JPH06254422A - Highly orientated graphite powder and manufacture thereof - Google Patents

Highly orientated graphite powder and manufacture thereof

Info

Publication number
JPH06254422A
JPH06254422A JP5043912A JP4391293A JPH06254422A JP H06254422 A JPH06254422 A JP H06254422A JP 5043912 A JP5043912 A JP 5043912A JP 4391293 A JP4391293 A JP 4391293A JP H06254422 A JPH06254422 A JP H06254422A
Authority
JP
Japan
Prior art keywords
graphite
graphite powder
particle size
diameter
same manner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5043912A
Other languages
Japanese (ja)
Other versions
JP3300454B2 (en
Inventor
Kojiro Ishikawa
幸治郎 石川
Hisanori Sugimoto
久典 杉本
Kaoru Tsukamoto
薫 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Graphite Industries Ltd
Original Assignee
Nippon Graphite Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Graphite Industries Ltd filed Critical Nippon Graphite Industries Ltd
Priority to JP04391293A priority Critical patent/JP3300454B2/en
Publication of JPH06254422A publication Critical patent/JPH06254422A/en
Application granted granted Critical
Publication of JP3300454B2 publication Critical patent/JP3300454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To provide a simple method of preparing a large quantity of highly orientated graphic powder, all at once, which has good electric conductivity and excellent bending strength when molded. CONSTITUTION:This method of preparing highly oriented graphite powder is to disperse graphite particles in a liquid and grind the particles in the liquid by friction using a medium. The preferable graphite is expanded graphite with bulk density of 0.15 to 0.025g/cm<3> or natural crystalline graphite, thermally decomposed graphite or kish graphite, each having a grain size of at least, 500 mesh. The graphite is ground in the liquid having viscosity of 0.3 to 200 centipoise using a ball-shaped medium having a diameter of 2mm to 50mm or a rod-shaped medium having a diameter of 3mm to 50mm and a length of at least, 6mm(length/diameter=2min).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は黒鉛材料として各種電池
用導電材料、各種摺動材用潤滑剤、各種樹脂およびゴム
の導電材料等の広範囲に利用できる高配向性を有する黒
鉛粉末を一度に多量に得る製造方法および該方法により
製造された黒鉛粉末に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a graphite material having a high orientation which can be widely used as a conductive material for various batteries, a lubricant for various sliding materials, a conductive material for various resins and rubbers, etc. at a time. The present invention relates to a production method for obtaining a large amount and a graphite powder produced by the method.

【0002】[0002]

【従来の技術】黒鉛材料は導電性、潤滑性、耐熱性、耐
薬品性等に優れた特性を有しており、広範囲な分野で使
用されている。これらの分野において使用されている黒
鉛粉末は、天然リン状黒鉛や人造黒鉛を乾式法あるいは
湿式法により機械的に衝撃粉砕して得るため配向性に劣
っている。
2. Description of the Related Art Graphite materials have excellent properties such as conductivity, lubricity, heat resistance and chemical resistance and are used in a wide range of fields. The graphite powder used in these fields is inferior in orientation because it is obtained by mechanically impact crushing natural phosphorus-like graphite or artificial graphite by a dry method or a wet method.

【0003】高配向性の黒鉛粉末を得る手段として、黒
鉛粉末を酸化性媒体中に浸漬し強力な酸化剤を添加して
酸化するかあるいは酸化性媒体中で電気化学的に酸化す
ることによって得られた酸処理黒鉛を 300〜1000℃の温
度で加熱膨張処理を行って得た膨張黒鉛を粉砕すること
が考えられているが、通常の粉砕機などの直接的な機械
的荷重衝撃を用いた粉砕方法では膨張黒鉛粒子は嵩高で
軽いため飛散しやすく粉砕されにくい。また、柔らかい
ために押しつぶされて固まってしまうという問題があ
る。
As a means for obtaining highly oriented graphite powder, it is obtained by immersing the graphite powder in an oxidizing medium and adding a strong oxidizing agent to oxidize it, or by electrochemically oxidizing it in an oxidizing medium. It is considered to crush the expanded graphite obtained by subjecting the obtained acid-treated graphite to a heat expansion treatment at a temperature of 300 to 1000 ° C, but using a direct mechanical impact such as with an ordinary crusher. In the crushing method, the expanded graphite particles are bulky and light, and thus are easily scattered and difficult to be crushed. In addition, since it is soft, it is crushed and hardened.

【0004】この問題を解決するための方法として膨張
黒鉛の空隙内に液体を充填しこの液体を凍結して粉砕す
る方法が考えられている。この方法によれば飛散の問題
は解決されるが、充填した液体を凍結させるなどの装置
が必要となり工業的に多量に製造するのに問題点が残さ
れている。
As a method for solving this problem, a method has been considered in which the voids of the expanded graphite are filled with a liquid and the liquid is frozen and crushed. According to this method, the problem of scattering is solved, but a device for freezing the filled liquid is required, and a problem remains in industrially producing a large amount.

【0005】また、膨張黒鉛を液体中に分散させ、超音
波を作用させて粉砕する方法が考えられている。この場
合も飛散の問題点は解決されるが、液体中の膨張黒鉛の
濃度が 1%以下と非常に低濃度で取り扱う必要があり、
かつ粉砕に長時間かかりコスト的に高価となり非合理的
で工業的生産に向いていない。
Further, a method has been considered in which expansive graphite is dispersed in a liquid and ultrasonic waves are applied to pulverize the expanded graphite. Even in this case, the problem of scattering is solved, but it is necessary to handle the expanded graphite in the liquid at a very low concentration of 1% or less,
In addition, crushing takes a long time and the cost is high, which is irrational and not suitable for industrial production.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は上記の
問題点を解決し、天然リン状黒鉛、熱分解黒鉛、キッシ
ュ黒鉛、膨張黒鉛から高配向性の黒鉛粉末を一度に多量
に容易に得る優れた製造方法および該製造方法により得
られた高配向性黒鉛粉末を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above problems and to easily prepare a large amount of highly oriented graphite powder from natural phosphorus-like graphite, pyrolytic graphite, quiche graphite or expanded graphite at a time. An object of the present invention is to provide an excellent production method to be obtained and a highly oriented graphite powder obtained by the production method.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記課題
を解決するために鋭意研究の結果、高配向性の黒鉛を一
度に多量に製造するには、黒鉛粒子を液体中に分散さ
せ、該液体中にてメディアを作用させて磨砕すればよい
ことを見出し、さらに液体の粘度およびメディアの形状
に依存していることを見出し本発明を達成するに至っ
た。
As a result of intensive research to solve the above problems, the present inventors have found that in order to produce a large amount of highly oriented graphite at once, the graphite particles are dispersed in a liquid. The inventors have found that it suffices to grind the liquid by causing the medium to act in the liquid, and further have found that it depends on the viscosity of the liquid and the shape of the medium, and thus accomplished the present invention.

【0008】すなわち、本発明の高配向性黒鉛粉末の製
造方法の特徴は、黒鉛粒子を液体中に分散させ、該液体
中にてメディアを作用させて磨砕することで、この際、
上記黒鉛粒子が 25 μm 以上の天然リン状黒鉛、熱分解
黒鉛、キッシュ黒鉛および嵩密度0.0025〜0.15g/cm3
膨張黒鉛であり、濃度を 5重量%〜30重量%の範囲と
し、液体の粘度を 0.3〜 200センチポイズとし、メディ
アの形状を直径 2mm〜50mmの球状あるいは直径 3mm〜50
mm長さ 6mm以上 (長さ/直径= 2以上) のロッド状とし
て磨砕することが好ましく、粒子厚さ 1μm 以下、粒子
径 0.1〜 500μmである高配向性黒鉛粉末を製造するこ
とが可能となる。本発明の高配向性黒鉛粉末の製造方法
は膨張黒鉛の空隙内に充填した液体を凍結させるための
特別な装置も必要とせず、そのまま液体中に黒鉛粒子を
分散させ簡単な装置で一度に多量に低コストで製造でき
工業的製造方法として適している。
That is, the characteristic feature of the method for producing the highly oriented graphite powder of the present invention is that the graphite particles are dispersed in a liquid, and a medium is allowed to act in the liquid to grind the particles.
The graphite particles are natural phosphorous graphite having a size of 25 μm or more, pyrolytic graphite, quiche graphite, and expanded graphite having a bulk density of 0.0025 to 0.15 g / cm 3 , the concentration of which is in the range of 5% by weight to 30% by weight. The viscosity is 0.3 to 200 centipoise, and the shape of the media is spherical with a diameter of 2 mm to 50 mm or 3 mm to 50 mm.
mm It is preferable to grind into rods with a length of 6 mm or more (length / diameter = 2 or more), and it is possible to produce highly oriented graphite powder with a particle thickness of 1 μm or less and a particle diameter of 0.1 to 500 μm. Become. The method for producing highly oriented graphite powder of the present invention does not require a special device for freezing the liquid filled in the voids of the expanded graphite, and the graphite particles can be dispersed in the liquid as it is and a large amount can be obtained at once with a simple device. It can be manufactured at low cost and is suitable as an industrial manufacturing method.

【0009】本発明において用いる黒鉛粒子のうち、天
然リン状黒鉛、熱分解黒鉛、キッシュ黒鉛は粒度につい
て限定されるものではないが、好ましくは 25 μm 以上
のものを用いるのがよい。また膨張黒鉛については、そ
の履歴については何ら特に制限されるものではない。例
えば、天然リン状黒鉛、熱分解黒鉛、キッシュ黒鉛等の
黒鉛粒子を濃硫酸と硝酸等の強力な酸化剤の混酸にて得
られた酸処理黒鉛を加熱膨張化処理して製造することが
できる。また使用する膨張黒鉛の嵩密度の限定、すなわ
ち 0.15g/cm3を超えるとその膨張性が悪く、磨砕を行っ
ても高配向性の黒鉛粉末が得られにくく不可である。ま
た下限を0.0025g/cm3 としたのは膨張黒鉛としてこれ以
下の嵩密度のものは工業的に得られにくいためである。
Among the graphite particles used in the present invention, natural phosphorus-like graphite, pyrolytic graphite and quiche graphite are not limited in particle size, but it is preferable to use particles having a particle size of 25 μm or more. The history of expanded graphite is not particularly limited. For example, graphite particles such as natural phosphorus-like graphite, pyrolytic graphite, and Kish graphite can be produced by heat-expansion treatment of acid-treated graphite obtained with a mixed acid of a strong oxidizing agent such as concentrated sulfuric acid and nitric acid. . If the bulk density of the expanded graphite used is limited, that is, if it exceeds 0.15 g / cm 3 , its expandability is poor and it is difficult to obtain highly oriented graphite powder even if it is ground. The lower limit is set to 0.0025 g / cm 3 because it is difficult to industrially obtain expanded graphite having a bulk density lower than this.

【0010】次に磨砕するときの黒鉛粒子の濃度限定、
すなわち黒鉛濃度が30重量%を超える場合、粘度が高す
ぎるため磨砕が十分できなくなり高配向性が得られにく
く不可であり、また、 5重量%未満の場合には濃度が薄
く合理的でなく不可である。
Next, the concentration of graphite particles when grinding is limited,
That is, if the graphite concentration exceeds 30% by weight, the viscosity is too high and it is impossible to grind sufficiently and it is difficult to obtain high orientation, and if it is less than 5% by weight, the concentration is too thin to be rational. It is impossible.

【0011】本発明において用いる液体の粘度限定、す
なわち 200センチポイズを超える場合、粘度が高すぎる
ため磨砕が十分できなくなり高配向性が得られにくく、
また0.3センチポイズ未満の場合粘度が低くなりすぎる
ため粉砕力が働きすぎて高配向性が得られず共に不可で
ある。
When the viscosity of the liquid used in the present invention is limited, that is, when it exceeds 200 centipoise, the viscosity is too high and grinding cannot be sufficiently performed, and it is difficult to obtain high orientation.
On the other hand, if it is less than 0.3 centipoise, the viscosity becomes too low, and the pulverizing force acts too much to obtain high orientation.

【0012】また用いる液体としては油、有機溶剤等の
親油性の高いもの、例えば水、メタノール、メチルエチ
ルケトン、ケロシンまたはスピンドルオイル等の 1種ま
たは2種以上の混合液が好ましい。さらに粘度を調整す
るために、カルボキシメチルセルロース、ポリアクリル
酸ナトリウム等の増粘剤を添加することもできる。
The liquid used is preferably a highly lipophilic one such as oil or organic solvent, for example, one or a mixture of two or more such as water, methanol, methyl ethyl ketone, kerosene or spindle oil. Further, in order to adjust the viscosity, it is possible to add a thickener such as carboxymethyl cellulose or sodium polyacrylate.

【0013】次に磨砕に用いるメディアの形状の限定、
すなわち、球状において直径50mmを超える場合、磨砕効
率が悪くなり不可である。また直径が 2mm未満の場合磨
砕力が弱くなり高配向性が得られにくくなり不可であ
る。好ましくは直径 5mm〜30mmの球状である。またロッ
ド状において長さ/直径= 2以上としたのは磨砕効率か
ら検案してであり、好ましくは 4以上である。また上記
材質については何ら制限されるものではなく、例えば、
ステンレス製、アルミナ製、鉄のゴムライニング製のメ
ディア等が使用できる。また処理を行う容器としては通
常のボールミル等を用いることができる。
Next, the shape of the media used for grinding is limited,
That is, if the diameter is more than 50 mm in a spherical shape, the grinding efficiency is deteriorated and it is impossible. If the diameter is less than 2 mm, the grinding force becomes weak and it becomes difficult to obtain high orientation, which is not possible. It is preferably spherical with a diameter of 5 mm to 30 mm. Further, the length / diameter = 2 or more in the rod-like shape is an examination based on the grinding efficiency, and is preferably 4 or more. Further, the above material is not limited at all, for example,
Media made of stainless steel, alumina, or iron rubber lining can be used. A usual ball mill or the like can be used as the container for the treatment.

【0014】前記磨砕処理により黒鉛粒子は磨砕され、
粒子厚さ 1μm 以下、粒子径 0.1〜500μm の高配向性
黒鉛粒子を得ることができる。また使用する液体の種
類、メディアの種類、および形状あるいは処理時間を適
当に選択することにより、目的とする高配向性黒鉛粉末
の粒径、形状、粒度分布を制御することができる。磨砕
処理後、メディアを除去しろ過を行って加熱乾燥するこ
とにより液体を除去すれば高配向性黒鉛粉末を得ること
ができる。本発明の方法によって得られる高配向性黒鉛
粉末は、異方性が非常に大きく、導電性、潤滑性に優れ
た黒鉛粉末である。この優れた特性から種々の用途に利
用が可能であるが、特に樹脂、ゴム、塗料に添加して使
用した場合、高強度、高導電性が得られる。また、成形
性にも優れているため導電性成形粉末として電極用のフ
ィラー、刷子用のフィラーなど多方面に利用できる。
The graphite particles are ground by the above grinding treatment,
Highly oriented graphite particles having a particle thickness of 1 μm or less and a particle diameter of 0.1 to 500 μm can be obtained. The particle size, shape and particle size distribution of the target highly oriented graphite powder can be controlled by appropriately selecting the type of liquid to be used, the type of medium, and the shape or treatment time. After the grinding treatment, the medium is removed, filtration is performed, and the liquid is removed by heating and drying, whereby highly oriented graphite powder can be obtained. The highly oriented graphite powder obtained by the method of the present invention is a graphite powder having very large anisotropy, conductivity and lubricity. Due to this excellent property, it can be used for various purposes, but when it is used by being added to a resin, rubber or paint, high strength and high conductivity can be obtained. Further, since it is also excellent in moldability, it can be used as a conductive molding powder in various fields such as a filler for electrodes and a filler for brushes.

【0015】[0015]

【実施例】以下本発明を実施例および比較例により説明
する。尚、例中の部は重量部を意味する。 実施例1 粒度分布250 〜500 μm の天然リン状黒鉛 100部を濃度
98%の硫酸 150部中に浸してかき混ぜながら濃度28%の
過酸化水素20部を添加して30分間浸漬かき混ぜた後、pH
6になるまで水洗を行い乾燥した後、温度 800℃の電気
炉で加熱膨張化処理を行い嵩密度0.0040g/cm3 の膨張黒
鉛粒子を得た。この膨張黒鉛粒子 7重量%を水 (粘度 1
センチポイズ)93 重量%中に混合浸漬し、直径20mmのス
テンレス製ボールをメディアとしてボールミル中にて20
時間磨砕を行った。得られた黒鉛粉末の分散液をボール
ミルから取り出し、ろ過した後 150℃で乾燥して厚さ 1
μm 以下、粒子径 0.1〜 500μm の高配向性黒鉛粉末を
得た。
EXAMPLES The present invention will be described below with reference to examples and comparative examples. In addition, the part in an example means a weight part. Example 1 Concentration of 100 parts of natural phosphorous graphite having a particle size distribution of 250 to 500 μm
Immerse in 150 parts of 98% sulfuric acid and stir, add 20 parts of hydrogen peroxide with a concentration of 28% and soak for 30 minutes.
It was washed with water until it became 6, dried, and then heat-expanded in an electric furnace at a temperature of 800 ° C. to obtain expanded graphite particles having a bulk density of 0.0040 g / cm 3 . 7% by weight of these expanded graphite particles were added to water (viscosity 1
(Centipoise) 93% by weight mixed and soaked in a ball mill with a 20 mm diameter stainless steel ball as media.
Milled for hours. The resulting graphite powder dispersion was removed from the ball mill, filtered, and dried at 150 ° C to a thickness of 1
Highly oriented graphite powder having a particle diameter of 0.1 to 500 μm or less was obtained.

【0016】上記のようにして得た実施例1の黒鉛粉末
を分級して平均粒径 2μm 、10μm、 100μm に分け
た。これらをそれぞれノボラックフェノール樹脂 (住友
デュレス製商品名PR-11078) に対して70重量%混合し、
圧縮成形して、比抵抗、曲げ強度を評価し、得た結果を
表1に示す。 テストピース: 3×10×55mm またEPDMに対して平均粒径10μm の黒鉛粉末50重量%混
合し、ロールにて厚さ0.5mmのシート状に成形して、比
抵抗を評価し、得た結果を表3に示す。
The graphite powder of Example 1 obtained as described above was classified and divided into average particle diameters of 2 μm, 10 μm and 100 μm. 70% by weight of each of these was mixed with novolac phenolic resin (Sumitomo Durres brand name PR-11078),
After compression molding, specific resistance and bending strength were evaluated, and the obtained results are shown in Table 1. Test piece: 3 × 10 × 55 mm Also, 50% by weight of graphite powder with an average particle size of 10 μm was mixed with EPDM and molded into a sheet with a thickness of 0.5 mm by a roll, and the specific resistance was evaluated. Is shown in Table 3.

【0017】実施例2 実施例1で用いた膨張黒鉛粒子の代わりに粒度分布50〜
300メッシュの天然リン状黒鉛を用いた以外はすべて実
施例1と同様にして高配向性黒鉛粉末を得た。この黒鉛
粉末について実施例1と同様の分級を行い、それぞれの
粒径の黒鉛粉末について実施例1と同様にその比抵抗、
曲げ強度を評価を行い、得た結果を表1、表3に示す。
Example 2 Instead of the expanded graphite particles used in Example 1, a particle size distribution of 50-
Highly oriented graphite powder was obtained in the same manner as in Example 1 except that 300-mesh natural phosphorous graphite was used. This graphite powder was classified in the same manner as in Example 1, and the graphite powder having each particle size had the same specific resistance as in Example 1.
The bending strength was evaluated, and the obtained results are shown in Tables 1 and 3.

【0018】実施例3 粒度分布150 〜375 μm の熱分解黒鉛 100部を濃度98%
の硫酸 250部中に浸しかき混ぜながら濃度28%の過酸化
水素30部を添加して30分間浸漬かき混ぜた後、pH 6にな
るまで水洗を行い乾燥した後、温度 500℃の電気炉で加
熱膨張化処理を行い、嵩密度0.035g/cm3の膨張黒鉛粒子
を得た。この膨張黒鉛粒子25重量%を水9に対してメタ
ノール 1の割合の混合液 (粘度 0.96 センチポイズ)75
重量%中に混合浸漬し、直径 7mm長さ 100mmのステンレ
ス製ロッドをメディアとしてボールミル中にて15時間磨
砕を行った。得られた黒鉛粉末の分散液をボールミルか
ら取り出し、ろ過した後、 110℃で乾燥して厚さ 1μm
以下、粒子径 0.1〜 400μm の高配向性黒鉛粉末を得
た。この黒鉛粉末について実施例1と同様の分級を行
い、それぞれの粒径の黒鉛粉末について実施例1と同様
にその比抵抗、曲げ強度の評価を行い、得た結果を表
1、表3に示す。
Example 3 100 parts of pyrolytic graphite having a particle size distribution of 150 to 375 μm was used at a concentration of 98%.
While soaking in 250 parts of sulfuric acid, add 30 parts of hydrogen peroxide of 28% concentration for 30 minutes, stir for 30 minutes, wash with water to pH 6 and dry, then heat and expand in an electric furnace at a temperature of 500 ° C. Chemical treatment was performed to obtain expanded graphite particles having a bulk density of 0.035 g / cm 3 . A mixture of 25% by weight of these expanded graphite particles in a ratio of 1 part of methanol to 9 parts of water (viscosity 0.96 centipoise) 75
The mixture was soaked in a mixture of 10% by weight and ground for 15 hours in a ball mill using a stainless steel rod having a diameter of 7 mm and a length of 100 mm as a medium. The resulting graphite powder dispersion was removed from the ball mill, filtered, and dried at 110 ° C to a thickness of 1 μm.
Then, highly oriented graphite powder having a particle diameter of 0.1 to 400 μm was obtained. This graphite powder was classified in the same manner as in Example 1, and the graphite powder having each particle size was evaluated for its specific resistance and bending strength in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 3. .

【0019】実施例4 実施例3で用いた膨張黒鉛粒子の代わりに粒度分布50〜
300μm の熱分解黒鉛を用いた以外はすべて実施例3と
同様にして高配向性黒鉛粉末を得た。この黒鉛粉末につ
いて実施例1と同様の分級を行いそれぞれの粒径の黒鉛
粉末について実施例1と同様にその比抵抗、曲げ強度の
評価を行い得た結果を表1、表3に示す。
Example 4 Instead of the expanded graphite particles used in Example 3, a particle size distribution of 50-
Highly oriented graphite powder was obtained in the same manner as in Example 3 except that 300 μm of pyrolytic graphite was used. The graphite powder was classified in the same manner as in Example 1, and the specific resistance and bending strength of the graphite powder of each particle size were evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 3.

【0020】実施例5 実施例1で得られた膨張黒鉛粒子10重量%をメチルエチ
ルケトン (粘度 0.4センチポイズ) 90重量%中に混合浸
漬し、直径 3mmのアルミナ製ボールをメディアとしてグ
レンミル中にて10時間磨砕を行った。得られた黒鉛粉末
の分散液をグレンミル中にて10時間磨砕を行った。得ら
れた黒鉛粉末の分散液をグレンミル中から取り出しろ過
した後、80℃で乾燥して厚さ 1μm 以下、粒子径 0.1〜
500μmの高配向性黒鉛粉末を得た。この黒鉛粉末につ
いて実施例1と同様の分級を行い、それぞれの粒径の黒
鉛粉末について実施例1と同様にその比抵抗、曲げ強度
の評価を行い、得た結果を表1、表3に示す。
Example 5 10% by weight of the expanded graphite particles obtained in Example 1 was mixed and dipped in 90% by weight of methyl ethyl ketone (viscosity 0.4 centipoise), and alumina balls having a diameter of 3 mm were used as media in a Glen mill for 10 hours. Grinding was performed. The obtained graphite powder dispersion was ground in a Glen mill for 10 hours. The obtained graphite powder dispersion is taken out of the Glen Mill, filtered, and dried at 80 ° C. to have a thickness of 1 μm or less and a particle diameter of 0.1 to
Highly oriented graphite powder of 500 μm was obtained. This graphite powder was classified in the same manner as in Example 1, and the graphite powder having each particle size was evaluated for its specific resistance and bending strength in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 3. .

【0021】実施例6 実施例5で用いた膨張黒鉛粒子の代わりに粒度分布50〜
300μm の天然リン状黒鉛を用いた以外はすべて実施例
5と同様にして高配向性黒鉛粉末を得た。この黒鉛粉末
について実施例1と同様の分級を行い、それぞれの粒径
の黒鉛粉末について実施例1と同様にその比抵抗、曲げ
強度の評価を行い得た結果を表1、表3に示す。
Example 6 Instead of the expanded graphite particles used in Example 5, a particle size distribution of 50-
Highly oriented graphite powder was obtained in the same manner as in Example 5 except that 300 μm of natural phosphorous graphite was used. The graphite powder was classified in the same manner as in Example 1, and the specific resistance and bending strength of the graphite powder of each particle size were evaluated in the same manner as in Example 1. The results are shown in Tables 1 and 3.

【0022】実施例7 実施例1の方法において、加熱膨張化処理を 500℃で行
い嵩密度 0.017g/cm3の膨張黒鉛粒子を得た。この膨張
黒鉛粒子15重量%をケロシン (粘度 2センチポイズ)85
重量%中に混合浸漬し、直径 3mm、長さ50mmの鉄製ロッ
ドをメディアとしてボールミル中にて15時間磨砕を行っ
た。得られた黒鉛粉末の分散液をボールミルから取り出
し、ろ過した後、燃焼によりケロシンを除去し乾燥して
厚さ 1μm 以下、粒子径 0.1〜 400μm の高配向性黒鉛
粉末を得た。この黒鉛粉末について実施例1と同様の分
級を行い、それぞれの粒径の黒鉛粉末について実施例1
と同様にその比抵抗、曲げ強度の評価を行い、得た結果
を表1、表3に示す。
Example 7 In the method of Example 1, a heat expansion treatment was performed at 500 ° C. to obtain expanded graphite particles having a bulk density of 0.017 g / cm 3 . 15% by weight of these expanded graphite particles were added to kerosene (viscosity 2 centipoise) 85
The mixture was soaked in a mixture of 10% by weight and ground for 15 hours in a ball mill using an iron rod having a diameter of 3 mm and a length of 50 mm as a medium. The obtained dispersion of graphite powder was taken out from the ball mill, filtered, and then the kerosene was removed by burning to dryness to obtain a highly oriented graphite powder having a thickness of 1 μm or less and a particle diameter of 0.1 to 400 μm. The graphite powder was classified in the same manner as in Example 1, and the graphite powder having each particle size was subjected to Example 1.
The specific resistance and bending strength were evaluated in the same manner as in, and the obtained results are shown in Tables 1 and 3.

【0023】実施例8 実施例7で用いた膨張黒鉛粒子の代わりに粒度分布50〜
300μm の天然リン状黒鉛を用いた以外はすべて実施例
7と同様にして高配向性黒鉛粉末を得た。この黒鉛粉末
について実施例1と同様の分級を行い、それぞれの粒径
の黒鉛粉末について実施例1と同様にその比抵抗、曲げ
強度の評価を行い、得た結果を表1、表3に示す。
Example 8 Instead of the expanded graphite particles used in Example 7, a particle size distribution of 50-
Highly oriented graphite powder was obtained in the same manner as in Example 7 except that 300 μm of natural phosphorous graphite was used. This graphite powder was classified in the same manner as in Example 1, and the graphite powder having each particle size was evaluated for its specific resistance and bending strength in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 3. .

【0024】実施例9 実施例7で得られた膨張黒鉛粒子10重量%をカルボキシ
メチルセルロースを溶解した水溶液 (粘度 120センチポ
イズ) 90重量%中に混合浸漬し、直径 5mmのアルミナ製
ボールをメディアとしボールミル中にて20時間磨砕を行
った。得られた黒鉛粉末の分散液をボールミル中から取
り出し、カルボキシメチルセルロースを十分洗浄して、
ろ過した後、 150℃で乾燥して厚さ 1μm 以下、粒子径
0.1〜 400μm の高配向性黒鉛粉末を得た。この黒鉛粉
末について実施例1と同様の分級を行い、それぞれの粒
径の黒鉛粉末について実施例1と同様にその比抵抗、曲
げ強度の評価を行い、得た結果を表1、表3に示す。
Example 9 10% by weight of the expanded graphite particles obtained in Example 7 were mixed and dipped in 90% by weight of an aqueous solution (viscosity 120 centipoise) in which carboxymethyl cellulose was dissolved, and a ball mill using alumina balls having a diameter of 5 mm as media. Grinding was carried out for 20 hours. The obtained graphite powder dispersion was taken out from the ball mill, and carboxymethyl cellulose was thoroughly washed,
After filtration, it is dried at 150 ° C and has a thickness of 1 μm or less.
Highly oriented graphite powder of 0.1 to 400 μm was obtained. This graphite powder was classified in the same manner as in Example 1, and the graphite powder having each particle size was evaluated for its specific resistance and bending strength in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 3. .

【0025】実施例10 実施例9で用いた膨張黒鉛粒子の代わりに粒度分布50〜
300μm の天然リン状黒鉛を用いた以外はすべて実施例
9と同様にして高配向性黒鉛粉末を得た。この黒鉛粉末
について実施例1と同様の分級を行い、それぞれの粒径
の黒鉛粉末について実施例1と同様にその比抵抗、曲げ
強度の評価を行い、得た結果を表1、表3に示す。
Example 10 Instead of the expanded graphite particles used in Example 9, a particle size distribution of 50 to 50
Highly oriented graphite powder was obtained in the same manner as in Example 9 except that 300 μm of natural phosphorous graphite was used. This graphite powder was classified in the same manner as in Example 1, and the graphite powder having each particle size was evaluated for its specific resistance and bending strength in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 3. .

【0026】実施例11 実施例2で得られた膨張黒鉛粒子20重量%をスピンドル
オイル (粘度 100センチポイズ)80 重量%中に混合浸漬
し、直径 5mmの鉄製ボールをメディアとしてグレンミル
中にて 6時間磨砕を行った。得られた黒鉛粉末の分散液
をグレンミル中から取り出し、ろ過した後、燃焼により
スピンドルオイルを除去し乾燥して厚さ1μm 以下、粒
子径 0.1〜 400μm の高配向性黒鉛粉末を得た。この黒
鉛粉末について実施例1と同様の分級を行い、それぞれ
の粒径の黒鉛粉末について実施例1と同様にその比抵
抗、曲げ強度の評価を行い、得た結果を表1、表3に示
す。
Example 11 20% by weight of the expanded graphite particles obtained in Example 2 was mixed and dipped in 80% by weight of spindle oil (viscosity 100 centipoise), and iron balls having a diameter of 5 mm were used as media in a Glen mill for 6 hours. Grinding was performed. The obtained graphite powder dispersion was taken out of the Glen mill, filtered, and then burnt to remove spindle oil and dried to obtain highly oriented graphite powder having a thickness of 1 μm or less and a particle diameter of 0.1 to 400 μm. This graphite powder was classified in the same manner as in Example 1, and the graphite powder having each particle size was evaluated for its specific resistance and bending strength in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 3. .

【0027】実施例12 実施例2の方法において、加熱膨張化処理を 800℃で行
い嵩密度 0.003g/cm3の膨張黒鉛粒子を得た。この膨張
黒鉛粒子 5重量%をメタノール (粘度0.59センチポイ
ズ)95 重量%中に混合浸漬し、直径 5mm、長さ50mmのア
ルミナ製ロッドをメディアとしてボールミル中にて15時
間磨砕を行った。得られた黒鉛粉末の分散液をボールミ
ルから取り出しろ過した後、90℃で乾燥して厚さ 1μm
以下、粒子径 0.1〜 500μm の高配向性黒鉛粉末を得
た。この黒鉛粉末について実施例1と同様の分級を行
い、それぞれの粒径の黒鉛粉末について実施例1と同様
にその比抵抗、曲げ強度の評価を行い、得た結果を表
1、表3に示す。
Example 12 Expanded graphite particles having a bulk density of 0.003 g / cm 3 were obtained by performing a heat expansion treatment at 800 ° C. in the method of Example 2. 5% by weight of the expanded graphite particles were mixed and dipped in 95% by weight of methanol (viscosity 0.59 centipoises), and ground for 15 hours in a ball mill using an alumina rod having a diameter of 5 mm and a length of 50 mm as a medium. The resulting graphite powder dispersion is removed from the ball mill, filtered, and dried at 90 ° C to a thickness of 1 μm.
Then, highly oriented graphite powder having a particle diameter of 0.1 to 500 μm was obtained. This graphite powder was classified in the same manner as in Example 1, and the graphite powder having each particle size was evaluated for its specific resistance and bending strength in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 3. .

【0028】実施例13 実施例12で得られた膨張黒鉛粒子15重量%をポリアク
リル酸ナトリウムを溶解した水溶液 (粘度 180センチポ
イズ) 85重量%中に混合浸漬し、直径 3mmのジルコニア
製ボールをメディアとしてボールミル中にて10時間磨砕
を行った。得られた黒鉛粉末の分散液をボールミル中か
ら取り出し、ポリアクリル酸ナトリウムを十分洗浄し
て、ろ過した後、 150℃で乾燥して厚さ 1μm 以下、粒
子径 0.1〜500μm の高配向性黒鉛粉末を得た。この黒
鉛粉末について実施例1と同様の分級を行い、それぞれ
の粒径の黒鉛粉末について実施例1と同様にその比抵
抗、曲げ強度の評価を行い、得た結果を表1、表3に示
す。
Example 13 15% by weight of the expanded graphite particles obtained in Example 12 was mixed and immersed in 85% by weight of an aqueous solution (viscosity 180 centipoise) in which sodium polyacrylate was dissolved, and a zirconia ball having a diameter of 3 mm was used as a medium. Was ground in a ball mill for 10 hours. The dispersion of the obtained graphite powder is taken out of the ball mill, washed thoroughly with sodium polyacrylate, filtered and dried at 150 ° C to obtain a highly oriented graphite powder with a thickness of 1 μm or less and a particle size of 0.1 to 500 μm. Got This graphite powder was classified in the same manner as in Example 1, and the graphite powder having each particle size was evaluated for its specific resistance and bending strength in the same manner as in Example 1, and the obtained results are shown in Tables 1 and 3. .

【0029】[0029]

【表1】 [Table 1]

【0030】比較例1 粒度分布50〜 300μm の天然リン状黒鉛をハンマーミル
にて衝撃粉砕して粒子径 0.1〜 400μm の黒鉛粉末を得
た。この黒鉛粉末について実施例1と同様の分級を行
い、それぞれの粒径の黒鉛粉末について実施例1と同様
にその比抵抗、曲げ強度の評価を行い、得た結果を表
2、表3に示す。
Comparative Example 1 Natural phosphorous graphite having a particle size distribution of 50 to 300 μm was impact crushed with a hammer mill to obtain graphite powder having a particle size of 0.1 to 400 μm. This graphite powder was classified in the same manner as in Example 1, and the specific resistance and bending strength of the graphite powder of each particle size were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 2 and 3. .

【0031】比較例2 粒度分布50〜 300μm の熱分解黒鉛をハンマーミルにて
衝撃粉砕して粒子径 0.1〜 400μm の黒鉛粉末を得た。
この黒鉛粉末について実施例1と同様の分級を行い、そ
れぞれの粒径の黒鉛粉末について実施例1と同様にその
比抵抗、曲げ強度の評価を行い、得た結果を表2、表3
に示す。
Comparative Example 2 Pyrolytic graphite having a particle size distribution of 50 to 300 μm was impact crushed with a hammer mill to obtain graphite powder having a particle size of 0.1 to 400 μm.
This graphite powder was classified in the same manner as in Example 1, and the specific resistance and bending strength of the graphite powder of each particle size were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 2 and 3.
Shown in.

【0032】比較例3 実施例1で得られた膨張黒鉛粒子をハンマーミルにて衝
撃粉砕して粒子径80〜2,000 μm の黒鉛粉末を得た。こ
の黒鉛粉末を分級して平均粒径 100μm の黒鉛粉末を得
た (この粉砕では80μm 以下の黒鉛粉末はほとんど得ら
れなかった) 。この粒径の黒鉛粉末について実施例1と
同様にその比抵抗、曲げ強度の評価を行い、得た結果を
表2、表3に示す。
Comparative Example 3 The expanded graphite particles obtained in Example 1 were impact crushed with a hammer mill to obtain graphite powder having a particle size of 80 to 2,000 μm. This graphite powder was classified to obtain graphite powder having an average particle diameter of 100 μm (graphite powder of 80 μm or less was hardly obtained by this pulverization). The specific resistance and bending strength of the graphite powder having this particle size were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 2 and 3.

【0033】比較例4 実施例1で用いた嵩密度 0.0040g/cm3の膨張黒鉛粒子の
代わりに嵩密度 0.18g/cm3の膨張黒鉛粒子を用いた以外
はすべて実施例1と同様に粉砕して粒子径 0.1〜 500μ
m の黒鉛粉末を得た。この黒鉛粉末について実施例1と
同様の分級を行い、それぞれの粒径の黒鉛粉末について
実施例1と同様にその比抵抗、曲げ強度の評価を行い、
得た結果を表2、表3に示す。
[0033] Similar to all except for using the expanded graphite particles having a bulk density of 0.18 g / cm 3 instead of expanded graphite particles having a bulk density of 0.0040 g / cm 3 used in Comparative Example 4 Example 1 Example 1 Milling Particle size 0.1-500μ
m 2 of graphite powder was obtained. This graphite powder was classified as in Example 1, and the graphite powder having each particle size was evaluated for its specific resistance and bending strength as in Example 1.
The obtained results are shown in Tables 2 and 3.

【0034】比較例5 実施例3で用いた水とメタノールの代わりに鉱物油 (粘
度 500センチポイズ)を用いた以外はすべて実施例3と
同様に粉砕して粒子径 0.1〜 400μm の黒鉛粉末を得
た。この黒鉛粉末について実施例1と同様の分級を行
い、それぞれの粒径の黒鉛粉末について実施例1と同様
にその比抵抗、曲げ強度の評価を行い、得た結果を表
2、表3に示す。
Comparative Example 5 Graphite powder having a particle size of 0.1 to 400 μm was obtained by crushing in the same manner as in Example 3 except that mineral oil (viscosity 500 centipoise) was used instead of water and methanol used in Example 3. It was This graphite powder was classified in the same manner as in Example 1, and the specific resistance and bending strength of the graphite powder of each particle size were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 2 and 3. .

【0035】比較例6 実施例2で用いた水の代わりに鉱物油 (粘度 300センチ
ポイズ) を用いた以外はすべて実施例2と同様に粉砕し
て粒子径 0.1〜 500μm の黒鉛粉末を得た。この黒鉛粉
末について実施例1と同様の分級を行い、それぞれの粒
径の黒鉛粉末について実施例1と同様にその比抵抗、曲
げ強度の評価を行い、得た結果を表2、表3に示す。
Comparative Example 6 Graphite powder having a particle size of 0.1 to 500 μm was obtained by crushing in the same manner as in Example 2 except that mineral oil (viscosity 300 centipoise) was used in place of the water used in Example 2. This graphite powder was classified in the same manner as in Example 1, and the specific resistance and bending strength of the graphite powder of each particle size were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 2 and 3. .

【0036】比較例7 実施例1で得られた膨張黒鉛粒子35重量%をケロシン
(粒度2センチポイズ)65重量%中に混合浸漬した以外
はすべて実施例1と同様に粉砕して粒子径0.1 〜400 μ
m の黒鉛粉末を得た。この黒鉛粉末について実施例1と
同様の分級を行い、それぞれの粒径の黒鉛粉末について
実施例1と同様にその比抵抗、曲げ強度の評価を行い得
た結果を表2,表3に示す。
Comparative Example 7 The same procedure as in Example 1 was carried out except that 35% by weight of the expanded graphite particles obtained in Example 1 were mixed and dipped in 65% by weight of kerosene (particle size: 2 centipoise) to obtain a particle size of 0.1-0.1. 400 μ
m 2 of graphite powder was obtained. The graphite powder was classified in the same manner as in Example 1, and the graphite powder having each particle size was evaluated for its specific resistance and bending strength in the same manner as in Example 1. Tables 2 and 3 show the results.

【0037】比較例8 実施例2で用いた粒度分布50〜300 μm の天然リン状黒
鉛の代わりに粒度分布25μm 以下の天然リン状黒鉛を用
いた以外はすべて実施例1と同様に粉砕して粒子径0.1
〜20μm の黒鉛粉末を得た。この黒鉛粉末を分級して平
均粒径10μm の黒鉛粉末を得た。この粒径の黒鉛粉末に
ついて実施例1と同様にその比抵抗、曲げ強度の評価を
行い、得た結果を表2、表3に示す。
Comparative Example 8 The same procedure as in Example 1 was carried out except that natural phosphorous graphite having a particle size distribution of 25 μm or less was used in place of the natural phosphorous graphite having a particle size distribution of 50 to 300 μm used in Example 2. Particle size 0.1
A graphite powder of ~ 20 μm was obtained. The graphite powder was classified to obtain a graphite powder having an average particle size of 10 μm. The specific resistance and bending strength of the graphite powder having this particle size were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 2 and 3.

【0038】比較例9 実施例7で用いた直径3mm、長さ50mmの鉄製ロッドの代
わりに直径5mm、長さ7mmの鉄製ロッドを用いた以外は
すべて実施例7と同様に粉砕して粒子径0.1 〜400 μm
の黒鉛粉末を得た。この黒鉛粉末について実施例1と同
様の分級を行い、それぞれの粒径の黒鉛粉末について実
施例1と同様にその比抵抗、曲げ強度の評価を行い、得
た結果を表2、表3に示す。
Comparative Example 9 The same procedure as in Example 7 was repeated except that an iron rod having a diameter of 5 mm and a length of 7 mm was used in place of the iron rod having a diameter of 3 mm and a length of 50 mm used in Example 7, and the particle diameter was adjusted. 0.1 to 400 μm
Of graphite powder was obtained. This graphite powder was classified in the same manner as in Example 1, and the specific resistance and bending strength of the graphite powder of each particle size were evaluated in the same manner as in Example 1, and the obtained results are shown in Tables 2 and 3. .

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】表1、2、3に示すとおり実施例の製造方
法で得られた高配向性黒鉛粉末は異方性が非常に大き
く、高導電性、高強度の成形体あるいは高導電性のゴム
シートが得られ、その導電性、強度は従来製造である乾
式衝撃粉砕による黒鉛粉末に比べてはるかに優れてい
る。
As shown in Tables 1, 2, and 3, the highly oriented graphite powders obtained by the production method of the examples have very large anisotropy, and have high conductivity, high strength moldings or highly conductive rubbers. A sheet is obtained, and its electrical conductivity and strength are far superior to those of the graphite powder produced by dry impact crushing which is conventionally manufactured.

【0042】[0042]

【発明の効果】以上説明したように膨張黒鉛、天然リン
状黒鉛、熱分解黒鉛、キッシュ黒鉛の黒鉛粒子を液体中
に分散させ、該液体中にてメディアを作用させて磨砕す
る本発明の黒鉛粉末の製造方法は、従来の乾式衝撃粉砕
に比べ得られた黒鉛粉末の配向性が大きく、また樹脂、
ゴム等に添加して成形体とした時の導電性、強度が優れ
ている。これにより本発明の方法により得られた高配向
性黒鉛粉末は耐熱、気密性、導電性、強度に優れた産業
用の成形体用フィラーとして信頼性が上がり、利用でき
る分野も広がっていくことが期待できる。また簡単な装
置にて一度に多量に製造できるためコスト面で大きなメ
リットがある。
As described above, the graphite particles of expanded graphite, natural phosphorus-like graphite, pyrolytic graphite and quiche graphite are dispersed in a liquid, and a medium is allowed to act in the liquid to grind. The method for producing graphite powder is that the orientation of the obtained graphite powder is large as compared with conventional dry impact crushing, and resin,
It has excellent conductivity and strength when formed into a molded product by adding it to rubber or the like. As a result, the highly-oriented graphite powder obtained by the method of the present invention has higher heat resistance, airtightness, conductivity, and reliability as a molded article filler for industrial use, which is excellent in strength, and can be used in a wider range of fields. Can be expected. In addition, since a large amount can be manufactured at once with a simple device, there is a great merit in terms of cost.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛粒子 5重量%〜30重量%を液体中に
分散させ、該液体中にてメディアを作用させて磨砕する
ことを特徴とする高配向性黒鉛粉末の製造方法。
1. A method for producing a highly oriented graphite powder, which comprises dispersing 5% by weight to 30% by weight of graphite particles in a liquid and crushing the mixture by acting a medium in the liquid.
【請求項2】 黒鉛粒子が嵩密度0.0025〜0.15g/cm3
膨張黒鉛であることを特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein the graphite particles are expanded graphite having a bulk density of 0.0025 to 0.15 g / cm 3 .
【請求項3】 黒鉛粒子が 25 μm 以上の天然リン状黒
鉛、熱分解黒鉛、キッシュ黒鉛であることを特徴とする
請求項1記載の方法。
3. The method according to claim 1, wherein the graphite particles are natural phosphorous graphite having a size of 25 μm or more, pyrolytic graphite, or quiche graphite.
【請求項4】 液体の粘度が 0.3〜 200センチポイズで
あることを特徴とする請求項1記載の方法。
4. The method according to claim 1, wherein the viscosity of the liquid is 0.3 to 200 centipoise.
【請求項5】 メディアの形状が直径 2mm〜50mmの球
状、または直径 3mm〜50mm長さ 6mm以上 (長さ/直径=
2以上) のロッド状であることを特徴とする請求項1記
載の方法。
5. The shape of the medium is spherical with a diameter of 2 mm to 50 mm, or has a diameter of 3 mm to 50 mm and a length of 6 mm or more (length / diameter =
The method according to claim 1, wherein the method is in the form of a rod (2 or more).
【請求項6】 請求項1記載の製造方法により得られた
粒子厚さ 1μm 以下、粒子径 0.1〜 500μm である高配
向性黒鉛粉末。
6. A highly oriented graphite powder having a particle thickness of 1 μm or less and a particle size of 0.1 to 500 μm, which is obtained by the production method according to claim 1.
JP04391293A 1993-03-04 1993-03-04 Method for producing highly oriented graphite powder and highly oriented graphite powder produced by the method Expired - Fee Related JP3300454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04391293A JP3300454B2 (en) 1993-03-04 1993-03-04 Method for producing highly oriented graphite powder and highly oriented graphite powder produced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04391293A JP3300454B2 (en) 1993-03-04 1993-03-04 Method for producing highly oriented graphite powder and highly oriented graphite powder produced by the method

Publications (2)

Publication Number Publication Date
JPH06254422A true JPH06254422A (en) 1994-09-13
JP3300454B2 JP3300454B2 (en) 2002-07-08

Family

ID=12676933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04391293A Expired - Fee Related JP3300454B2 (en) 1993-03-04 1993-03-04 Method for producing highly oriented graphite powder and highly oriented graphite powder produced by the method

Country Status (1)

Country Link
JP (1) JP3300454B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002280A1 (en) * 1998-07-06 2000-01-13 Tdk Corporation Electrode for nonaqueous electrolyte battery
JP2005313102A (en) * 2004-04-30 2005-11-10 M Technique Co Ltd Fine particle and method for manufacturing the same
JP2016026137A (en) * 2009-02-03 2016-02-12 イメリス グラファイト アンド カーボン スイッツァランド リミティド Novel graphite material
CN110845874A (en) * 2019-11-11 2020-02-28 西南科技大学 Preparation method of aqueous micro-nano flaky graphite material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000002280A1 (en) * 1998-07-06 2000-01-13 Tdk Corporation Electrode for nonaqueous electrolyte battery
US6824924B1 (en) 1998-07-06 2004-11-30 Tdk Corporation Electrode for nonaqueous electrolyte battery
JP2005313102A (en) * 2004-04-30 2005-11-10 M Technique Co Ltd Fine particle and method for manufacturing the same
JP2016026137A (en) * 2009-02-03 2016-02-12 イメリス グラファイト アンド カーボン スイッツァランド リミティド Novel graphite material
US9666854B2 (en) 2009-02-03 2017-05-30 Imerys Graphite & Carbon Switzerland Sa Graphite material
US9997764B2 (en) 2009-02-03 2018-06-12 Imerys Graphite & Carbon Switzerland Sa Processes for treating graphite and graphite materials
CN110845874A (en) * 2019-11-11 2020-02-28 西南科技大学 Preparation method of aqueous micro-nano flaky graphite material

Also Published As

Publication number Publication date
JP3300454B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
EP0381761B1 (en) Fine flaky graphite particles and process for their production
Inam et al. Dimethylformamide: an effective dispersant for making ceramic–carbon nanotube composites
CN105576210B (en) A kind of Si-C composite material and preparation method thereof for negative electrode of lithium ion battery
KR20180114093A (en) Non-pollution production of graphene-reinforced inorganic matrix composites
Even et al. Emulsion-derived foams preparation, properties, and application
CN110628264B (en) Preparation method of graphene far-infrared additive and far-infrared slurry
KR20140089512A (en) Spherical carbon material and processes for manufacturing spherical carbon material
CN101687645B (en) Process for producing carbon nanosheet
CA2427944A1 (en) Electrochemical cell
CN109592663B (en) Microsphere assembled porous carbon material and preparation method and application thereof
CN103058175A (en) Process for formation of foliated fine graphite particles
JPH06254422A (en) Highly orientated graphite powder and manufacture thereof
CN101269980B (en) Generating method for crassitude carbon nano-tube and carbon nano-fibre in carbon composite refractory material
JP3519243B2 (en) Spherical carbon material
US5603867A (en) Method of production for active carbon electrode for use as electrical double layer condenser and active carbon electrode obtained thereby
Oppelt et al. Analysis and evaluation of different influencing factors in processing of hollow and full beads based on TRIP steel
JP2000247621A (en) Active carbon and its production
CN110536863A (en) Carbon dust and preparation method thereof
JPH08217434A (en) Production of flaky graphite fine powder
Pichór et al. Thermoelectric properties of expanded graphite as filler of multifunctional cement composites
JP4300045B2 (en) Method for producing metal oxide microspheres
JP7464879B2 (en) Method for producing carbon-coated lithium oxide for batteries, and carbon-coated lithium oxide for batteries
JP2746441B2 (en) A1 Lower 2 O Lower 3 Manufacturing method of base ceramics
JPH02172809A (en) Production of elastic graphite molded body
Zygoń et al. Copper-based composites strengthened with carbon nanotubes

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees