JPH06253824A - Method for culturing microbe - Google Patents

Method for culturing microbe

Info

Publication number
JPH06253824A
JPH06253824A JP5041447A JP4144793A JPH06253824A JP H06253824 A JPH06253824 A JP H06253824A JP 5041447 A JP5041447 A JP 5041447A JP 4144793 A JP4144793 A JP 4144793A JP H06253824 A JPH06253824 A JP H06253824A
Authority
JP
Japan
Prior art keywords
culture
culture tank
draft tube
mesh
culturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5041447A
Other languages
Japanese (ja)
Inventor
Mitsuyasu Okabe
満康 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP5041447A priority Critical patent/JPH06253824A/en
Publication of JPH06253824A publication Critical patent/JPH06253824A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/24Draft tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/22Perforated plates, discs or walls
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers

Abstract

PURPOSE:To obtain an air bubble column-type culture tank capable of culturing mould or Actinomycetes, by mounting meshes inside a draft tube installed in a culture tank and by equipping the bottom of the tank with a fine bubble generator. CONSTITUTION:A draft tube 2 is installed inside a culture tank 1, an appropriate number of meshes 4, 5... are mounted inside the draft tube, and air or oxygen- rich air is blown from a fine bubble generator 3. With this scheme, oxygen- moving capacity factor can be raised even in the case of relatively low aerating linear velocity; thereby, even mould or Actinomycetes can be cultured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、菌体が糸状であるカビ
や放線菌の培養法に関し、更に詳しくは培養槽内部に1
ないし複数個のメッシュを装着したドラフト管を有する
酸素移動容量係数(KLa)の高い気泡塔型培養槽を用い
て上記微生物類を培養することにより、有用物質を生産
する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cultivating fungi and actinomycetes whose fungi are filamentous.
To a technique for producing useful substances by culturing the above microorganisms in a bubble column culture tank having a high oxygen transfer capacity coefficient (KLa) having a draft tube equipped with a plurality of meshes.

【0002】[0002]

【従来の技術】食品、化学工業分野で使われているクエ
ン酸、イタコン酸などの有機酸や医薬品である各種抗生
物質は、カビや放線菌の培養による発酵法で製造されて
いる。通常、これらの微生物の培養法として通気攪拌型
の培養槽が用いられている。しかしながら通気攪拌型培
養槽は攪拌に要する動力が大きい、内部構造が複雑
になるため装置内の洗浄が不十分となり、雑菌に汚染さ
れ易い、また無菌シールをしていても軸受けが存在す
るため雑菌汚染の恐れがある、特に、菌体が糸状であ
るカビや放線菌の培養は、攪拌翼のせん断力によって菌
糸が切断され、菌体細胞が損傷を受け易い、大型にな
ると高価になるなどの欠点を有している。
2. Description of the Related Art Organic acids such as citric acid and itaconic acid, which are used in the fields of food and chemical industry, and various antibiotics which are pharmaceuticals are produced by a fermentation method by culturing fungi or actinomycetes. Generally, an aeration and stirring type culture tank is used as a method for culturing these microorganisms. However, the aeration-stirring type culture tank requires a large amount of power for stirring, the internal structure is complicated and the inside of the device is insufficiently cleaned, and is easily contaminated with various bacteria. There is a risk of contamination, especially when culturing fungi and actinomycetes whose filamentous cells are filamentous, the hyphae are cut by the shearing force of the stirring blade, and the mycelial cells are easily damaged. It has drawbacks.

【0003】一方、これに対して気泡塔型培養槽は、
雑菌汚染の原因となり易い軸封部が存在しない、全体
の構造が簡単である、攪拌に必要とするエネルギーが
不要であるなどのメリットがあり、今日まで多種類の気
泡塔型培養槽の開発が試みられているが、菌体が糸状で
ある微生物の培養には未だ実用化されていない。
On the other hand, the bubble column type culture tank is
There are merits such as no shaft seal that easily causes contamination of various bacteria, simple overall structure, and no need of energy required for stirring.To date, development of various types of bubble column culture tanks has been carried out. Although it has been tried, it has not yet been put to practical use for culturing a microorganism whose cells are filamentous.

【0004】[0004]

【発明が解決しようとする課題】一般に、発酵法による
有用物質の大量生産において、製造コストを低減するた
めに培養槽の大型化が避けられない。この意味から、気
泡塔型培養槽でのカビ類の発酵生産が可能となれば上記
のメリットに加え、機械攪拌に必要なエネルギーが不要
となるばかりでなく、機械攪拌によって発生するジュー
ル熱を除去する必要が無く、冷却にかかるユーティリテ
ィーコストも低減することが可能となる。さらに、軸封
部が存在しないことから雑菌汚染の危険性を減少でき、
物質製造の生産性を高めることが期待できる。しかし多
くの研究にも拘らず、実用化に供しうる培養槽は未だ開
発されていない。この理由は、培養液中への酸素の供給
に1つの問題がある。気泡塔型培養槽は、通気攪拌型
培養槽に比較してKLaが小さい、KLaを上げるため通
気線速度を高く取ると、発泡が激しく、培養の継続が不
可能となる。通気線速度を低くしてKLaを上げる方法
として、培養槽内部に多孔板などを装着した気泡塔型培
養槽が開発されているが、ペレットを形成しやすいカビ
や放線菌の培養では、目詰まりを起こし培養の継続が不
可能となる。
Generally, in the large-scale production of useful substances by the fermentation method, it is unavoidable to enlarge the size of the culture tank in order to reduce the production cost. In this sense, if fermentative production of molds in a bubble column culture tank is possible, in addition to the above advantages, not only the energy required for mechanical stirring becomes unnecessary, but also the Joule heat generated by mechanical stirring is removed. Therefore, it is possible to reduce the utility cost for cooling. Furthermore, since there is no shaft sealing part, the risk of contamination by various bacteria can be reduced,
It can be expected to increase the productivity of substance manufacturing. However, despite a lot of research, a culture tank that can be put to practical use has not yet been developed. For this reason, there is one problem in the supply of oxygen into the culture solution. The bubble column-type culture tank has a smaller KLa than the aeration-agitation-type culture tank. If the air-flow linear velocity is increased to raise KLa, foaming becomes severe and the culture cannot be continued. As a method of lowering the aeration velocity and increasing KLa, a bubble column culture tank with a perforated plate inside has been developed. It becomes impossible to continue the culture.

【0005】本発明は、ドラフト管内部にメッシュを装
着せめることにより、比較的低い通気線速度においても
高いKLaを達成でき、発泡や目詰まりを起こさず継続し
た培養操作が可能であり、カビや放線菌の培養も可能な
気泡塔型培養槽を用いた培養法を提供するものである。
According to the present invention, by installing a mesh inside the draft tube, a high KLa can be achieved even at a relatively low air-flow velocity, and continuous culture operation can be performed without causing foaming or clogging, and it is possible to obtain mold and mold. It is intended to provide a culturing method using a bubble column type culture tank capable of culturing actinomycetes.

【0006】[0006]

【課題を解決するための手段】本発明によれば培養槽中
にドラフト管が内設されており、そのドラフト管内部に
1ないし複数個のメッシュが装着され且つ空気または酸
素富化空気を吹き込むための培養槽底部に設けられた微
細気泡発生器を有する気泡塔型培養槽を用いて、菌体が
糸状であるカビあるいは放線菌を培養し有用物質の発酵
生産を行うことを特徴とする菌体の培養法が提供され
る。
According to the present invention, a draft tube is internally provided in a culture tank, and one or a plurality of meshes are installed inside the draft tube and air or oxygen-enriched air is blown therein. Using a bubble column-type culture tank having a fine bubble generator provided at the bottom of the culture tank for culturing fungi or actinomycetes whose filaments are filamentous and performing fermentation production of useful substances A method of culturing a body is provided.

【0007】前記本発明の培養法についてさらに詳細に
説明する。
The culture method of the present invention will be described in more detail.

【0008】本発明における気泡塔型培養槽は、図1に
その模式的概略図が示されているように、その内側にド
ラフト管が設置されている二重管の構造を有しており、
そのドラフト管の内部には、メッシュが装着されてい
る。図1ではドラフト管の入口と出口の2個所にメッシ
ュが装着されている。そして図1の培養槽底部には、微
細気泡発生器(スパージャー)が設けられている。図1
は説明を簡単にするために、培養に必要なその他の装置
や構造は省略されている。
The bubble column type culture tank of the present invention has a double tube structure in which a draft tube is installed inside, as shown in the schematic diagram of FIG.
A mesh is mounted inside the draft tube. In FIG. 1, meshes are attached to the draft pipe at two positions, an inlet and an outlet. A micro-bubble generator (sparger) is provided at the bottom of the culture tank in FIG. Figure 1
Other devices and structures necessary for culture are omitted for simplicity of explanation.

【0009】従来の気泡槽に使用されていた多孔板は孔
径が1〜4mmであり、その開口比が1〜10%であっ
て、吹き込まれた気泡に対する邪魔板の働きをしてKLa
を高めていたが、孔径と開口比が低いため菌体が糸状で
あるカビあるいは放線菌の培養の場合は目詰まりを起こ
していた。
The perforated plate used in the conventional bubble tank has a hole diameter of 1 to 4 mm and an opening ratio of 1 to 10%, and acts as a baffle plate against blown bubbles to KLa.
However, clogging occurred in the case of culturing fungi or actinomycetes whose filaments were filamentous due to the low pore size and opening ratio.

【0010】本発明においてはドラフト管の内側にメッ
シュ(網)を設置することにより、低い通気線速度であ
ってもKLaを充分に高めることができ、菌体の目詰まり
を起さず培養することが可能となる。
In the present invention, by installing a mesh (mesh) inside the draft tube, KLa can be sufficiently increased even at low air-flow linear velocity, and culturing can be carried out without causing cell clogging. It becomes possible.

【0011】本発明においてドラフト管内に設けられる
メッシュ(網または網状のもの)の数は、1または複数
個、好ましくは2〜4個である。このメッシュは、その
面がドラフト管の管の縦方向(気泡の流れ方向)に対し
てほぼ垂直方向(すなわち水平方向)になるように設置
される。そして、そのメッシュは、格子画の1区画の平
均面積(メッシュサイズ)が0.1cm2以上で、開口率
が30%以上のものが好ましい。さらに好ましい格子画
面積(メッシュサイズ)は0.1cm2以上であり、特に
好ましくは0.15〜5cm2の範囲である。一方開口率
は50%以上が好ましく、60〜90%の範囲が特に好
ましい。
In the present invention, the number of meshes (mesh or mesh) provided in the draft tube is 1 or more, preferably 2 to 4. The mesh is installed so that its surface is substantially vertical (that is, horizontal) to the vertical direction (the flow direction of bubbles) of the draft tube. The mesh preferably has an average area (mesh size) of one section of the lattice image of 0.1 cm 2 or more and an aperture ratio of 30% or more. A more preferable lattice screen area (mesh size) is 0.1 cm 2 or more, and a particularly preferable range is 0.15 to 5 cm 2 . On the other hand, the aperture ratio is preferably 50% or more, and particularly preferably in the range of 60 to 90%.

【0012】メッシュの格子の形状は、矩形、菱形、円
状などいずれであってもよいが、矩形が一般的である。
メッシュの、メッシュサイズ、開口率および格子の形状
は、培養すべき菌体の種類および培養条件によって適宜
決定される。メッシュの素材は、特に限定しないが金
属、ナイロンなどの合成高分子、天然繊維類などが利用
できるが、培養液が酸性になる場合は酸に侵されない素
材でなければならない。
The mesh lattice may have any shape such as a rectangle, a rhombus and a circle, but a rectangle is common.
The mesh size, aperture ratio, and lattice shape of the mesh are appropriately determined depending on the type of cells to be cultured and the culture conditions. Although the material of the mesh is not particularly limited, metals, synthetic polymers such as nylon, natural fibers and the like can be used, but if the culture solution becomes acidic, it must be a material that is not attacked by acid.

【0013】本発明における培養槽の底部に設けられる
空気または酸素富化空気を培養槽内に吹き込むための微
細気泡発生器(スパージャー)は、通常の微生物培養に
用いられる方法が適宜使用できるが、気泡が小さいほど
KLaを高めることができるので微細な気泡を作り出せる
焼結金属(ステンレス)フィルター、セラミックフィル
ターなどが使用できる。
In the present invention, the fine bubble generator (sparger) for blowing air or oxygen-enriched air provided at the bottom of the culture tank into the culture tank can be appropriately used by a method generally used for culturing microorganisms. As the bubbles are smaller, KLa can be increased, so a sintered metal (stainless steel) filter or a ceramic filter that can create fine bubbles can be used.

【0014】本発明における気泡塔型培養槽を使用した
場合の、通気線速度(Vs)と酸素移動容量係数(KL
a)との関係を図2に示した。図2において、□印はメ
ッシュが図1のようにドラフト管の上部と下部の2個所
に装置されている場合の結果であり、また△印はメッシ
ュがドラフト管の下部のみに(メッシュ1のみ)装置さ
れている場合の結果である。一方図2にはメッシュが全
く装着されなかった場合の結果も○印に示されている。
When the bubble column type culture tank of the present invention is used, the aeration linear velocity (Vs) and the oxygen transfer capacity coefficient (KL
The relationship with a) is shown in FIG. In Fig. 2, □ mark is the result when the mesh is installed in two places, the upper part and the lower part of the draft pipe as shown in Fig. 1, and the △ mark is the mesh only in the lower part of the draft pipe (only mesh 1). ) The result when the device is installed. On the other hand, in FIG. 2, the result when the mesh is not attached at all is also shown by a circle.

【0015】図2から、メッシュを装着しない場合、V
sが1cm/secを越えるとフラッディングが生じK
Laは低下するが、ドラフト管内にメッシュを装着した場
合は、通常の多孔板(孔径2mm、開口率3%)と同程
度の低いVsで高いKLaを得ることが理解される。この
ことはメッシュを入れることにより、効率的に酸素を培
地に溶けこませ、培養菌体に酸素を供給することができ
るばかりでなく、従来の気泡塔型培養槽に見られる菌体
の目詰まり問題を解決するものである。KLaは、亜硫酸
酸化法で測定した。このメッシュの作用は、KLaを高め
るばかりでなく、糸状であるカビや放線菌の特徴である
ペレット形成を阻止する作用があり、菌体の増殖効果を
高めることにある。
From FIG. 2, when the mesh is not attached, V
Flooding occurs when s exceeds 1 cm / sec. K
Although La decreases, it is understood that when a mesh is installed in the draft tube, a high KLa can be obtained at a Vs as low as an ordinary perforated plate (pore diameter 2 mm, opening ratio 3%). This means that by inserting a mesh, not only oxygen can be efficiently dissolved in the medium and oxygen can be supplied to the cultured cells, but also the clogging of the cells found in the conventional bubble column type culture tank. It solves the problem. KLa was measured by the sulfite oxidation method. The effect of this mesh is not only to increase KLa but also to prevent the formation of filamentous fungi and pellet formation, which is a characteristic of actinomycetes, and to increase the growth effect of bacterial cells.

【0016】本発明の培養方法は、前記気泡塔型培養槽
を用いて通常の回分培養法、半回分法、反復回分培養
法、連続培養法などいずれも適用することができる。
The culture method of the present invention can be applied to any of the conventional batch culture method, semi-batch method, repeated batch culture method, continuous culture method, etc. using the bubble column type culture tank.

【0017】本発明における気泡塔型発酵槽を用いた培
養システムの1例を図3に示す。図3は、二重管式ドラ
フト管2に空気または酸素富化空気が気泡発生器3を通
して吹き込まれる。ドラフト管内部を上昇した液(培
地)は、培養槽上部で気泡が抜けドラフト管外部を通っ
て槽の低部へ下降する。培地は、ジャケット15に温
水、冷水などを循環させることで温度を制御できる。排
ガスの一部はコンデンサー10にて凝縮させ、槽へ戻さ
れる。又、必要なら蒸発した水分量は、滅菌水を適宜加
えることにより容量を一定に保つことができる。培養中
に発泡が生じた場合は、レベルセンサー16とポンプ9
とを連動し、消泡剤が消泡剤貯槽8から培地に添加され
る。培養槽が常に最高な状態で運転されるように、培養
液の温度、pH、溶存酸素レベルがそれぞれのセンサー
11、12、13によって検知され、制御される。また
必要に応じて、これらの情報を用いてオンラインによる
自動制御も行うことができる。
An example of a culture system using the bubble column type fermenter according to the present invention is shown in FIG. In FIG. 3, air or oxygen-enriched air is blown into the double-tube draft tube 2 through the bubble generator 3. The liquid (medium) that has risen inside the draft tube passes through the outside of the draft tube and drops to the lower part of the tank, with bubbles disappearing in the upper part of the culture tank. The temperature of the medium can be controlled by circulating hot water, cold water, or the like through the jacket 15. Part of the exhaust gas is condensed by the condenser 10 and returned to the tank. If necessary, the volume of the evaporated water can be kept constant by appropriately adding sterilized water. If foaming occurs during the culture, the level sensor 16 and the pump 9
The antifoaming agent is added to the medium from the antifoaming agent storage tank 8 in association with the above. The temperature, pH and dissolved oxygen level of the culture solution are detected and controlled by the respective sensors 11, 12 and 13 so that the culture tank is always operated in the highest state. Further, if necessary, online control can be performed using these pieces of information.

【0018】[0018]

【実施例】以下に実施例および比較例により本発明を具
体的に説明するが、本発明はこれらに限定されるもので
はない。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited thereto.

【0019】なお実施例および比較例において使用した
培地の組成を下記表1に示した。
The composition of the medium used in Examples and Comparative Examples is shown in Table 1 below.

【0020】[0020]

【表1】 [Table 1]

【0021】また実施例1で使用した図3で示される気
泡塔型培養槽において、使用したメッシュは、ドラフト
管の上部および下部に装着されており、メッシュの1区
画の面積(メッシュサイズ)は1cm2であり、開口率
は79%であり、ドラフト管の内径は5cmであり、上
部と下部のメッシュ間隔は28cmである。
In the bubble column culture tank shown in FIG. 3 used in Example 1, the mesh used was mounted on the upper and lower parts of the draft tube, and the area (mesh size) of one section of the mesh was It is 1 cm 2 , the opening ratio is 79%, the inner diameter of the draft tube is 5 cm, and the mesh distance between the upper part and the lower part is 28 cm.

【0022】実施例−1 表1に示した種菌培地100mlを入れた三角フラスコ
にアスペルギルステレウス(Aspergillus
terreus KO−3152株をスラント(寒天培
地)から一白金耳接種し、30℃で2日間培養したもの
を種菌液とした。次に表1に示した「生産培地」2リッ
トル(L)を5Lのフラスコに入れて120℃、15分
間オートクレーブで滅菌し、図3に示した気泡塔型培養
槽に入れ、前記種菌液200mlを添加し40℃、通気
量を4L/min(2VVM)で培養を行った。その培
養結果を下記表2に示した。菌体量は乾燥重量、糖はフ
ェノール硫酸法そしてイタコン酸(ITA)は改良ブロ
ム法(日本化学会編、実験化学講座25巻、1958
56ページ)で測定した。また収率は、消費された還元
糖に対する生成したイタコン酸の100分率で表わし
た。培養開始後5日目でイタコン酸が41.9g/L蓄
積し、この時点での対糖収率は47.2%であり、この
時点までの最大イタコン酸生産速度は、0.68g/L
/hrであった。
Example 1 Aspergillus was placed in an Erlenmeyer flask containing 100 ml of the seed culture medium shown in Table 1.
One platinum loop of terreus KO-3152 strain was inoculated from a slant (agar medium) and cultured at 30 ° C. for 2 days to obtain a seed culture. Next, 2 liters (L) of "production medium" shown in Table 1 was placed in a 5 L flask and sterilized by autoclave at 120 ° C for 15 minutes, placed in the bubble column-type culture tank shown in Fig. 3, and 200 ml of the inoculum solution was added. Was added and cultured at 40 ° C. and an aeration rate of 4 L / min (2 VVM). The culture results are shown in Table 2 below. Cell weight is dry weight, sugar is phenol-sulfuric acid method and itaconic acid (ITA) is improved brom method (edited by the Chemical Society of Japan, Vol. 25, Experimental Chemistry Course, 1958).
Page 56). In addition, the yield was expressed as a percentage of the produced itaconic acid with respect to the consumed reducing sugar. 41.9 g / L of itaconic acid was accumulated 5 days after the start of the culture, and the yield of sugar to sugar was 47.2% at this point, and the maximum itaconic acid production rate up to this point was 0.68 g / L.
It was / hr.

【0023】[0023]

【表2】 [Table 2]

【0024】比較例−1 実施例−1と同様な方法で種菌や培地を調製し、メッシ
ュの代わりに通常の多孔板(孔径:3mm、開口比:3
%)2枚を装着した気泡塔型発酵槽を用いて、実施例−
1と同じ条件で培養を行った。培養開始2日目で多孔板
の目詰まりが起こり通気が不可能となり、培養の継続が
できなかった。
Comparative Example-1 An inoculum and a medium were prepared in the same manner as in Example-1, and an ordinary perforated plate (pore size: 3 mm, opening ratio: 3) was used instead of the mesh.
%) Example using a bubble column type fermenter equipped with two sheets
Culture was performed under the same conditions as in 1. On the second day after the start of the culture, the perforated plate was clogged and ventilation was impossible, and the culture could not be continued.

【0025】実施例−2 実施例−1と同じ方法で調製した種菌液200mlを、
100gの滅菌したセライト545を含む「種菌培地」
2Lを入れた5Lジャーファーメンター(丸菱MD30
0型)に接種し、30℃、3日間培養した。次いで、無
菌的に培養液をろ過し菌体付着セライトを分離、これを
「生産培地」2Lに懸濁、気泡塔型培養槽に移し実施例
−1と同じ条件で培養を行なった。培養5日目でのイタ
コン酸の生成量は45.5g/L、対糖収率は50.5%
であり、気泡塔型培養槽が、固定化菌体を用いた充填床
型バイオリアクターとしても利用可能なことを示した。
Example-2 200 ml of the inoculum solution prepared by the same method as in Example-1 was
"Seed culture medium" containing 100 g of sterilized Celite 545
5L jar fermenter with 2L (Maruhishi MD30
Type 0) was inoculated and cultured at 30 ° C. for 3 days. Then, the culture solution was aseptically filtered to separate cell-adhered celite, which was suspended in 2 L of "production medium", transferred to a bubble column type culture tank, and cultured under the same conditions as in Example-1. The amount of itaconic acid produced on the 5th day of culture was 45.5 g / L, and the yield based on sugar was 50.5%.
It was shown that the bubble column type culture tank can also be used as a packed bed type bioreactor using immobilized cells.

【0026】実施例−3 酸素の供給方法として空気の代わりに酸素富化空気(空
気:純酸素=3:1、通気量1VVM)を用いた以外、
実施例−1と同じ方法、条件で培養を行った。培養5日
目でのイタコン酸の生産は36.4g/Lで、対糖収率
は52.0%で通常の空気を使用した場合と殆ど同じ生
産であった。
Example 3 Except that oxygen-enriched air (air: pure oxygen = 3: 1, aeration amount: 1 VVM) was used instead of air as a method for supplying oxygen.
Culturing was performed under the same method and conditions as in Example-1. The production of itaconic acid on the 5th day of the culture was 36.4 g / L, and the yield based on sugar was 52.0%, which was almost the same as when normal air was used.

【0027】実施例−4 実施例−1と同じ方法で調製した種菌液200mlを1
20℃、15分間オートクレーブ滅菌した「種菌培地」
2Lを入れた本気泡塔型発酵槽に接種し、30℃で3日
間(通気量3VVM)培養した。培養終了後通気を停
止、菌体を沈降させ上清液を排出し、これに新たに「生
産培地」2Lを入れ、40℃で培養した(通気量2VV
M)。なお、液面を一定に維持するため殺菌水を間欠的
に添加した。培養開始後3日目と5日目にイタコン酸濃
度を定量した。5日間培養後、通気を止め菌体を沈降さ
せ、これに再び新鮮な培地を加え回分培養を繰り返し
た。本操作を7回繰り返し、イタコン酸の生産量を図4
に示した。いずれの培養においてもイタコン酸の50/
L以上の蓄積が見られた。
Example-4 200 ml of the inoculum solution prepared by the same method as in Example-1
"Inoculum medium" sterilized by autoclaving at 20 ℃ for 15 minutes
This bubble column type fermenter containing 2 L was inoculated and cultured at 30 ° C. for 3 days (aeration volume 3 VVM). After completion of the culture, aeration was stopped, the bacterial cells were allowed to settle, the supernatant was discharged, and 2 L of "production medium" was newly added to this and cultured at 40 ° C. (aeration volume 2 VV
M). In addition, sterilizing water was intermittently added in order to keep the liquid surface constant. The itaconic acid concentration was quantified on the 3rd and 5th days after the start of the culture. After culturing for 5 days, aeration was stopped and the bacterial cells were allowed to settle, and fresh medium was again added to this, and batch culture was repeated. This operation was repeated 7 times, and the production amount of itaconic acid was shown in Fig.
It was shown to. 50/50 of itaconic acid in any culture
Accumulation of L or more was observed.

【0028】[0028]

【発明の効果】本発明により、従来困難とされてきた気
泡塔型培養槽でのカビや放線菌など菌体が糸状であり、
且つペレットを形成しやすい微生物の培養が可能とな
り、通常の攪拌型培養槽に比べ発酵槽のコスト、エネル
ギーやユーティリティーコストが安く、発酵生産物の製
造コストの低減が可能となるためその生産性を高めるこ
とができる。
EFFECTS OF THE INVENTION According to the present invention, fungi such as mold and actinomycetes in the bubble column type culture tank, which have been considered difficult, are filamentous.
In addition, it becomes possible to cultivate microorganisms that are easy to form pellets, the fermentation tank cost, energy and utility costs are lower than those of ordinary agitation-type culture tanks, and it is possible to reduce the production cost of fermentation products. Can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】気泡塔型培養槽の模式的概略図を示すものであ
る。
FIG. 1 shows a schematic diagram of a bubble column culture tank.

【図2】気泡塔型培養槽を使用した場合の通気線速度
(Vs)と酸素移動容量(KLa)との関係を示すもので
ある。
FIG. 2 shows a relationship between aeration linear velocity (Vs) and oxygen transfer capacity (KLa) when a bubble column type culture tank is used.

【図3】気泡塔型培養槽を使用した培養システムの1例
を示すものである。
FIG. 3 shows an example of a culture system using a bubble column culture tank.

【図4】実施例−4における培養操作の繰返し回数とイ
タコン酸(ITA)の生産量を示したものである。
FIG. 4 shows the number of times the culture operation was repeated and the amount of itaconic acid (ITA) produced in Example-4.

【符号の説明】[Explanation of symbols]

1:培養槽 2:ドラフト管 3:微細気泡発生器(焼結金属) 4:メッシュ(2) 4’:メッシュ(2)の平面図 5:メッシュ(1) 5’:メッシュ(1)の平面図 6:殺菌水貯槽 7:ポンプ 8:消泡剤貯槽 9:ポンプ 10:コンデンサー 11:温度センサー 12:pHセンサー 13:溶存酵素センサー 14:レコーダー 15:ジャケット 16:レベルセンサー 17:空気(もしくは酸素富化空気) 18:流量計 1: Culture tank 2: Draft tube 3: Micro bubble generator (sintered metal) 4: Mesh (2) 4 ': Plan view of mesh (2) 5: Mesh (1) 5': Plan of mesh (1) Figure 6: Sterilized water storage tank 7: Pump 8: Antifoam storage tank 9: Pump 10: Condenser 11: Temperature sensor 12: pH sensor 13: Dissolved enzyme sensor 14: Recorder 15: Jacket 16: Level sensor 17: Air (or oxygen) Enriched air) 18: Flow meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 培養槽中にドラフト管が内設されてお
り、そのドラフト管内部に1ないし複数個のメッシュが
装着され且つ空気または酸素富化空気を吹き込むための
培養槽底部に設けられた微細気泡発生器を有する気泡塔
型培養槽を用いて、菌体が糸状であるカビあるいは放線
菌を培養し有用物質の発酵生産を行うことを特徴とする
菌体の培養法。
1. A draft tube is provided inside the culture vessel, and one or a plurality of meshes are attached to the inside of the draft tube and provided at the bottom of the culture vessel for blowing air or oxygen-enriched air. A method for culturing a fungus body, which comprises fermentatively producing a useful substance by culturing a fungus or actinomycete having a filamentous fungus in a bubble tower type culture tank having a fine bubble generator.
JP5041447A 1993-03-02 1993-03-02 Method for culturing microbe Withdrawn JPH06253824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5041447A JPH06253824A (en) 1993-03-02 1993-03-02 Method for culturing microbe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5041447A JPH06253824A (en) 1993-03-02 1993-03-02 Method for culturing microbe

Publications (1)

Publication Number Publication Date
JPH06253824A true JPH06253824A (en) 1994-09-13

Family

ID=12608635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5041447A Withdrawn JPH06253824A (en) 1993-03-02 1993-03-02 Method for culturing microbe

Country Status (1)

Country Link
JP (1) JPH06253824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325070A (en) * 1999-03-12 2000-11-28 Maeda Corp Bubble tower and reactor device using the same
WO2017115855A1 (en) * 2015-12-28 2017-07-06 味の素株式会社 Gas stirring fermentation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136336U (en) * 1977-04-01 1978-10-28
JPS63175980U (en) * 1987-05-02 1988-11-15
JPH01128679U (en) * 1988-02-26 1989-09-01
JPH02111374U (en) * 1989-02-23 1990-09-06

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136336U (en) * 1977-04-01 1978-10-28
JPS63175980U (en) * 1987-05-02 1988-11-15
JPH01128679U (en) * 1988-02-26 1989-09-01
JPH02111374U (en) * 1989-02-23 1990-09-06

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325070A (en) * 1999-03-12 2000-11-28 Maeda Corp Bubble tower and reactor device using the same
WO2017115855A1 (en) * 2015-12-28 2017-07-06 味の素株式会社 Gas stirring fermentation device
JPWO2017115855A1 (en) * 2015-12-28 2018-10-18 味の素株式会社 Gas stirring type fermentation equipment
CN109415672A (en) * 2015-12-28 2019-03-01 味之素株式会社 Gas Stirring formula installation for fermenting

Similar Documents

Publication Publication Date Title
US4416993A (en) Apparatus with semi-permeable membrane, and method for cultivating micro-organisms
EP1751269B1 (en) Membrane bioreactor
EP0800572A1 (en) Apparatus for biomass production
CN110241023B (en) Bioreactor for high-density large-scale animal cell culture and application
US20160369226A1 (en) Solid-state biological reaction device and method for preparing filamentous organism spores by using the same
Okabe et al. Itaconic acid production in an air-lift bioreactor using a modified draft tube
CN102350256A (en) Micro-nano bubble generating device, and fermentation apparatus and fermentation method using same
CA1052715A (en) Introduction of nutrient medium into a fermenter
WO2018139343A1 (en) Biological reaction device in which micro-nano bubbles are used, and biological reaction method in which said biological reaction device is used
JPH07121216B2 (en) Stirred bioreactor and incubator
CA2335171C (en) Method for producing high concentration carbon dioxide product
Kiese et al. A simple laboratory airlift fermentor
Ichii et al. Development of a new commercial-scale airlift fermentor for rapid growth of yeast
JP2661848B2 (en) Culture method and culture device
RU2236451C1 (en) Aerobic liquid phase fermentation apparatus
JPH06253824A (en) Method for culturing microbe
Rossi et al. Airlift bioreactor fluid-dynamic characterization for the cultivation of shear stress sensitive microorganisms
CN206289255U (en) A kind of microbial cultivation device in sewage disposal
JPH05292942A (en) Method for culturing using sintered metallic element and its apparatus
JPH09173090A (en) Production of l (+)-lactic acid and manufacturing equipment therefor
JPH0937766A (en) Interfacial bioreactor system
Boodhoo et al. Intensification of gas–liquid mass transfer using a rotating bed of porous packings for application to an E. coli batch fermentation process
CN108707545A (en) A kind of fixed microbial culture garden
CN108383240A (en) A kind of black and odorous water purifier of solar energy co-immobilization microorganism
CN207958349U (en) Bioreactor and its system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509