JPH01107802A - Method and device for freeze concentration - Google Patents

Method and device for freeze concentration

Info

Publication number
JPH01107802A
JPH01107802A JP62263335A JP26333587A JPH01107802A JP H01107802 A JPH01107802 A JP H01107802A JP 62263335 A JP62263335 A JP 62263335A JP 26333587 A JP26333587 A JP 26333587A JP H01107802 A JPH01107802 A JP H01107802A
Authority
JP
Japan
Prior art keywords
concentration
tank
heat exchanger
stock solution
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62263335A
Other languages
Japanese (ja)
Inventor
Takumi Shinohara
篠原 巧見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62263335A priority Critical patent/JPH01107802A/en
Publication of JPH01107802A publication Critical patent/JPH01107802A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

PURPOSE:To concentrate a large amt. of liq. food by freezing only the water contained in the liq. food on the surface of a heat exchanger, then melting and removing the ice. CONSTITUTION:A low-temp. medium is circulated through heat exchangers 21A-22B, and a raw liq. to be concd. is supplied into concentration tanks 61A-62B and brought into contact with the heat exchanger. The water in the raw liq. is frozen on the heat exchanger surface. The liq. concentrate is discharged from the concentration tank, and then a high-temp. medium is circulated through the heat exchanger instead of the low-temp. medium. As a result, the ice on the heat exchanger surface is melted into water, and discharged from the concentration tank. In addition, the raw liq. can be effectively cooled by directly spraying the raw liq. onto the heat exchanger surface.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は液状食品(飲料を含む)を濃縮するための濃
縮方法および濃縮装置に関するものであり、特に液状食
品に含まれている水分を凍結させて除去することにより
濃縮する方法および装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a concentration method and a concentration device for concentrating liquid foods (including beverages), and in particular to a concentration method and a concentration device for concentrating liquid foods (including beverages). The present invention relates to a method and apparatus for concentration by removal.

従来の技術 一般に正造酢の製造、あるいは即席麺やカップ殆その他
のインスタント食品に添付される濃縮スープやソース類
の製造、ざらには濃縮果汁の製造においては、原液を濃
縮する工程、すなわち原液中に含まれる水分をできるだ
け除去する工程が必要となる。このような液状食品の濃
縮においては、加熱による変質を避ける必要がある場合
が多いことから、一般には真空蒸発濃縮が用いられるこ
とが多い。しかしながら真空蒸発S縮では高度の真空を
必要とするためランニングコストが高く、また設備に気
密性が要求されるため設備コストも高い等の問題がおる
Conventional Technology In general, in the production of formal vinegar, the production of concentrated soups and sauces attached to instant noodles, cups, and other instant foods, and the production of concentrated fruit juice, the process of concentrating the stock solution, that is, the process of concentrating the stock solution, A process is required to remove as much moisture as possible from the When concentrating such liquid foods, it is often necessary to avoid deterioration due to heating, so vacuum evaporation concentration is generally used. However, vacuum evaporation S-condensation requires a high degree of vacuum, resulting in high running costs, and requires equipment to be airtight, resulting in high equipment costs.

そこで最近では凍結濃縮法を液状食品の濃縮に適用する
試みがなされているが、凍結濃縮法は実験至的に小量の
液体の濃縮を行なうにはさほど問題がないが、大量の液
状食品を連続的に処理するには未だ充分とは言えなかっ
たのが実情である。
Recently, attempts have been made to apply the freeze-concentration method to the concentration of liquid foods, but although the freeze-concentration method does not pose much of a problem for concentrating small amounts of liquid in experiments, it The reality is that it is not yet sufficient for continuous processing.

すなわち大量の液状食品を凍結濃縮法で濃縮する方法の
一例としては、濃縮槽内に予め濃縮すべき原液を貯留し
ておき、予め低温に冷却された冷却部材を濃縮槽内の原
液中に連続的おるいは間欠的に浸漬させてその冷却部材
の表面で原液中の水分を凍結させ、続いて冷却部材を濃
縮槽内から連続的もしくは間欠的に引上げてその表面の
凍結水分(氷)を融解除去する方法が考えられるが、こ
の場合濃縮槽の外部で冷却部材を予め冷却してからその
冷却部材を原液中に浸漬して水分を凍結させるから、原
液に対する冷却は間接冷却となり、熱効率が低くなって
コスト上昇を招かざるを得ない問題があるほか、冷却部
材を移動させるために大がかりな駆動装置やチェーン、
コンベヤあるいはその他の補助機が必要となり、設備コ
ストが高いとともに故障も生じ易い問題があり、ざらに
冷却部材を予め冷却する際に用いられる冷却媒体を濃縮
槽内に持ち込まないようにするための特別の配慮が必要
となる問題もあり、したがって大量処理については未だ
効率良く処理する方法が確立されていないのが実情であ
った。
In other words, as an example of a method for concentrating a large amount of liquid food using the freeze concentration method, the stock solution to be concentrated is stored in advance in a concentration tank, and a cooling member cooled in advance to a low temperature is continuously poured into the stock solution in the concentration tank. The water in the stock solution is frozen on the surface of the cooling member by being immersed in the target or intermittently, and then the cooling member is continuously or intermittently pulled up from the concentration tank to remove the frozen water (ice) on the surface. One possible method is to remove it by melting, but in this case, the cooling member is pre-cooled outside the concentration tank and then immersed in the stock solution to freeze the moisture, so the cooling of the stock solution is indirect cooling, which reduces thermal efficiency. In addition to the problem of lowering the temperature and increasing costs, it also requires large-scale drive devices, chains, and
A conveyor or other auxiliary equipment is required, which poses problems such as high equipment costs and easy malfunction.In addition, special equipment is required to prevent the cooling medium used for pre-cooling the cooling components from entering the thickening tank. There are also problems that require consideration, and the reality is that no efficient method has yet been established for mass processing.

発明が解決すべき問題点 前述のように液状食品の濃縮に従来多用されている真空
蒸発濃縮はランニングコストおよび設備コストが高い問
題があり、一方凍結′a縮では、大量の液状食品を処理
しようとする場合、従来は熱効率が低くならざるを得な
いこと、あるいは冷却部材の駆動機構が大がかりとなっ
て故障も多い等の問題から、効率良く処理できる方法が
確立されていなかった。
Problems to be Solved by the Invention As mentioned above, vacuum evaporation concentration, which has traditionally been widely used for concentrating liquid foods, has the problem of high running costs and equipment costs, while freezing'acondensation requires processing large amounts of liquid foods. Conventionally, when doing so, there has been no established method for efficient processing due to problems such as the thermal efficiency inevitably being low, or the drive mechanism for the cooling member being large-scale and frequently failing.

この発明は以上の事情を背景としてなされたもので、液
状食品を濃縮するにあたり、凍結濃縮法を適用してしか
も大量処理についても効率良くかつ設備的にも簡単で故
障も少なくし得るようにした方法および装置を提供する
ことを目的とするものである。
This invention was made against the background of the above-mentioned circumstances, and it has been made to apply the freeze-concentration method to concentrate liquid foods, and to make it possible to process large quantities efficiently, with simple equipment, and with fewer breakdowns. It is an object of the present invention to provide methods and apparatus.

問題点を解決するための手段 この発明の濃縮方法は、基本的には内部を温度媒体が流
通する熱交換器を濃縮槽に設置しておき、熱交換器内に
低温の温度媒体を流通させている状態で濃縮対象となる
原液をその熱交換器に接するように濃縮槽内に供給して
、原液中の水分を熱交換器表面にて凍結させることによ
り原液よりも水分含有者が低下した濃縮液を濃縮槽内で
得、その濃縮液を濃縮槽内から外部へ排出させた後、前
記熱交換器内に高温の温度媒体を流通させて、熱交換器
表面の凍結水分を融解させ、濃縮槽内から排出させるこ
とを特徴とするものである。
Means for Solving the Problems The concentration method of the present invention basically consists of installing a heat exchanger through which a temperature medium flows inside the concentration tank, and flowing a low-temperature temperature medium through the heat exchanger. The undiluted solution to be concentrated is supplied into the concentration tank so as to be in contact with the heat exchanger, and the moisture in the undiluted solution is frozen on the surface of the heat exchanger, resulting in a water content lower than that of the undiluted solution. A concentrated liquid is obtained in a concentration tank, and after the concentrated liquid is discharged from the concentration tank to the outside, a high-temperature medium is passed through the heat exchanger to melt frozen water on the surface of the heat exchanger, It is characterized by being discharged from within the concentration tank.

ここで、5Jijt縮槽内に原液を供給するにあたって
は、原液を熱交換器に向けてスプレーすることが望まし
い。
Here, when supplying the stock solution into the 5JJt condensation tank, it is desirable to spray the stock solution toward the heat exchanger.

またこの発明の凍結濃縮装置は、1槽もしくは直列に接
続された2槽以上の濃縮槽からなる第1の濃縮槽系列と
、同じく1槽もしくは直列に接続された2槽以上の濃縮
槽からなる第2のmt4槽系列系列備え、前記各濃縮槽
にはそれぞれ内部を温度媒体が流通する熱交換器を設け
、かつ前記各熱交換器に対し、高温の温度媒体と低温の
温度媒体を切換えて供給する温度媒体供給手段を接続し
たことを特徴とするものである。
Furthermore, the freeze concentration device of the present invention includes a first concentration tank series consisting of one concentration tank or two or more concentration tanks connected in series, and a first concentration tank series consisting of one concentration tank or two or more concentration tanks connected in series. A second mt4 tank series is provided, each of the concentration tanks is provided with a heat exchanger through which a temperature medium flows, and a high temperature medium and a low temperature temperature medium are switched for each heat exchanger. This is characterized in that a temperature medium supply means is connected.

作   用 第1発明の凍結濃縮方法においては、内部をフロン等の
温度媒体が流通する熱交換器を濃縮槽に設置しておき、
最初の段階では熱交換器内に低温の温度媒体を流通させ
ている状態で濃縮対象となる原液をその熱交換器に接す
るように濃縮槽内に供給する。このとき、濃縮対象とな
る原液は熱交換器に接する際に急冷されて原液中の水分
が熱交換器表面で凍結する。そのため原液中の水分含有
量が低下して′a縮液が濃縮槽内にて1qられることに
なる。このようにして得られた濃縮液を濃縮槽から排出
した後、熱交換器に流通させる温度媒体を切換え、低温
の温度媒体に代えて高温の温度媒体を流通させる。これ
によりその前の段階で熱交換器表面に凍結していた水分
、すなわち氷は、熱交換器内を流通する高温の温度媒体
により融解されて液体の水となり、濃縮槽から排出され
る。
In the freeze concentration method of the first invention, a heat exchanger through which a temperature medium such as fluorocarbon flows is installed in the concentration tank,
In the first step, while a low-temperature medium is flowing through the heat exchanger, the stock solution to be concentrated is supplied into the concentration tank so as to be in contact with the heat exchanger. At this time, the stock solution to be concentrated is rapidly cooled when it comes into contact with the heat exchanger, and the water in the stock solution is frozen on the surface of the heat exchanger. Therefore, the water content in the stock solution decreases, and 1q of the condensed solution is reduced in the concentration tank. After the concentrated liquid obtained in this way is discharged from the concentration tank, the temperature medium flowing through the heat exchanger is changed, and a high temperature temperature medium is caused to flow in place of the low temperature temperature medium. As a result, the water, that is, ice that had been frozen on the surface of the heat exchanger in the previous step, is melted by the high temperature medium flowing through the heat exchanger, becomes liquid water, and is discharged from the concentration tank.

ここで、濃縮対象となる原液を濃縮槽内に供給するにあ
たっては、原液を熱交換器表面に直接スプレーすること
が望ましく、このようにすることによって原液を効果的
に急冷させて水分を充分に凍結させることが可能となる
Here, when supplying the stock solution to be concentrated into the concentration tank, it is desirable to spray the stock solution directly onto the surface of the heat exchanger.By doing this, the stock solution is effectively rapidly cooled and water is sufficiently removed. It is possible to freeze it.

第2発明の凍結濃縮装置においては、1槽もしくは直列
に接続された2槽以上の濃縮槽からなる第1の濃縮槽系
列と、同様な構成の第2の濃縮槽系列との2系列の濃縮
槽系列を備えており、各−縮槽にはそれぞれ内部を温度
媒体が流通する熱交換器が設けられている。ここで、第
1の濃縮槽系列内の各濃縮槽の熱交換器に高温の温度媒
体を流通させている状態で第1の濃縮槽系列の濃縮槽に
yAM対象となる原液を供給すれば、既に述べたように
原液中の水分が熱交換器表面で凍結して濃縮液を得られ
る。なおこの時、第1の濃縮槽系列が2槽以上の濃縮槽
で構成されている場合は、第1の濃縮槽系列の1番目の
濃縮槽に原液を供給し、その1番目の濃縮槽である程度
濃縮された濃縮液(1次濃縮液)を1番目の濃縮槽から
ポンプを介して2番目の濃縮槽に供給して、ざらに濃縮
を進めることができる。一方、上述のように第1の濃縮
槽系列において濃縮を行っている間には、第2の濃縮槽
系列では原液の供給−濃縮は行なわず、第2の濃縮槽系
列内の各濃縮槽の熱交換器に高温の温度媒体を流通させ
て熱交換器表面に付着凍結している水分(氷)の融解除
去を行なう。そして逆に第2の濃縮槽系列で原液の供給
−濃縮を行なっている間は、第1の濃縮槽系列において
熱交換器表面凍結水分の融解除去を行なう。したがって
第1の濃縮槽系列と第2の濃縮槽系列とで交互に濃縮と
融解とを繰返し行なうことになる。
In the freeze concentrator of the second invention, there are two concentrator series: a first concentrator series consisting of one concentrator tank or two or more concentrator tanks connected in series, and a second concentrator series having a similar configuration. A series of tanks are provided, each of which is provided with a heat exchanger through which a heating medium flows. Here, if the stock solution to be subjected to yAM is supplied to the thickening tank of the first thickening tank series while a high-temperature medium is flowing through the heat exchanger of each thickening tank in the first thickening tank series, As already mentioned, the moisture in the stock solution freezes on the surface of the heat exchanger to obtain a concentrated solution. At this time, if the first thickening tank series is composed of two or more thickening tanks, the stock solution is supplied to the first thickening tank of the first thickening tank series, and The concentrated liquid (primary concentrated liquid) that has been concentrated to a certain extent can be supplied from the first concentration tank to the second concentration tank via a pump, and the concentration can proceed roughly. On the other hand, while concentration is being carried out in the first thickening tank series as described above, the supply and concentration of the stock solution is not performed in the second thickening tank series, and each thickening tank in the second thickening tank series is A high-temperature medium is passed through the heat exchanger to melt and remove frozen water (ice) on the surface of the heat exchanger. Conversely, while supplying and concentrating the stock solution in the second concentration tank series, the frozen moisture on the surface of the heat exchanger is thawed and removed in the first concentration tank series. Therefore, concentration and melting are repeated alternately in the first concentration tank series and the second concentration tank series.

実施例 第1図に、第1発明の凍結濃縮方法を実施するための装
置の一例、すなわち第2発明の凍結濃縮装置の一例を示
す。
EXAMPLE FIG. 1 shows an example of an apparatus for carrying out the freeze-concentration method of the first invention, that is, an example of the freeze-concentration apparatus of the second invention.

第1図において、原液槽1は処理対象となる醸造酢その
他の原液3を貯留しておくためのものであり、この原液
槽1内にはクーリングパイプ2が配設されている。この
クーリングパイプ2には後述するようにフロン受液槽3
1からの低温媒体としての液体フロンが供給されて、原
液3をある程度冷却(予備冷却)させる。なおこのクー
リングパイプ2から出たフロンは後述する圧縮機32へ
送給される。
In FIG. 1, a stock solution tank 1 is for storing a stock solution 3 of brewed vinegar or other material to be treated, and a cooling pipe 2 is disposed within this stock solution tank 1. This cooling pipe 2 has a fluorocarbon liquid receiving tank 3 as described later.
Liquid Freon as a low-temperature medium is supplied from 1 to cool the stock solution 3 to some extent (pre-cooling). Note that the fluorocarbons coming out of the cooling pipe 2 are sent to a compressor 32, which will be described later.

原液槽1内の原液3は、原液供給管41.42S:経て
第1の濃縮槽系列51の1番目の濃縮槽61Aおよび第
2の濃縮槽系列52の1番目の濃縮m62Aに導かれる
ようになっており、各原液供給管41.42の中途には
それぞれ開閉弁71.72が設けられている。第1の濃
縮槽系列51は、第1図の例では2槽の濃縮槽61A、
61Bよりなり、その1番目の′a縮槽61A内の液体
(後述するように1次濃縮液に相当する)が中間連絡管
81およびポンプ91を介して2番目の濃縮槽61Bに
導かれるようになっている。したがって第1のIN槽系
列51内では、1番目の濃縮槽61Aと2番目の濃縮槽
61Bが直列に連結されていることになる。なお2番目
の濃縮槽61B内の液体(後述するように2次濃縮液に
相当する)では排出管101およびポンプ111を介し
て濃縮液槽20に導かれるようになっている。一方策2
の濃縮槽系列52も2槽の濃縮槽62A、62Bよりな
り、その1番目の′a縮槽62A内の液体(1次濃縮液
)が中間連絡管82およびポンプ92を介して2番目の
濃縮槽62Bに導かれるようになっており、したがって
第2の濃縮槽系列52内でも1番目、2番目の濃縮槽6
2A、62Bが直列に連結されていることになる。なお
この第2の濃縮槽系列52においても2番目の濃縮槽6
2B内の液体(2次濃縮液)は排出管102およびポン
プ112を介して濃縮液槽20に導かれるようになって
いる。
The stock solution 3 in the stock solution tank 1 is guided to the first concentration tank 61A of the first concentration tank series 51 and the first concentration m62A of the second concentration tank series 52 via the stock solution supply pipes 41 and 42S. On-off valves 71 and 72 are provided in the middle of each stock solution supply pipe 41 and 42, respectively. In the example of FIG. 1, the first concentration tank series 51 includes two concentration tanks 61A,
61B, so that the liquid in the first 'a condensing tank 61A (corresponding to the primary concentrated liquid as described later) is guided to the second concentrating tank 61B via an intermediate communication pipe 81 and a pump 91. It has become. Therefore, within the first IN tank series 51, the first concentration tank 61A and the second concentration tank 61B are connected in series. Note that the liquid in the second concentration tank 61B (corresponding to a secondary concentrated liquid as described later) is led to the concentrated liquid tank 20 via a discharge pipe 101 and a pump 111. One way solution 2
The concentrating tank series 52 also consists of two concentrating tanks 62A and 62B, and the liquid (primary concentrated liquid) in the first 'a condensing tank 62A is transferred to the second concentrating tank 62A through the intermediate connecting pipe 82 and pump 92. Therefore, even in the second concentration tank series 52, the first and second concentration tanks 6
2A and 62B are connected in series. Note that also in this second concentration tank series 52, the second concentration tank 6
The liquid (secondary concentrated liquid) in 2B is led to the concentrated liquid tank 20 via a discharge pipe 102 and a pump 112.

前記各濃縮槽61A、61B、62A、62B内には、
それぞれ熱交換器21A、2’lB、22A、22Bが
配設されている。これら熱交換器21A〜22Bは、内
部をフロン等の温度媒体が流通するものであって、例え
ば第2図に示すように、平行に配列した複数の管体23
を並列状に連結しかつ各管体23に多数のフィン24を
設けた構成とすれば良いが、勿論これに限定されるもの
ではない。ここで、各熱交換器21A〜22Bの配置に
ついては、各濃縮槽系列51.52の1番目の濃縮槽6
1A、62Aにおける熱交換器21A122Aは、原液
供給管41.42から供給される原液3が熱交換器21
A、22Aに直接接するように配置し、また各S部槽系
列51.52の2番目の濃縮槽61B、62Bにおける
熱交換器21B、22Bは、中間連絡管81.82から
供給される液体(1次濃縮液)が熱交換器21B、22
Bに直接接するように配置しておく。またより望ましく
は、原液供給管41.42もしくは中間連絡管81.8
2から供給される原液もしくは1次#i稲液が、各熱交
換器21A〜22Bの表面に噴霧状態で直接スプレーさ
れるように構成しておくことが望ましい。そのために、
第1図の例では原′ri慴1をm部槽61A、62Aよ
りも上方に配置しておいて、原液の自重によりかなりの
圧力で原液が濃縮槽61A、62A内でスプレーされる
ようにし、また中間連絡管81.82にはポンプ91.
92@設けてポンプ圧力により1次濃縮液が濃縮槽61
B、62B内でスプレーされるようにしているが、場合
によっては原液供給管41.42の中途にも図示しない
ポンプを設けて、ポンプ圧力により原液がスプレーされ
るようにしても良い。また各熱交換器21A〜22Bは
、各濃縮槽61A〜62B内においてその上下の位置を
変化させることができるように構成しておくことが望ま
しい。
In each of the concentration tanks 61A, 61B, 62A, 62B,
Heat exchangers 21A, 2'1B, 22A, and 22B are provided, respectively. These heat exchangers 21A to 22B have a temperature medium such as fluorocarbon flowing therein, and as shown in FIG. 2, for example, a plurality of tube bodies 23 arranged in parallel
The structure may be such that the tubes are connected in parallel and each tube body 23 is provided with a large number of fins 24, but it is of course not limited to this. Here, regarding the arrangement of each heat exchanger 21A to 22B, the first concentration tank 6 of each concentration tank series 51.52
The heat exchangers 21A and 122A in 1A and 62A are the heat exchangers 21 and 122A in which the stock solution 3 supplied from the stock solution supply pipe 41.42 is
The heat exchangers 21B and 22B in the second concentration tanks 61B and 62B of each S section tank series 51.52 are arranged so as to be in direct contact with the liquid ( The primary concentrated liquid) is transferred to the heat exchangers 21B and 22
Place it so that it is in direct contact with B. More preferably, the stock solution supply pipe 41.42 or the intermediate communication pipe 81.8
It is desirable that the undiluted solution or the primary #i rice liquid supplied from No. 2 is directly sprayed onto the surface of each of the heat exchangers 21A to 22B in an atomized state. for that,
In the example shown in Fig. 1, the concentrate 1 is placed above the m-part tanks 61A and 62A, so that the concentrate is sprayed into the concentration tanks 61A and 62A under considerable pressure due to its own weight. , and a pump 91. to the intermediate connecting pipe 81.82.
92 @ is installed and the primary concentrated liquid is transferred to the concentration tank 61 by the pump pressure.
B, 62B, but depending on the situation, a pump (not shown) may be provided in the middle of the stock solution supply pipes 41, 42, and the stock solution may be sprayed by the pump pressure. Moreover, it is desirable that each of the heat exchangers 21A to 22B is configured such that its vertical position can be changed within each concentration tank 61A to 62B.

前記各熱又換器21A〜22Bには、温度媒体、例えば
フロンを供給するための温度媒体供給手段30が接続さ
れている。この温度媒体供給手段30は、第1の濃縮槽
系列51の熱交換器21A121[3に低温媒体として
の低温の液体フロンを供給すると同時に第2の濃縮槽系
列52の熱交換器22A、22Bに高温媒体としての高
温のフロンガスを供給している状態と、逆に第1の濃縮
槽系列51の熱交換器21A、21Bに高温媒体として
の高温のフロンガスを供給すると同時に第2の濃縮槽系
列52の熱交換器22A、22Bに低温媒体としての低
温の液体フロンを供給している状態との2種の状態に交
互に切換え可能となっている。具体的には、この温度媒
体供給手段30は、低温の液体フロンを収容しておくフ
ロン受液槽31と、圧縮機32と、必要に応じて設けら
れる水冷式コンデンサ33.34と、開閉弁35A、3
5B、36A、36B、37A、37B、38A、38
B、39とによって構成されている。
A temperature medium supply means 30 for supplying a temperature medium such as fluorocarbon is connected to each of the heat exchangers 21A to 22B. This temperature medium supply means 30 supplies low temperature liquid Freon as a low temperature medium to the heat exchanger 21A121[3 of the first concentration tank series 51, and at the same time supplies the heat exchangers 22A and 22B of the second concentration tank series 52 with low temperature liquid fluorocarbon. A state in which high-temperature fluorocarbon gas as a high-temperature medium is supplied, and conversely, a state in which high-temperature fluorocarbon gas as a high-temperature medium is supplied to the heat exchangers 21A and 21B of the first concentrating tank series 51 and a state in which the second concentrating tank series 52 It is possible to alternately switch between two states: a state in which low-temperature liquid Freon is supplied as a low-temperature medium to the heat exchangers 22A and 22B. Specifically, the temperature medium supply means 30 includes a Freon receiving tank 31 that stores low-temperature liquid Freon, a compressor 32, water-cooled condensers 33 and 34 provided as necessary, and an on-off valve. 35A, 3
5B, 36A, 36B, 37A, 37B, 38A, 38
B, 39.

次に第1図の例についてその使用方法、各部の動作を説
明する。
Next, how to use the example shown in FIG. 1 and the operation of each part will be explained.

先ず第1の濃縮槽系列51において濃縮を行ない、同時
に第2の濃縮槽系列52においては熱交換器22A、2
2Bの表面に付着した凍結水分の融解を行なっている状
態を第3図に示す。第3図で配管について実線で描いた
部分は、温度媒体(液体フロンもしくはフロンガス)や
原液、1次濃縮液、2次濃縮液が流通している部分を示
し、破線部分はこれらが流通していない部分を示す。
First, concentration is performed in the first concentration tank series 51, and at the same time, in the second concentration tank series 52, the heat exchangers 22A, 2
FIG. 3 shows a state in which frozen water adhering to the surface of 2B is thawed. In Figure 3, the parts of the piping drawn with solid lines indicate the parts where the temperature medium (liquid fluorocarbon or fluorocarbon gas), stock solution, primary concentrated liquid, and secondary concentrated liquid are flowing, and the broken line parts are where these are flowing. Indicates the part that is not present.

なお第3図に示す段階の前には、既に第2の濃縮槽系列
52の各熱交換器22A、22Bの表面に水分が凍結付
着しているものとする。
It is assumed that before the stage shown in FIG. 3, moisture has already frozen and adhered to the surface of each heat exchanger 22A, 22B of the second concentration tank series 52.

第3図において、開閉弁71は開放され、開閉弁72は
閉じている。したがって原液槽1内における原液3は開
閉弁71および原液供給管41を経て第1の濃縮槽系列
51の1番目の濃縮槽61Aに供給され、これに対し第
2の濃縮槽系列52には原液が供給されない。一方、温
度媒体供給手段30においては、開閉弁35A、36A
、37A、38Aが開放され、開弁35B、36B、3
7B、38Bは閉じている。したがってフロン受液槽3
1から低温の液体フロンが開閉弁35Aを介して第1の
濃縮槽系列51の各濃縮槽61A、61Bにおける熱交
換器21A、21Bに供給される。したがってその第1
の濃縮槽系列51の1番目のtR:F?3槽61Aでは
原液が熱交換器21の表面で急冷されて、原液中の水分
が熱交換器21Aに凍結付着し、原液中の水分含有量が
減少して1次濃縮液3Aとなる。この1次濃縮液3Aは
中間連絡管81およびポンプ91により第1の濃縮槽系
列51の2番目の濃縮槽61Bに導かれ、その1次濃縮
液中に残っていた水分が熱交換器2’lBの表面に凍結
付着してざらに水分含有量が減少し、2次濃縮液3Bと
なる。そしてその2次濃縮液3Bは排出管101および
ポンプ111により濃縮液槽20に導かれる。
In FIG. 3, on-off valve 71 is open and on-off valve 72 is closed. Therefore, the stock solution 3 in the stock solution tank 1 is supplied to the first concentration tank 61A of the first concentration tank series 51 via the on-off valve 71 and the stock solution supply pipe 41, whereas the stock solution 3 is supplied to the first concentration tank 61A of the first concentration tank series 51. is not supplied. On the other hand, in the temperature medium supply means 30, on-off valves 35A, 36A
, 37A, 38A are opened, and valves 35B, 36B, 3 are opened.
7B and 38B are closed. Therefore, Freon receiving tank 3
Low temperature liquid fluorocarbon is supplied to the heat exchangers 21A and 21B in each concentration tank 61A and 61B of the first concentration tank series 51 via the on-off valve 35A. Therefore, the first
1st tR:F of concentration tank series 51? In the third tank 61A, the stock solution is rapidly cooled on the surface of the heat exchanger 21, the water in the stock solution freezes and adheres to the heat exchanger 21A, and the water content in the stock solution decreases to become the primary concentrated solution 3A. This primary concentrated liquid 3A is guided to the second concentration tank 61B of the first concentration tank series 51 by an intermediate communication pipe 81 and a pump 91, and the water remaining in the primary concentrated liquid is removed from the heat exchanger 2'. It freezes and adheres to the surface of 1B, and the water content decreases roughly, becoming secondary concentrated liquid 3B. The secondary concentrated liquid 3B is led to the concentrated liquid tank 20 by a discharge pipe 101 and a pump 111.

第1の濃縮槽系列51の各熱交換器21A、21Bにお
いては、そ゛の内部を流通する低温の液体フロンが上述
のように原液3または1次濃縮液3Aと熱交換されて気
化し、フロンガスとなり、このフロンガスは開閉弁36
Aを介して圧縮機32に導かれ、圧縮されて高温のフロ
ンガスとなる。
In each of the heat exchangers 21A and 21B of the first concentration tank series 51, the low-temperature liquid fluorocarbon flowing therein is heat exchanged with the stock solution 3 or the primary concentrated solution 3A as described above and vaporized, resulting in fluorocarbon gas. Therefore, this fluorocarbon gas flows through the on-off valve 36.
It is led to the compressor 32 via A, and is compressed into high-temperature fluorocarbon gas.

この高温のフロンガスは開閉弁38Aを介して第2の濃
縮槽系列52の各濃縮槽62A、62Bの熱交換器22
A、22Bに導かれ、その熱交換器22A、22Bの表
面に凍結付着している水分(氷)が融解され、液体の水
3Cとなって各Wi縮部槽2A、62B内に一旦貯留さ
れた後、図示しない排出路を介して排出されるかまたは
直ちに排出される。
This high-temperature fluorocarbon gas is passed through the on-off valve 38A to the heat exchanger 22 of each concentration tank 62A, 62B of the second concentration tank series 52.
A, 22B, the water (ice) frozen and adhering to the surface of the heat exchangers 22A, 22B is melted, becomes liquid water 3C, and is temporarily stored in each Wi-condenser tank 2A, 62B. After that, it is discharged through a discharge path (not shown) or immediately discharged.

このように第2の濃縮槽系列52の熱交換器62A、6
2Bではその内部を流通する高温のフロンガスが表面の
凍結水分と熱交換され、凍結水分は融解される一方、フ
ロンガスは再び低温の液体フロンとなる。この低温の液
体フロンは開閉弁37Aを介してフロン受液槽31に戻
ることになるが、場合によっては熱交換器22A、22
Bにおいて高温のフロンガスが液体フロンに充分に戻ら
ないこともあり、その場合には図示のように水冷コンデ
ンサ33を設けておき、このコンデンサ33によりざら
に冷却して液体化してからフロン受液槽31に戻す。
In this way, the heat exchangers 62A, 6 of the second concentration tank series 52
In 2B, the high-temperature fluorocarbon gas flowing through it exchanges heat with the frozen moisture on the surface, and while the frozen moisture is melted, the fluorocarbon gas becomes low-temperature liquid fluorocarbon again. This low-temperature liquid Freon will return to the Freon receiving tank 31 via the on-off valve 37A, but depending on the case, the heat exchanger 22A, 22
In some cases, the high-temperature fluorocarbon gas does not return to liquid fluorocarbon gas sufficiently in step B. In that case, a water-cooled condenser 33 is provided as shown in the figure, and the condenser 33 roughly cools the fluorocarbon gas, liquefies it, and then transfers it to the fluorocarbon liquid receiving tank. Return to 31.

上述のように第3図の状態では第1の濃縮槽系列51に
おいて原液の1次濃縮、2次濃縮がなされるとともに、
その熱交換器21A、21Bに凍結水分が付着する。そ
こで次の段階では、第3図の場合とは逆に第2の濃縮槽
系列52において原液の1次m縮、2次濃縮を行なうと
ともに、第1の濃縮槽系列52において熱交換器21A
、21Bの表面の凍結水分の融解を行なう。その状態を
第4図に示す。
As mentioned above, in the state shown in FIG. 3, primary concentration and secondary concentration of the stock solution are performed in the first concentration tank series 51, and
Frozen moisture adheres to the heat exchangers 21A and 21B. Therefore, in the next step, contrary to the case shown in FIG.
, 21B to thaw the frozen moisture on the surface. The state is shown in FIG.

第4図において、開閉弁71は閉じる一方、開閉弁72
が開放されて原液槽1中の原液は第2の濃縮槽系列52
の1番目のyAN槽62Aに導かれる。一方温度媒体供
給手段30においては、開閉弁35A、36A、37A
、38Aは閉じ、開閉弁35B、36B、378,38
8が開放される。
In FIG. 4, the on-off valve 71 is closed, while the on-off valve 72 is closed.
is opened and the concentrate in the concentrate tank 1 is transferred to the second concentration tank series 52.
is guided to the first yAN tank 62A. On the other hand, in the temperature medium supply means 30, on-off valves 35A, 36A, 37A
, 38A are closed, on-off valves 35B, 36B, 378, 38
8 is released.

したがって第3図の場合とは全く逆に、第2の濃RB槽
系列52における濃縮槽62A、62Bの熱交換器22
A、22Bに開閉弁35Bを介して低温の液体フロンが
供給され、その濃縮槽62A162Bにおいて原液3も
しくは1次濃縮液3Aの水分の凍結すなわち′a縮がな
される。そして熱交換器62A、62B内でガス化した
フロンガスは開閉弁36Bを介して圧縮機32に導かれ
、高温のフロンガスとなって開閉弁38Bを介して第1
のa部槽系列51の各濃縮槽61A、61Bの熱交換器
21A、21Bに導かれる。この熱交換器21A、21
Bにおいては表面の凍結水分が融解されて液体の水3C
となり、一方フロンガスは液化して開閉弁37Bを介し
てフロン受液槽31へ戻るか、または水冷式コンデンサ
34により液化されてフロン受液槽31へ戻る。
Therefore, completely opposite to the case shown in FIG.
A, 22B is supplied with low-temperature liquid Freon via an on-off valve 35B, and the water content of the stock solution 3 or the primary concentrated solution 3A is frozen, that is, 'a-condensed' in the concentration tank 62A162B. The fluorocarbon gas gasified in the heat exchangers 62A and 62B is led to the compressor 32 via the on-off valve 36B, becomes high-temperature fluorocarbon gas, and passes through the on-off valve 38B to the first
It is guided to the heat exchangers 21A and 21B of each concentrating tank 61A and 61B of the a-part tank series 51. These heat exchangers 21A, 21
At B, the frozen water on the surface is melted and becomes liquid water 3C.
On the other hand, the fluorocarbon gas is either liquefied and returned to the fluorocarbon liquid receiving tank 31 via the on-off valve 37B, or liquefied by the water-cooled condenser 34 and returned to the fluorocarbon liquid receiving tank 31.

このように第4図の状態では第1の濃縮槽系列51にお
いて熱交換器21A、21B表面の凍結水分の除去がな
される一方、第2の濃縮槽系列52において濃縮がなさ
れ、その熱交換器22A122Bに水分の付着凍結がな
される。したがってこの後には、再び第3図の状態で動
作させれば良く、このように第1、第2の濃縮槽系列5
1.52において交互に動作させることによって、大量
の原液を能率的に処理することができる。
In this manner, in the state shown in FIG. 4, the frozen moisture on the surfaces of the heat exchangers 21A and 21B is removed in the first concentration tank series 51, while concentration is carried out in the second concentration tank series 52, and the heat exchanger Moisture adheres to and freezes on 22A122B. Therefore, after this, it is only necessary to operate again in the state shown in FIG. 3, and in this way, the first and second concentration tank series 5
By operating alternately at 1.52, a large amount of stock solution can be efficiently processed.

なお第1図の例では、原液槽1における原液3の予備冷
却もフロンによってなされる。すなわらフロン受液槽3
1からの低温の液体フロンが原液)曹1のクーリングパ
イプ2に導かれて原液3を予備的に冷却し、液体フロン
は熱交換されてガス化し、そのフロンガスは圧縮機32
へ導かれる。
In the example shown in FIG. 1, preliminary cooling of the stock solution 3 in the stock solution tank 1 is also performed using freon. In other words, Freon receiving tank 3
The low-temperature liquid fluorocarbon from 1 is led to the cooling pipe 2 of undiluted solution 1 to preliminarily cool the undiluted solution 3, and the liquid fluorocarbon is gasified through heat exchange, and the fluorocarbon gas is passed through the compressor 32.
be led to.

以上の実施例においては、熱交換器21A〜22Bによ
る加熱(凍結水分の融解)と冷却(濃縮)とを同じフロ
ンで行なっているため、配管系統が他の媒体によって汚
染されることがない利点があり、また同じフロンを加熱
と冷却に循環利用しているため、排熱の利用となって他
の加熱手段を設ける必要がなく、かつ省エネルギとなる
利点もあり、ざらに装置構成が単純化されるため保守点
検が容易であるとともに故障も少なくなる等の利点もあ
る。
In the above embodiment, since the heating (melting of frozen water) and cooling (concentration) by the heat exchangers 21A to 22B are performed using the same CFC, there is an advantage that the piping system is not contaminated by other media. In addition, since the same freon is recycled for heating and cooling, there is no need to install other heating means because waste heat is used, and there is also the advantage of saving energy, and the equipment configuration is generally simple. It has the advantage of easy maintenance and inspection, as well as fewer breakdowns.

なお第1図の例では、各濃縮槽系列51.52をそれぞ
れ2槽の′aN槽で構成したが、場合によっては1槽の
みでも良く、また3槽以上を直列に設けた構成としても
良い。ざらに第1図の例では1槽の濃縮槽についてそれ
ぞれ1基の熱交換器を設けているが、場合によっては上
下に多段に熱交換器を配置しても良い。ざらには第1図
の例では熱交換器21A〜22Bをそれぞれ濃縮槽61
A〜62Bの内側に独立して配設しているが、場合によ
ってはm部槽61A〜62Bの槽壁に熱交換器を設けた
り、濃縮槽の槽壁自体を熱交換器で構成しても良い。
In the example shown in Fig. 1, each thickening tank series 51, 52 is composed of two 'aN tanks, but depending on the case, only one tank may be used, or three or more tanks may be arranged in series. . Roughly speaking, in the example shown in FIG. 1, one heat exchanger is provided for each concentration tank, but depending on the case, heat exchangers may be arranged in multiple stages above and below. Roughly speaking, in the example shown in FIG. 1, the heat exchangers 21A to 22B are each connected to the concentration tank
Although they are installed independently inside the tanks A to 62B, in some cases a heat exchanger may be provided on the tank wall of the m section tanks 61A to 62B, or the tank wall of the concentration tank itself may be configured with a heat exchanger. Also good.

発明の効果 この発明の凍結濃縮方法によれば、従来方式のように冷
却部材を移動させて濃縮を行なうのではなく、濃縮対象
となる液体を供給、排出して濃縮するため、冷却部材を
移動させるための駆動装置やチェーン、コンベヤ等の移
動機構が不要となり、そのため設備コストが低順になる
とともに故障も少なくなる効果が得られ、また温度媒体
により直接的に冷却して濃縮するため、従来の間接冷却
方式と比較して熱効率が高くなってランニングコストも
低くなる効果が得られ、さらに従来方式のように予め冷
却部材を冷却しておくことがないため冷却媒体を濃縮液
中に持ち込むおそれもなく、高品質の製品液体を得るこ
とができる効果も得られる。
Effects of the Invention According to the freeze concentration method of the present invention, instead of concentrating by moving the cooling member as in the conventional method, the liquid to be concentrated is supplied and discharged to be concentrated, so the cooling member is moved. This eliminates the need for moving mechanisms such as drive devices, chains, and conveyors, which reduces equipment costs and reduces malfunctions.Also, because it is directly cooled and concentrated using a temperature medium, Compared to indirect cooling methods, thermal efficiency is higher and running costs are lower.Furthermore, unlike conventional methods, the cooling member is not cooled in advance, so there is no risk of the cooling medium being introduced into the concentrated liquid. However, it is also possible to obtain a high-quality liquid product.

そしてまたこの発明の凍結濃Wi装置によれば、第1の
濃縮槽系列と第2のS部槽系列とで交互に濃縮と凍結水
分の融解とを行なうため、大量の原液を処理する場合に
も時間のロスがなく能率的に処理することができるとと
もに、同じ温度媒体を濃縮のための冷却と凍結水分の融
解との両者に循環利用してエネルギの利用効率高めるこ
とができる等の効果が得られる。
Furthermore, according to the freezing concentration Wi apparatus of the present invention, concentration and thawing of frozen water are performed alternately in the first concentration tank series and the second S tank series, so that when processing a large amount of raw solution, In addition to being able to process efficiently with no time loss, the same temperature medium can be recycled for both cooling for concentration and thawing of frozen water, increasing energy usage efficiency. can get.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の凍結濃縮方法に使用される装置の一
例を示す略解図、第2図は第1図の装置に使用される熱
交換器の一例を示す平面図、第3図および第4図はそれ
ぞれ第1図の装置の使用状態を示すための略解図である
。 3・・・原液、 3A・・・1次濃縮液、 3B・・・
2次濃縮液、 3C・・・水、 21A、21B、22
A。 22B・・・熱交換器、 30・・・温度媒体供給手段
、51・・・第1のS部槽系列、 52・・・第2の濃
縮槽系列、 61A、61B、62A、62B・・・濃
縮槽。 出願人  星  野     弘 篠   原   巧   児
FIG. 1 is a schematic diagram showing an example of an apparatus used in the freeze concentration method of the present invention, FIG. 2 is a plan view showing an example of a heat exchanger used in the apparatus of FIG. 1, and FIGS. FIG. 4 is a schematic diagram showing the usage state of the apparatus shown in FIG. 1, respectively. 3...Standard solution, 3A...Primary concentrated solution, 3B...
Secondary concentrated liquid, 3C...water, 21A, 21B, 22
A. 22B... Heat exchanger, 30... Temperature medium supply means, 51... First S section tank series, 52... Second concentration tank series, 61A, 61B, 62A, 62B... Concentrator tank. Applicant Hiroshino Hoshino Takumi Hara

Claims (3)

【特許請求の範囲】[Claims] (1)内部を温度媒体が流通する熱交換器を濃縮槽に設
置しておき、熱交換器内に低温の温度媒体を流通させて
いる状態で濃縮対象となる原液をその熱交換器に接する
ように濃縮槽内に供給して、原液中の水分を熱交換器表
面にて凍結させることにより原液よりも水分含有量が低
下した濃縮液を濃縮槽内で得、その濃縮液を濃縮槽内か
ら外部へ排出させた後、前記熱交換器内に高温の温度媒
体を流通させて、熱交換器表面の凍結水分を融解させ、
濃縮槽内から排出させることを特徴とする凍結濃縮方法
(1) A heat exchanger through which a thermal medium flows is installed in the concentration tank, and the stock solution to be concentrated is brought into contact with the heat exchanger while a low-temperature thermal medium is flowing inside the heat exchanger. The moisture in the stock solution is then frozen on the surface of the heat exchanger to obtain a concentrate with a lower water content than the stock solution. After discharging it to the outside, a high temperature medium is passed through the heat exchanger to melt frozen moisture on the surface of the heat exchanger,
A freezing concentration method characterized by discharging water from the concentration tank.
(2)前記原液を濃縮槽内に供給するにあたり、原液を
熱交換器表面に向けてスプレーすることを特徴とする特
許請求の範囲第1項記載の凍結濃縮方法。
(2) The freeze concentration method according to claim 1, characterized in that when supplying the stock solution into the concentration tank, the stock solution is sprayed toward the surface of a heat exchanger.
(3)1槽もしくは直列に接続された2槽以上の濃縮槽
からなる第1の濃縮槽系列と、同じく1槽もしくは直列
に接続された2槽以上の濃縮槽からなる第2の濃縮槽系
列とを備え、前記各濃縮槽にはそれぞれ内部を温度媒体
が流通する熱交換器を設け、かつ前記各熱交換器に対し
、高温の温度媒体と低温の温度媒体を切換えて供給する
温度媒体供給手段を接続したことを特徴とする凍結濃縮
装置。
(3) A first thickening tank series consisting of one thickening tank or two or more thickening tanks connected in series, and a second thickening tank series consisting of one thickening tank or two or more thickening tanks connected in series. each of the concentration tanks is provided with a heat exchanger through which a temperature medium flows, and a temperature medium is supplied to each of the heat exchangers by switching between a high temperature medium and a low temperature temperature medium. A freeze concentration device characterized in that a means is connected thereto.
JP62263335A 1987-10-19 1987-10-19 Method and device for freeze concentration Pending JPH01107802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263335A JPH01107802A (en) 1987-10-19 1987-10-19 Method and device for freeze concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263335A JPH01107802A (en) 1987-10-19 1987-10-19 Method and device for freeze concentration

Publications (1)

Publication Number Publication Date
JPH01107802A true JPH01107802A (en) 1989-04-25

Family

ID=17388045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263335A Pending JPH01107802A (en) 1987-10-19 1987-10-19 Method and device for freeze concentration

Country Status (1)

Country Link
JP (1) JPH01107802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003968A1 (en) * 2004-07-02 2006-01-12 Ijimadensetsu Co., Ltd. Apparatus for separating concentrate and suspended solid matter by freezing/thawing
WO2015111405A1 (en) * 2014-01-24 2015-07-30 Sharp Kabushiki Kaisha Water purifier, method of purifying water, fluid purifier and method of purifying a fluid
CN109276906A (en) * 2018-11-30 2019-01-29 长治市霍家工业有限公司 A kind of technique disappears ice method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006003968A1 (en) * 2004-07-02 2006-01-12 Ijimadensetsu Co., Ltd. Apparatus for separating concentrate and suspended solid matter by freezing/thawing
WO2015111405A1 (en) * 2014-01-24 2015-07-30 Sharp Kabushiki Kaisha Water purifier, method of purifying water, fluid purifier and method of purifying a fluid
CN109276906A (en) * 2018-11-30 2019-01-29 长治市霍家工业有限公司 A kind of technique disappears ice method

Similar Documents

Publication Publication Date Title
WO2012104787A1 (en) Apparatus and method for freeze desalination
JP2004136273A (en) Method for solution separation by multiple heat exchange vacuum distillation, cooling and freezing, and method of desalting seawater
JPH01107802A (en) Method and device for freeze concentration
US20030041619A1 (en) Integrated gas dehydrator
CN210613279U (en) Rotary wheel type self-defrosting condensing device
JP7140552B2 (en) Air cooler, refrigeration system and air cooler defrosting method
JP3225187B2 (en) Solvent recovery device
JP2812131B2 (en) Vacuum ice maker
CN220385835U (en) Ultralow temperature crystallization device
JP2001133060A (en) Heat recovery system for batch plant
JP2008036595A (en) Solvent washing apparatus provided with solvent recovery apparatus
CN219474058U (en) Evaporator group circulation deicing system
JPS59132903A (en) Concentrating crystallization method
JP2006110416A (en) Multi-step freeze concentration system
CA2387219A1 (en) Drive system for a frozen food product dispenser
JP3350650B2 (en) Liquid concentration device and liquid concentration method
CN108069852B (en) Acetic acid continuous recovery system and working method thereof
JP3062756B1 (en) Liquefied natural gas exhaust cooling heat transfer device
RU2218527C1 (en) Device used in farms for packaged product cooling by natural cold
JP2008279380A (en) Voc cooling/recovery device
SU1721431A1 (en) Method of descaling heating surface of heat exchange apparatus
KR100189625B1 (en) Defroster and its method of a refrigerator
JPH06241628A (en) Vacuum ice making device
JP3266334B2 (en) Heat storage tank for air conditioning
SU1495602A1 (en) Combined heat pump