JP3519243B2 - Spherical carbon material - Google Patents

Spherical carbon material

Info

Publication number
JP3519243B2
JP3519243B2 JP16056797A JP16056797A JP3519243B2 JP 3519243 B2 JP3519243 B2 JP 3519243B2 JP 16056797 A JP16056797 A JP 16056797A JP 16056797 A JP16056797 A JP 16056797A JP 3519243 B2 JP3519243 B2 JP 3519243B2
Authority
JP
Japan
Prior art keywords
spherical
resin
carbon material
sample
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16056797A
Other languages
Japanese (ja)
Other versions
JPH10338511A (en
Inventor
章 高内
敏 茨木
千郷 丸茂
万里 近藤
Original Assignee
カネボウ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カネボウ株式会社 filed Critical カネボウ株式会社
Priority to JP16056797A priority Critical patent/JP3519243B2/en
Publication of JPH10338511A publication Critical patent/JPH10338511A/en
Application granted granted Critical
Publication of JP3519243B2 publication Critical patent/JP3519243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は球状炭素材及びその
製造方法に係わり、更に詳細には粒子直径150〜25
00μmの球状フェノール樹脂を炭化焼成することによ
って得られる、高純度で強度と耐摩耗性に優れた球状炭
素材及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spherical carbon material and a method for producing the same, more specifically, a particle diameter of 150 to 25.
Spherical charcoal of high purity and strength and abrasion resistance obtained by carbonizing and firing 00 μm spherical phenol resin
Material and manufacturing method thereof.

【0002】[0002]

【従来の技術】天然黒鉛、石英、コークス、各種ピッチ
あるいはヤシ殻等の天然物を炭化して得た炭素粉末は、
導電性を有し、耐熱性、耐化学薬品性あるいは耐摩耗性
に優れているので、耐熱フィラー、複合材料の強化材、
摺動性改良材あるいは導電性付与材として自動車部品、
電子部品、産業機械、事務機器等の分野に於いて幅広く
用いられている。
Carbon powders obtained by carbonizing natural products such as natural graphite, quartz, coke, various pitches or coconut shells are
It has conductivity, and has excellent heat resistance, chemical resistance, or abrasion resistance, so it is a heat-resistant filler, composite material reinforcement,
Automotive parts as slidability improving materials or conductivity imparting materials,
Widely used in the fields of electronic parts, industrial machinery, office equipment, etc.

【0003】更に、レゾール樹脂やノボラック樹脂等の
フェノール樹脂を必要に応じてヘキサメチレンテトラミ
ン等の硬化剤を用いて加熱硬化したものが挙げられる
が、この場合には合成樹脂原料であり炭化によって高純
度の炭素が得られるため、電子部品等の分野に於いては
好んで用いられている。また、合成樹脂原料を用いた炭
素材には、樹脂やゴムへの分散性、流動性を改善したも
のとして、粒子直径150μm程度以下の球状のもの用
いられている。
Further, a phenol resin such as a resole resin or a novolac resin may be heat-cured by using a curing agent such as hexamethylenetetramine as required. In this case, it is a synthetic resin raw material and is highly carbonized. Since it is possible to obtain pure carbon, it is preferably used in the field of electronic parts and the like. In addition, as the carbon material using the synthetic resin raw material, a spherical carbon material having a particle diameter of about 150 μm or less is used because it has improved dispersibility in resin or rubber and fluidity.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、天然黒
鉛、石英、コークス、各種ピッチあるいはヤシ殻等の天
然物を炭化して得た従来の炭素粉末は、成分として硫黄
やハロゲン化合物あるいは金属酸化物を多量に含むの
で、電子部品や機械部品等の用途に於いては金属腐食等
の問題がある。またこれら天然原料を用いたものは、そ
の形状が不定形の塊状物なので、炭化焼成前あるいは炭
化焼成後に粉砕加工の必要があり、得られた炭素粉末の
破断面は尖っているので、樹脂やゴムへの分散性、流動
性が良くないばかりか摺動材やシール材の用途に於いて
は耐摩耗性の損なわれることがある。更に従来の炭素粉
末は樹脂やゴムへの混連において炭素粉末がお互いに凝
集し易く、製品バラツキの原因ともなっている。
However, conventional carbon powders obtained by carbonizing natural products such as natural graphite, quartz, coke, various pitches or coconut shells contain sulfur, halogen compounds or metal oxides as components. Since it is contained in a large amount, there are problems such as metal corrosion in applications such as electronic parts and mechanical parts. In addition, since those using these natural raw materials are lumps having an indefinite shape, they need to be crushed before or after carbonization and firing, and the fracture surface of the obtained carbon powder is sharp. Not only is the dispersibility and flowability in rubber poor, but the wear resistance may be impaired in the applications of sliding materials and sealing materials. Further, the conventional carbon powders tend to agglomerate with each other when mixed with resin or rubber, which is also a cause of product variations.

【0005】また、前述のごとく合成樹脂原料を用いた
炭素材も用いられているが、炭化収率が低くまた上記し
たような粉砕加工を必要とするので、性能と価格に於い
て実用的でないばかりか、強化材、摺動材等の用途に於
いては、より機械強度の優れたものが要求されている。
また、合成高分子を原料ととした炭化物に於いても粒子
直径150μm程度以上の球状のものは、得られておら
ず、極大となる充填密度の設計に限界があったばかり
か、開封から投入に至る作業の途上、炭化物が飛散し、
作業環境を著しく汚染する等の欠点があった。
Further, as described above, a carbon material using a synthetic resin raw material is also used, but it has a low carbonization yield and requires the crushing process as described above, so that it is not practical in terms of performance and cost. In addition, in applications such as reinforcing materials and sliding materials, materials having higher mechanical strength are required.
In addition, even among carbides made from synthetic polymers, spherical ones with a particle diameter of about 150 μm or more have not been obtained, and there is a limit to the design of the packing density that maximizes, Carbide scatters during the process
There were drawbacks such as significantly contaminating the work environment.

【0006】本発明者等は、かかる問題点に着目して鋭
意検討した結果、本発明を完成したものであって、本発
明の目的は、自動車部品、電子部品、産業機械、事務機
器等の分野に於いて、耐熱フィラー、複合材料の強化
材、摺動性改良材として用いた際に、樹脂への分散性、
流動性に優れ、充填密度が非常に高く、高強度の球状炭
化物およびその製造方法を提供することにある。さらに
は、開封から投入に至る炭化物の飛散を減少させ、操業
時の操作性を向上し得る球状炭化物およびその製造方法
を提供するにある。更に他の目的は、以下の説明にて明
らかである。
The inventors of the present invention have completed the present invention as a result of intensive studies focusing on such problems, and an object of the present invention is to provide automobile parts, electronic parts, industrial machines, office equipment, etc. In the field, when used as a heat resistant filler, a reinforcing material for composite materials, and a sliding property improving material, dispersibility in resin,
An object of the present invention is to provide a high-strength spherical carbide having excellent fluidity, a very high packing density, and a method for producing the same. Further, it is to provide a spherical carbide and a method for producing the same that can reduce the scattering of the carbide from opening to charging and improve the operability during operation. Still other objects will be apparent from the following description.

【0007】[0007]

【課題を解決するための手段】上述の目的は、破壊強度
100Kg/cm 2 以上、粒子直径150〜2000μ
mの球状炭素材により達成され、さらに詳しくは、粒子
直径150〜2500μmの球状フェノール樹脂を炭化
して得られる破壊強度100Kg/cm 2 以上、粒子直
径150〜2000μmの球状炭素材により達成され
る。
[Means for Solving the Problems] The above object, the breaking strength
100 kg / cm 2 or more, particle diameter 150 to 2000 μ
m spherical carbon material, more specifically, a breaking strength of 100 Kg / cm 2 or more obtained by carbonizing a spherical phenol resin having a particle diameter of 150 to 2500 μm
This is achieved by using a spherical carbon material having a diameter of 150 to 2000 μm .

【0008】また前述の他の目的は、粒子直径150〜
2500μmの球状フェノール樹脂を非酸化性雰囲気下
500℃以上で炭化することを特徴とする破壊強度10
0Kg/cm 2 以上、粒子直径150〜2000μmの
球状炭素材の製造方法により達成される。
Further, the above-mentioned other object is to obtain a particle diameter of 150 to
Fracture strength 10 characterized by carbonizing a 2500 μm spherical phenol resin at 500 ° C. or higher in a non-oxidizing atmosphere
This is achieved by a method for producing a spherical carbon material having a particle diameter of 150 to 2000 μm and a particle diameter of 0 kg / cm 2 or more .

【0009】ここで球状フェノール樹脂とはアルデヒド
類、フェノール類を主成分とする化学反応により製造し
た球状樹脂であり、フェノール樹脂の粉をバインダーと
混合後、転動造粒法により機械的に団子状に造粒成形し
たものとは異なる。本発明によって製造された球状炭化
物は、樹脂に混入することにより、例えば大きな効果を
持った耐熱フィラー、または複合材料の強化材、または
摺動改良材、または導電性付与材となる。
Here, the spherical phenol resin is a spherical resin produced by a chemical reaction containing aldehydes and phenols as main components, and the phenol resin powder is mixed with a binder and mechanically dumped by a tumbling granulation method. It is different from the one granulated and shaped. The spherical carbide produced by the present invention becomes a heat-resistant filler having a great effect, a reinforcing material of a composite material, a sliding improving material, or a conductivity-imparting material by being mixed with a resin.

【0010】[0010]

【発明の実施の形態】以下に本発明を詳細に記載する。
一般に、フェノ−ル樹脂は大別するとレゾ−ル樹脂とノ
ボラック樹脂およびその他の特殊フェノ−ル樹脂や変性
品等に分けられるが、本発明の炭素材を製造するのに用
いられる球状フェノ−ル樹脂の製造法は以下の如くであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
Generally, the phenol resin is roughly classified into a resole resin, a novolac resin, and other special phenol resin and modified products, and the spherical phenol used for producing the carbon material of the present invention. The resin manufacturing method is as follows.

【0011】球状フェノ−ル樹脂の粒径が粒子直径15
0〜2500μmの粒子径に適するものを製造する方法
としては、例えば特開昭63−48320号公報記載の
方法のように、ある種の物質を核物質としてフェノール
類、アルデヒド類を分散材存在下で縮合反応させ、縮合
物が核物質の回りに凝集されて、粉粒体を生成させた
後、脱水乾燥して得ることができる。核物質としては、
例えばフェノール樹脂、ガラス粒子、SiC、メソフェ
ーズ、アルミナ、黒鉛、金雲母等を用いることができ
る。
The particle diameter of the spherical phenol resin is 15
A method suitable for producing particles having a particle size of 0 to 2500 μm is, for example, a method described in JP-A-63-48320, in which a certain substance is used as a nuclear substance and phenols and aldehydes are present in the presence of a dispersant. It can be obtained by subjecting the condensation reaction to a condensation reaction, the condensation product is aggregated around the nuclear substance to generate a powder and granules, and then dehydration and drying. As nuclear material,
For example, phenol resin, glass particles, SiC, mesophase, alumina, graphite, phlogopite, etc. can be used.

【0012】本発明の炭素材を得るために使用する粒子
直径150〜2500μmの球状フェノール樹脂は、上
述の方法で得た球状フェノール樹脂を篩い分け、150
μm以下及び2000μm以上のものを除去して得るこ
とができる。本発明の炭素材製造のために用いる球状フ
ェノール樹脂の粒径は通常150〜2000μmである
が、製造された炭化物の用途により適する粒子径は異な
る。
The spherical phenol resin having a particle diameter of 150 to 2500 μm used for obtaining the carbon material of the present invention is obtained by sieving the spherical phenol resin obtained by the above-mentioned method,
It can be obtained by removing those having a thickness of less than or equal to μm and greater than or equal to 2000 μm. The spherical phenol resin used for producing the carbon material of the present invention usually has a particle size of 150 to 2000 μm, but the suitable particle size varies depending on the use of the produced carbide.

【0013】本発明の炭素材製造のために用いる球状フ
ェノール樹脂の原料となるフェノール類、アルデヒド類
等はいずれも不純物含有量が低いものを使用することが
可能であるため、得られたフェノール樹脂の不純物含有
量も、従来の炭素材原料であるヤシ殻、石炭等の天然物
と比較して著しく低くなり、ロット内、ロット間差が少
なく安定したものを得ることができる。
Since the phenols, aldehydes, etc., which are the raw materials of the spherical phenol resin used for producing the carbon material of the present invention, can be those having a low impurity content, the obtained phenol resin can be used. The content of impurities is significantly lower than that of natural products such as coconut shell and coal, which are conventional carbon material raw materials, and stable products with little difference between lots and between lots can be obtained.

【0014】上述の如くして得られた球状フェノール樹
脂を500℃以上で熱処理することにより目的の球状炭
素材を得ることができる。この球状炭素材は微粉化され
た炭素をバインダーと混合後、転動造粒法で機械的に造
粒成形した従来の球状炭素材と呼ばれたものとは異なる
ものである。
By subjecting the spherical phenol resin obtained as described above to heat treatment at 500 ° C. or higher, the desired spherical carbon material can be obtained. This spherical carbon material is different from the conventional spherical carbon material in which finely pulverized carbon is mixed with a binder and then mechanically granulated by a rolling granulation method.

【0015】本発明の球状炭素材は、球状フェノール樹
脂を非酸化性雰囲気下で炭化することで得られる。炭化
温度は、非酸化雰囲気下、通常は少なくとも500℃、
好ましくは、2000℃以下の温度まで昇温することに
よって行うが、炭化焼成の最高温度が500℃未満では
長時間保持しても目的とする導電性や機械強度に優れた
球状炭素材は得難く、好ましくない。上記最高温度の設
定は球状化物の使用目的に応じて任意に選定できるが、
500〜700℃の場合は半導体の導電性を有し、樹脂
やゴムとの親和性がよい。また、700℃以上の場合は
高導電性が得られる。1500℃以上の温度で焼成する
と必要以上にエネルギーを要するため好ましくない。2
000℃以上の温度で焼成すると、黒鉛化が進み機械強
度が低下するため好ましくない。
The spherical carbon material of the present invention can be obtained by carbonizing a spherical phenol resin in a non-oxidizing atmosphere. The carbonization temperature is usually at least 500 ° C. in a non-oxidizing atmosphere,
Preferably, it is carried out by raising the temperature to 2000 ° C. or lower, but if the maximum temperature of carbonization and firing is lower than 500 ° C., the desired conductivity and mechanical strength are excellent even if held for a long time.
A spherical carbon material is difficult to obtain and is not preferable. The setting of the above maximum temperature can be arbitrarily selected according to the purpose of use of the spheroidized product,
In the case of 500 to 700 ° C., the semiconductor has conductivity and has good affinity with resin or rubber. Further, when the temperature is 700 ° C. or higher, high conductivity is obtained. Firing at a temperature of 1500 ° C. or higher is not preferable because it requires more energy than necessary. Two
Firing at a temperature of 000 ° C. or higher is not preferable because the graphitization proceeds and the mechanical strength decreases.

【0016】本発明における炭化焼成は、非酸化雰囲気
下、通常分子状酸素を実質的に含まない雰囲気下、例え
ば窒素、ヘリウム、アルゴン、水素、および一酸化炭素
から選ばれる少なくとも1種を主たる雰囲気の気体とし
て含有する雰囲気下で実施する。炭化焼成の温度及び雰
囲気は、得られる球状炭化物の性質に与える影響が大き
い。
The carbonization and firing in the present invention is carried out in a non-oxidizing atmosphere, usually in an atmosphere substantially free of molecular oxygen, for example, an atmosphere mainly containing at least one selected from nitrogen, helium, argon, hydrogen and carbon monoxide. It is carried out in an atmosphere containing as a gas. The temperature and atmosphere for carbonization and firing have a great influence on the properties of the obtained spherical carbide.

【0017】本発明の炭素材の粒子直径は150〜20
00μmであり、好ましい粒子径は複合材用、ギヤー
用、軸受け用等それぞれの適応用途により著しく異な
る。粒子直径2000μm以上であると、炭素材の原料
となるフェノール樹脂成形体の形状を真球状とするのが
難しくなり、球状体以外の混入物が増加するため、これ
を用いた炭化物の流動性の低下が生じる。更に粒子直径
が2000μm以上であると炭化時に、球中心部と、外
周部の温度差が大きく炭化が不均一に行われるため破砕
強度の低下、耐摩耗性の低下等を生じる。更に、粒子直
径が2000μm以上であると球内部から発生する樹脂
の分解ガスが速やかに球外部に発散しないため、球内部
に気泡を生じたり、球表面に亀裂を生じたりして好まし
くない。
The particle diameter of the carbon material of the present invention is 150 to 20.
The particle size is 00 μm, and the preferable particle size is significantly different depending on the respective application such as composite material, gear, and bearing. When the particle diameter is 2000 μm or more, it becomes difficult to make the shape of the phenol resin molded body, which is a raw material of the carbon material , into a true spherical shape, and the amount of contaminants other than the spherical body increases. Degradation occurs. Further, if the particle diameter is 2000 μm or more, the temperature difference between the central portion of the sphere and the outer peripheral portion is large during carbonization, and carbonization is unevenly performed, resulting in a reduction in crushing strength, a reduction in wear resistance and the like. Further, if the particle diameter is 2000 μm or more, the decomposed gas of the resin generated from the inside of the sphere does not quickly diffuse to the outside of the sphere, so bubbles are generated inside the sphere or cracks are generated on the surface of the sphere, which is not preferable.

【0018】また、粒子直径150μm以下であると、
炭素材同士の2次凝集を生じたり、複合材として用いる
際の充填密度を高めることが困難であったり、取り扱い
作業時に於いて周囲への飛散等、作業環境への悪影響が
生じ好ましくない。
If the particle diameter is 150 μm or less,
It is not preferable because secondary agglomeration of carbon materials occurs, it is difficult to increase the packing density when used as a composite material, and there is an adverse effect on the work environment such as scattering to the surroundings during handling work.

【0019】本発明の炭素材の灰分量は、0.5%以
下、好ましくは0.3%、最も好ましくは0.2%以下
が良い。灰分量が0.2%以下であると炭素材中の金属
酸化物、硫黄分等が少ないため電子部品、機械部品等の
分野に於いて腐食等の心配が低減できるため好適に用い
ることができる。
The ash content of the carbon material of the present invention is 0.5% or less, preferably 0.3%, and most preferably 0.2% or less. When the ash content is 0.2% or less, the amount of metal oxides, sulfur, etc. in the carbonaceous material is small, so that it is possible to reduce the risk of corrosion in the fields of electronic parts, mechanical parts, etc. .

【0020】本発明の炭素材の破砕強度は、100Kg
/cm2以上、好ましくは130Kg/cm2以上、好ま
しくは150Kg/cm2以上が良い。強度が低いと複
合材料の強化材、摺動性改良材等として自動車部品、電
子部品、産業機械などに用いた際に、使用中に破砕、粉
化を生じ好ましくない。
The crushing strength of the carbon material of the present invention is 100 kg.
/ Cm 2 or more, preferably 130 kg / cm 2 or more, preferably 150 Kg / cm 2 or more is good. When the strength is low, it is not preferable because it is crushed and pulverized during use when it is used as a reinforcing material of a composite material, a sliding property improving material, etc. in automobile parts, electronic parts, industrial machines and the like.

【0021】本発明の炭素材をエポキシ樹脂と混合し、
成形体を作製した後、後述の方法により評価した圧縮強
度は500Kg/cm2以上、好ましくは600Kg/
cm2 以上、さらに好ましくは700Kg/cm2 以上
良い。圧縮強度が500Kg/cm2以上より低いと上
述の破砕強度が低い際と同様に樹脂成形品を使用中に破
砕、粉化を生じ好ましくない。
The carbon material of the present invention is mixed with an epoxy resin,
After producing the molded body, the compression strength evaluated by the method described below is 500 Kg / cm 2 or more, preferably 600 Kg / cm 2.
cm 2 or more , and more preferably 700 Kg / cm 2 or more . When the compressive strength is lower than 500 Kg / cm 2 or more, the resin molded product is crushed and pulverized during use as in the case where the crushing strength is low, which is not preferable.

【0022】[0022]

【発明の効果】かくして本発明にて得られる球状炭素材
は、球状のフェノール・ホルムアルデヒド樹脂を加熱炭
化焼成したものなので、硫黄、ハロゲン化合物、金属酸
化物を殆ど含まず純度が高い。したがって、例えば、フ
ェノール樹脂、エポキシ樹脂、ポリエチレン、ポリプロ
ピレン、ポリブチレンテレフタレート、ポリアミド、テ
フロン、ポリフェニレンスルホン等の樹脂や各種ゴムに
混合して用いた電子部品、電気部品、事務機器等におい
て配線や金属が腐蝕するようなこともなく、また炭化珪
素のような金属炭化物の炭素材としても最適である。
EFFECTS OF THE INVENTION The spherical carbon material obtained in the present invention is obtained by heating, carbonizing and firing a spherical phenol / formaldehyde resin, and therefore has a high purity with almost no sulfur, halogen compounds and metal oxides. . Therefore, for example, wiring and metal in electronic parts, electric parts, office equipment, etc. mixed with resins such as phenol resin, epoxy resin, polyethylene, polypropylene, polybutylene terephthalate, polyamide, Teflon, polyphenylene sulfone and various rubbers are used. It is not corroded and is most suitable as a carbon material of metal carbide such as silicon carbide.

【0023】また本発明の球状炭素材は、実質的に等方
性炭素である。このことは、X線回折図における回折角
(2シータ)23〜24℃付近のブロードなピークの存
在によっても確認できるが、粒子の破断面のガラス状光
沢からも所謂ガラス状カーボンであると認められる。本
発明における炭素微粒子は、他のガラス状カーボンと同
様比重が1.4〜1.6と小さく、機械強度や耐摩耗性
に非常に優れているので、ギヤー、軸受け、接点、ロー
ル、メカニカルシール等のシール材、摺動材などの充填
材としても効果が大きい。
The spherical carbon material of the present invention is substantially isotropic carbon. This can be confirmed by the presence of a broad peak in the vicinity of the diffraction angle (2 theta) of 23 to 24 ° C. in the X-ray diffraction pattern, but it is recognized as so-called glassy carbon from the glassy luster of the fracture surface of the particles. To be The carbon fine particles in the present invention have a small specific gravity of 1.4 to 1.6 like other glassy carbons and are very excellent in mechanical strength and wear resistance, so that they are gears, bearings, contacts, rolls, mechanical seals. It is also highly effective as a sealing material such as, and a filler such as a sliding material.

【0024】更に、本発明の球状炭化材は、形状が球状
であり篩い分けによって150〜2000μmの粒子径
の分布を自由に組み合わすことができるため、充填密度
が極大になる組み合わせを設計できる利点を有する。ま
た、各種の樹脂やゴムへの分散性、流動性は他の炭素粉
末に比べて著しく優れているので大量に配合しうる。上
記の理由により、高密度かつ高い流動性を有する樹脂組
成物が製造できる。
Further, since the spherical carbonized material of the present invention has a spherical shape and can be freely combined with a particle size distribution of 150 to 2000 μm by sieving, it is possible to design a combination that maximizes the packing density. Have. Further, since the dispersibility in various resins and rubbers and the fluidity are remarkably superior to other carbon powders, they can be blended in a large amount. For the above reasons, a resin composition having high density and high fluidity can be manufactured.

【0025】通常の炭素粉末は、樹脂やゴムへの混合に
おいて、配合量が増加するにしたがって、流動性と分散
性の低下が顕著であり、得られた成形品の強度がそこな
われるが、本発明における球状炭化物は上記したような
形状と性質によって、樹脂やゴムの分散性や流動性がむ
しろ向上することは驚くべき事である。
In the case of ordinary carbon powder, when mixed with resin or rubber, the fluidity and dispersibility decrease remarkably as the compounding amount increases, and the strength of the obtained molded product is impaired. It is surprising that the spherical carbide in the present invention rather improves the dispersibility and fluidity of the resin or rubber due to the shape and properties described above.

【0026】さらに従来の球状炭素粉末は、その粒子径
が150μm以下と細かく、樹脂やゴムへの充填量が思
うように上がらないばかりか、開封時や投入時において
は粉末の飛散が避けがたく、作業環境を黒色の粉末によ
って汚染する欠点があった。本発明における球状炭化物
は、篩い分けによって適切な最密充填粒子直径の異なる
粒子を用途に応じて適切な割合で混合することが可能で
あり、充填密度が極大になる組み合わせを設計できる。
また、十分に大きな粒子直径を有するため、上記ような
汚染が起こりにくく作業環境を著しく改善する。
Further, the conventional spherical carbon powder has a fine particle diameter of 150 μm or less, and the amount of resin or rubber filled therein does not rise as expected, and scattering of the powder is unavoidable during opening and charging. However, there is a drawback that the working environment is contaminated by black powder. As for the spherical carbide in the present invention, it is possible to mix particles having different diameters of the most closely packed particles by sieving at an appropriate ratio according to the application, and it is possible to design a combination that maximizes the packing density.
Further, since it has a sufficiently large particle diameter, the above-mentioned contamination is unlikely to occur and the working environment is remarkably improved.

【0027】上記したような特徴を有する本発明の球状
炭素材は、各種樹脂やゴムに配合することによって、強
化材、シール材、摺動材、耐蝕材、導伝材、電極材、着
色材など極めて広範囲での使用が可能である。
The spherical carbon material of the present invention having the above-mentioned characteristics is compounded with various resins and rubbers to obtain a reinforcing material, a sealing material, a sliding material, a corrosion resistant material, a conductive material, an electrode material and a coloring material. It can be used in an extremely wide range.

【0028】(測定評価法)次に、本発明に用いた測定
評価方法について以下に示す。
(Measurement Evaluation Method) Next, the measurement evaluation method used in the present invention will be described below.

【0029】(1)灰分量 105℃で2時間乾燥した試料約1gを白金坩堝に精秤
し、700℃、2時間灰化し、再度精秤して灰分量を求
めた。但し、球状フェノール樹脂を製造する際に添加し
た核物質のうち、前述の灰化により残留する成分を含む
場合には、この核物質に由来する灰分量を球状炭素材の
灰分量から差し引いた値を、球状炭素材の灰分量とし
た。
(1) Ash content About 1 g of a sample dried at 105 ° C. for 2 hours was precisely weighed in a platinum crucible, ashed at 700 ° C. for 2 hours, and precisely weighed again to obtain the ash content. However, among the nuclear substances added when producing the spherical phenolic resin, if the residual components due to the above ashing are included, the amount of ash derived from this nuclear substance is subtracted from the amount of ash of the spherical carbon material. Was the ash content of the spherical carbon material.

【0030】(2)不純物含有濃度 105℃で2時間乾燥した試料約1gを白金坩堝に精秤
し、700℃、2時間灰化したものに、フッ化水素酸約
1〜2ml添加してホットプレート上で加熱する。乾固
する手前で硝酸を加えて超純水で7〜8倍に希釈する。
液量が1/3程度になったら再度超純水を加え、硝酸を
約1ml加え1時間加熱後、超純水を加え50mlに定
量する。同様の操作でブランクを作製して、各試料の測
定結果を補正する。不純物の定量は、蛍光X線定性分析
で検出を確認した元素について、日立製作所(株)製デ
ュアルモノクロICP発光分析装置P−5200型を用
いたICP発光分析により行った。
(2) About 1 g of a sample dried for 2 hours at an impurity content concentration of 105 ° C. was precisely weighed in a platinum crucible and ashed at 700 ° C. for 2 hours. Heat on plate. Nitric acid is added before it is dried and diluted 7 to 8 times with ultrapure water.
When the liquid volume becomes about 1/3, ultrapure water is added again, about 1 ml of nitric acid is added, and after heating for 1 hour, ultrapure water is added and the total amount is adjusted to 50 ml. A blank is prepared by the same operation, and the measurement result of each sample is corrected. Quantification of impurities was carried out by ICP emission analysis using an element whose detection was confirmed by fluorescent X-ray qualitative analysis, using a dual monochrome ICP emission analyzer P-5200 type manufactured by Hitachi, Ltd.

【0031】(3)破砕強度測定法 強度測定はKATO TECH CO.LTD社製圧縮
試験器(KES−FB3)にて測定した。強度測定で評
価する破砕強度は、炭素材の破砕時の荷重値と炭素材の
直径より、次式で計算した。 引張強度:σ[kg/cm2 ]= 2P/πd2 P: 荷重[kg] d:ペレット直径[cm]
(3) Fracture strength measurement method Strength measurement is carried out by KATO TECH CO. It was measured by a compression tester (KES-FB3) manufactured by LTD. The crushing strength evaluated by the strength measurement was calculated by the following formula from the load value at the time of crushing the carbon material and the diameter of the carbon material. Tensile strength: σ [kg / cm 2 ] = 2P / πd 2 P: Load [kg] d: Pellet diameter [cm]

【0032】(4)充填性 炭素材80重量%、エポキシ樹脂(エポミックR−14
0:三井石油化学製)20重量%で調整した試料を品川
混合機により混合し、混合物の状態を観察した。また、
混合物の一部をサンプリングし、ヘキサンにて樹脂部分
を洗い流した後のそれぞれの炭素材を実体顕微鏡により
観察した。
(4) 80% by weight of filling carbon material, epoxy resin (Epomic R-14
(0: manufactured by Mitsui Petrochemical Co., Ltd.) A sample adjusted to 20% by weight was mixed by a Shinagawa mixer and the state of the mixture was observed. Also,
A part of the mixture was sampled, the resin portion was washed off with hexane, and each carbon material was observed with a stereoscopic microscope.

【0033】(5)樹脂混合物の圧縮強度 試料1〜7を45重量%、エポキシ樹脂(エポミックR
−140:三井石油化学製 100部、ジミアンジアミ
ド3.5部、ベンジルジメチルアミン0.3部)を55
重量%で調整した試料を混合し、それぞれの試料を加熱
プレス機の間であらかじめ180℃に加温しておいた金
型を用いて200kg/cm2の加圧下に120分間加
熱処理して寸法が10mm角で厚み3.5mmの試験片
と寸法が13mm×3mm×120mmの試験片を各々
について各5個作製し、 JIS−R−7202に準
じ、電圧降下法にて電気比抵抗を測定した。
(5) Compressive strength of resin mixture 45% by weight of Samples 1 to 7 and epoxy resin (Epomic R
-140: Mitsui Petrochemical 100 parts, dimiandiamide 3.5 parts, benzyldimethylamine 0.3 parts) 55
Samples prepared by weight% are mixed, and each sample is heat-treated under a pressure of 200 kg / cm2 for 120 minutes using a mold which has been heated in advance to 180 ° C. between a heating press machine to obtain the size. Five test pieces each having a size of 10 mm square and a thickness of 3.5 mm and dimensions of 13 mm × 3 mm × 120 mm were prepared for each, and the electrical resistivity was measured by the voltage drop method according to JIS-R-7202.

【0034】(6)樹脂混合物の電気比抵抗 上記の方法で作製した樹脂硬化サンプルにつき、 JI
S−K−6911に準じて圧縮強度を測定した。
(6) Electrical Resistivity of Resin Mixture A resin cured sample prepared by the above method was tested according to JI
The compressive strength was measured according to SK-6911.

【0035】(7)樹脂成形版製造時の作業性 樹脂混合物の圧縮強度評価用の成形版製造時に炭化物と
樹脂の混合を行うが、その際に於ける周囲への炭素材の
飛散状況より判定した。
(7) Workability at the time of resin molding plate production. Carbide and resin are mixed at the time of manufacturing a molding plate for evaluation of the compressive strength of the resin mixture. Judgment is made from the scattering state of the carbon material to the surroundings at that time. did.

【0036】[0036]

【実施例】【Example】

(実施例1) 〔球状炭素材の製造方法〕40Lの反応溶液に、18重
量%の塩酸と、9重量%のホルムアルデヒドからなる混
合水溶液を30kg入れ、そのフラスコに、28℃で撹
拌しながらフェノール/水=90/10の水溶液1kg
を添加した。その後も暫く撹拌を継続すると、急激に白
濁した。白濁と同時に撹拌を停止しそのまま放置した。
(Example 1) [Method for producing spherical carbon material] To 40 L of the reaction solution, 30 kg of a mixed aqueous solution containing 18% by weight of hydrochloric acid and 9% by weight of formaldehyde was placed, and phenol was stirred in the flask at 28 ° C. / Water = 1 kg of 90/10 aqueous solution
Was added. After that, when the stirring was continued for a while, it rapidly became cloudy. At the same time as the white turbidity, stirring was stopped and the mixture was left as it was.

【0037】内温が徐々に上昇し、ピンク色のスラリー
状の生成が認められた。次いで更に撹拌を続けながら8
0℃まで昇温し約20分間撹拌を継続した。さらに内容
物を水洗後、0.2重量%のアンモニア水溶液中、60
℃の温度で60分間処理し、水洗後、200℃の温度で
2時間乾燥し、0.1〜150μmの球状フェノール樹
脂を得た。
The internal temperature gradually increased, and formation of a pink slurry was observed. Then continue stirring 8
The temperature was raised to 0 ° C. and stirring was continued for about 20 minutes. After further washing the contents with water, 60% in 0.2% by weight aqueous ammonia solution
It was treated at a temperature of 60 ° C. for 60 minutes, washed with water, and then dried at a temperature of 200 ° C. for 2 hours to obtain a spherical phenol resin having a diameter of 0.1 to 150 μm.

【0038】更にこの樹脂とフェノール及びアルデヒド
等を下記の比率で混合・撹拌した。球状フェノール樹脂
/フェノール/92%ホルムアルデヒド/ヘキサメチレ
ンテトラミン/アラビアゴム/水=5/100/40/
10/1/100。撹拌継続しながら、約60分で85
℃まで昇温し、そのまま60分反応を行い、希釈水を投
入し、内温が下がるまで冷却後、これを濾別した後、乾
燥し、含水率が2%以下になるまで乾燥を行い更に、篩
により150μm以下及び2500μm以上の粒径の樹
脂を除去し、粒子直径150〜2500μmの真球状フ
ェノール樹脂を得た。
Further, the resin, phenol, aldehyde and the like were mixed and stirred at the following ratio. Spherical phenol resin / phenol / 92% formaldehyde / hexamethylenetetramine / gum arabic / water = 5/100/40 /
10/1/100. 85 in about 60 minutes with continuous stirring
The temperature is raised to ℃, the reaction is carried out for 60 minutes as it is, the dilution water is added, and after cooling until the internal temperature is lowered, this is filtered off and dried, and further dried until the water content becomes 2% or less. The resin having a particle diameter of 150 μm or less and 2500 μm or more was removed by a sieve to obtain a spherical phenol resin having a particle diameter of 150 to 2500 μm.

【0039】更に、この樹脂を窒素気流中で800℃ま
で2時間かけて昇温し、800℃の設定温度で30分保
持して炭化し、篩い分けることにより、150〜200
0μmの球状炭素材を得た。
Further, this resin is heated to 800 ° C. in a nitrogen stream for 2 hours, and is held at a set temperature of 800 ° C. for 30 minutes for carbonization and sieving.
A spherical carbon material of 0 μm was obtained.

【0040】さらに篩い分けることにより、粒子直径1
50μmから500μmの球状炭素材(試料1)と、1
000〜2000μmの球状炭素材(試料2)を得た。
Further sieving gives a particle diameter of 1
50 μm to 500 μm spherical carbon material (Sample 1) and 1
A spherical carbon material (Sample 2) of 000 to 2000 μm was obtained.

【0041】試料1を3重量部に対し試料2を7重量部
を10分間混合し球状炭素材混合物(試料3)を得た。
3 parts by weight of sample 1 and 7 parts by weight of sample 2 were mixed for 10 minutes to obtain a spherical carbon material mixture (sample 3).

【0042】(比較例)また、比較例として従来より行
われている球状炭素材の製造方法である以下の転動造粒
法により、球状炭素材(試料4)を作製した。すなわ
ち、石炭微粉末/熱溶融性フェノール樹脂/結晶性セル
ロース/水=4/3/2/1の割合で混合した組成物1
0kgを公転15RPM、自転30RPMで10min
混練(品川式万能撹拌器(株)ダルトン社製)後、深江
工業株式会社製ハイスピードミキサーFS−GS−10
Jでアジテーター回転数300rpm、チョッパー回転
数3600rpmで10分間転動造粒して粒子直径15
0〜2000μmの球状フェノール樹脂を得た後、窒素
気流中で800℃まで2時間かけて昇温し、800℃の
設定温度で30分保持して炭化することにより行った。
Comparative Example A spherical carbon material (Sample 4) was prepared by the following rolling granulation method, which is a conventional method for manufacturing a spherical carbon material as a comparative example. That is, Composition 1 in which coal fine powder / thermofusible phenol resin / crystalline cellulose / water = 4/3/2/1 were mixed.
0kg revolves at 15 RPM and rotates at 30 RPM for 10 minutes
After kneading (manufactured by Shinagawa universal stirrer Dalton Co., Ltd.), high speed mixer FS-GS-10 manufactured by Fukae Industry Co., Ltd.
Particle diameter 15 by rolling granulation at J agitator rotation speed 300 rpm, chopper rotation speed 3600 rpm for 10 minutes
After obtaining a spherical phenol resin of 0 to 2000 μm, the temperature was raised to 800 ° C. over 2 hours in a nitrogen stream, and the temperature was maintained at the set temperature of 800 ° C. for 30 minutes for carbonization.

【0043】(実施例2)実施例1及び比較例で得た試
料4に加え、市販の炭素粉末を比較例として、としてシ
ースト5H(試料5:東海カーボン社製)、V−XC−
72R(試料6:キャボット社製)、ケッチェンブラッ
クEC(試料7:ライオンアクゾー社製)を用いて、灰
分量の測定を行った。その結果を表1に示す。試料1及
び試料4の灰分量は本発明の規定する範囲内であるが、
試料5〜7の灰分量は非常に大きく不純物含有量が多か
った。
(Example 2) In addition to the sample 4 obtained in Example 1 and the comparative example, a commercially available carbon powder was used as a comparative example, and as a cast 5H (Sample 5: manufactured by Tokai Carbon Co., Ltd.), V-XC-.
The ash content was measured using 72R (Sample 6: Cabot) and Ketjen Black EC (Sample 7: Lion Akzo). The results are shown in Table 1. Although the ash content of Sample 1 and Sample 4 is within the range specified by the present invention,
Samples 5 to 7 had a very large ash content and a large amount of impurities.

【0044】[0044]

【表1】 [Table 1]

【0045】(実施例3)試料1及び4〜7を用いて、
不純物元素含有率を測定した。その結果を表1に示す
が、炭素材の特性が本発明に規定する範囲内であるのは
試料1と4のみであり、他の炭素材の不純物は非常に多
かった。
(Example 3) Using Samples 1 and 4 to 7,
The impurity element content rate was measured. The results are shown in Table 1. It was only samples 1 and 4 that the characteristics of the carbon material were within the range specified in the present invention, and the impurities of other carbon materials were very large.

【0046】(実施例4)試料1及び4について、破砕
強度の評価を行った。その結果を表2に示すが、試料1
の破砕強度は本発明の規定する範囲内であり転動造粒品
に比較して高値を示した。それに対し、試料4は低値で
あった。
Example 4 Samples 1 and 4 were evaluated for crushing strength. The results are shown in Table 2, and sample 1
The crushing strength was within the range specified by the present invention, which was higher than that of the rolling granulated product. On the other hand, sample 4 had a low value.

【0047】[0047]

【表2】 [Table 2]

【0048】(実施例5)試料1〜7について、樹脂へ
の充填性及び充填時の作業性について評価した。その結
果を表3に示す。試料5〜試料7は、樹脂と炭素材がし
っかりと馴染まず混合できなかった。また、試料4はな
んとか混合はできたものの、混合後の顕微鏡観察によ
り、粒子の形が崩れていることが確認された。試料1か
ら3は他に比較して良好な混合物を得ることができた。
特に試料3は、混合後の流動性も良好であった。試料1
〜4の充填性は充分であったが、試料5〜7については
不充分であった。作業性についても同様に試料1〜4は
良好であったが、試料5〜7については不充分であっ
た。
(Example 5) Samples 1 to 7 were evaluated with respect to the filling property into the resin and the workability at the time of filling. The results are shown in Table 3. In sample 5 to sample 7, the resin and the carbon material were not well compatible and could not be mixed. Further, although Sample 4 could be mixed by some means, it was confirmed by microscopic observation after mixing that the shape of the particles had collapsed. Samples 1 to 3 were able to obtain a better mixture than the others.
In particular, Sample 3 had good fluidity after mixing. Sample 1
The filling properties of Nos. 4 to 4 were sufficient, but those of Samples 5 to 7 were insufficient. Regarding workability, samples 1 to 4 were also good, but samples 5 to 7 were insufficient.

【0049】[0049]

【表3】 [Table 3]

【0050】(実施例6)試料1〜7について、樹脂混
合物の圧縮強度を評価した。その結果を表4に示す。試
料1〜3は、炭素材の特性が本発明に規定する範囲内に
あり、特に試料3は、非常に高い圧縮強度を示した。試
料4〜7はいずれも十分な強度を得られなかった。
Example 6 Samples 1 to 7 were evaluated for the compressive strength of the resin mixture. The results are shown in Table 4. In Samples 1 to 3, the characteristics of the carbon material were within the range specified in the present invention, and in particular, Sample 3 exhibited extremely high compressive strength. Samples 4 to 7 could not obtain sufficient strength.

【0051】[0051]

【表4】 [Table 4]

【0052】(実施例7)実施例4で用いた試料を用い
て、電気比抵抗を評価した。各試料のその結果を表4に
示す。試料1〜3は、炭素材の特性が本発明に規定する
範囲内にあり、特に試料3は、非常に低い電気比抵抗を
示した。試料4〜7はいずれも電気比抵抗は高値であっ
た。
Example 7 Using the sample used in Example 4, the electrical resistivity was evaluated. The results of each sample are shown in Table 4. In Samples 1 to 3, the characteristics of the carbon material were within the range specified in the present invention, and in particular, Sample 3 exhibited a very low electrical resistivity. The electrical resistivity of each of Samples 4 to 7 was high.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−20680(JP,A) 特公 昭61−1366(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C01B 31/00 - 31/36 C08K 3/04 C08K 7/18 C08L 101/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-20680 (JP, A) Japanese Patent Publication No. 61-1366 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) C01B 31/00-31/36 C08K 3/04 C08K 7/18 C08L 101/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 破壊強度100Kg/cm2以上、粒子
直径150〜2000μmの球状炭素材。
1. A spherical carbon material having a breaking strength of 100 kg / cm 2 or more and a particle diameter of 150 to 2000 μm.
【請求項2】 樹脂に混入することにより、耐熱フィラ
ー、または複合材料の強化材、または摺動性改良材、ま
たは導電性付与材である請求項1記載の球状炭素材。
2. The spherical carbon material according to claim 1, which is a heat resistant filler, a reinforcing material of a composite material, a slidability improving material, or a conductivity imparting material by being mixed with a resin.
JP16056797A 1997-06-02 1997-06-02 Spherical carbon material Expired - Lifetime JP3519243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16056797A JP3519243B2 (en) 1997-06-02 1997-06-02 Spherical carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16056797A JP3519243B2 (en) 1997-06-02 1997-06-02 Spherical carbon material

Publications (2)

Publication Number Publication Date
JPH10338511A JPH10338511A (en) 1998-12-22
JP3519243B2 true JP3519243B2 (en) 2004-04-12

Family

ID=15717775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16056797A Expired - Lifetime JP3519243B2 (en) 1997-06-02 1997-06-02 Spherical carbon material

Country Status (1)

Country Link
JP (1) JP3519243B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1571127B1 (en) * 2004-03-01 2013-12-18 Mitsubishi Gas Chemical Company, Inc. Production process for carbonized product
JP4912587B2 (en) * 2004-12-08 2012-04-11 リグナイト株式会社 Method for producing composite carbonized material
US8247072B2 (en) 2006-02-14 2012-08-21 Eastman Chemical Company Resol beads, methods of making them and methods of using them
US20070207917A1 (en) * 2006-02-14 2007-09-06 Chester Wayne Sink Activated carbon monoliths and methods of making them
KR20080104269A (en) * 2006-02-14 2008-12-02 이스트만 케미칼 캄파니 Activated carbon beads and methods of making them
US20070191571A1 (en) * 2006-02-14 2007-08-16 Sink Chester W Resol beads, methods of making them, and methods of using them
US20070191572A1 (en) * 2006-02-14 2007-08-16 Tustin Gerald C Resol beads, methods of making them, and methods of using them
KR101261110B1 (en) * 2008-10-27 2013-05-06 다이호 고교 가부시키가이샤 Ptfe series sliding material, bearing, and ptfe series sliding material manufacturing method
JP5924832B2 (en) * 2011-07-22 2016-05-25 リグナイト株式会社 Method for producing phenolic resin particles
JP2019112270A (en) * 2017-12-25 2019-07-11 住友ベークライト株式会社 Functional filler, granulation filler, carbonization filler, resin composition, molded product, and method for producing the functional filler

Also Published As

Publication number Publication date
JPH10338511A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
JP3519243B2 (en) Spherical carbon material
CA1188845A (en) Process for producing carbon articles
CN108602675A (en) The polymer matrix composites of graphene enhancing are produced without chemicals formula
WO2005113435A1 (en) Spherical active carbon and process for producing the same
JP3406470B2 (en) Particulate acetylene black and its production method and use
KR102305756B1 (en) Method of preparing artificial graphite negative electrode material from petcoke for rechargeable lithium battery and artificial graphite negative electrode material for rechargeable lithium battery prepared from the same and rechargeable lithium battery
CN100339172C (en) Method for spheroidizing and pelletizing to coagulate metal powder, metal powder and electrolytic capacitor anode
US5021230A (en) Method of making silicon carbide
EP3431617B1 (en) Pellet as an admixture for metallurgical processes and method for making and using the same
JP6964100B2 (en) Hexagonal boron nitride molded product, hexagonal boron nitride granulated product for manufacturing it, and its manufacturing method
JP2546793B2 (en) Method for producing granular or powdery carbon fine particles
JP4029947B2 (en) Method for producing highly filling carbonaceous powder
JPS60212466A (en) Acetylene black
JP2007023170A (en) Method fop producing briquette
KR102202526B1 (en) Method for manufacturing coal ash and composition of coal ash and cement
RU2337895C2 (en) Method of natural clayey suspension manufacturing for electrode material production
JP3300454B2 (en) Method for producing highly oriented graphite powder and highly oriented graphite powder produced by the method
JPH08217434A (en) Production of flaky graphite fine powder
Xu et al. The microstructures of in-situ synthesized TiC by Ti-CNTs reaction in Cu melts
Ugwu et al. Preparation of Carbon Brushes from Agro-Waste Materials Palm Kernels Shells for Automobile Industry
EP3947278B1 (en) Method for preparing agglomerates comprising metallic silikon
KR100381993B1 (en) A super fine particle of silicon carbide and a manufacturing method thereof
KR102541863B1 (en) Method for Manufacturing High-purity Silicon Carbide Nanopowder
CA1319809C (en) Method of making silicon carbide
JPS63130666A (en) Resin composition

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040128

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term