱重工業株式会社 Power generation system

Also Published As

Publication number Publication date
JPH10292964A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
US6919000B2 (en) Diffusion driven desalination apparatus and process
US7225620B2 (en) Diffusion driven water purification apparatus and process
US4572785A (en) Water purifier unit
EP0090004B1 (en) Liquid purification system
KR100533650B1 (en) Frostless heat exchanger and method thereof
JPH10277535A (en) Seawater-desalting apparatus
JP3584671B2 (en) Cooling system in production process
US4321802A (en) Ice and water-making refrigeration apparatus
JP3729393B2 (en) Cold heat and pure water or clean water take-off system of steam compression refrigerator
JP3635847B2 (en) Pure ice making machine
JP4121682B2 (en) Method and apparatus for solvent separation and concentration of solution
JP3806864B2 (en) Cold heat, pure water or purified water and distilled water take-out system of steam compression refrigerator
JPH09327689A (en) Waste water recycling system
KR100410826B1 (en) A water purifier with the modulated cooling unit
JP2001104940A (en) Apparatus for concentrating wastewater
FI73818C (en) Procedure for heat absorption from freezing liquid
CN211078499U (en) Sodium chloride and sodium sulfate freeze separation recovery unit among waste water treatment
JP3681153B2 (en) Freeze separator
JPH046333A (en) Method and apparatus for adjusting concentration of circulation liquid in open type heating tower
KR100189625B1 (en) Defroster and its method of a refrigerator
US20240083776A1 (en) Integrated thermoacoustic freeze desalination systems and processes
JPH08261611A (en) Heat supply and distilling compound system
TW200819196A (en) Absorption freezing method to separate pure water from sea water
JP3336065B2 (en) Pure water production method
JP3350650B2 (en) Liquid concentration device and liquid concentration method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees