JPH0625369B2 - Blast furnace raw material charging method - Google Patents

Blast furnace raw material charging method

Info

Publication number
JPH0625369B2
JPH0625369B2 JP60154063A JP15406385A JPH0625369B2 JP H0625369 B2 JPH0625369 B2 JP H0625369B2 JP 60154063 A JP60154063 A JP 60154063A JP 15406385 A JP15406385 A JP 15406385A JP H0625369 B2 JPH0625369 B2 JP H0625369B2
Authority
JP
Japan
Prior art keywords
coke
furnace
ore
charging
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60154063A
Other languages
Japanese (ja)
Other versions
JPS6217105A (en
Inventor
勲 緒方
章 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP60154063A priority Critical patent/JPH0625369B2/en
Publication of JPS6217105A publication Critical patent/JPS6217105A/en
Publication of JPH0625369B2 publication Critical patent/JPH0625369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高炉における原料装入法に関するものである。TECHNICAL FIELD The present invention relates to a raw material charging method in a blast furnace.

(従来の技術) 周知の如く高炉においては鉄鉱石(以下、単に鉱石と言
う)とコークスとが層状に装入され、これら層状の装入
原料(以下、装入物と言う)が高温のガスと接触するこ
とにより装入物は乾燥・昇温・還元過程を経て銑鉄とな
る。これらの過程を円滑に進行させていくには、前記昇
温・還元過程を支配している装入物と炉内ガスとの接触
を適切に制御することが不可欠である。
(Prior Art) As is well known, in a blast furnace, iron ore (hereinafter, simply referred to as ore) and coke are charged in layers, and these layered charging materials (hereinafter, referred to as charging materials) are hot gases. By contacting with, the charge becomes pig iron through the processes of drying, heating and reducing. In order to make these processes proceed smoothly, it is essential to appropriately control the contact between the charge controlling the temperature rising / reducing process and the gas in the furnace.

従来、前記ガス流分布の制御は鉱石とコークスの層厚比
(以下、Lo/Lcと言う)を径方向で異ならしめるこ
とによつて行うことが一般的であつた。又、最近では装
入物の粒度差によつて生じる通気抵抗の違いに着目した
方法も提案されている。例えば特開昭57−15830
4号公報には粒径の大きい粗粒のコークスを、炉壁近傍
の円周方向に凹陥部が形成されるように装入し、しかる
後前記凹陥部に粒径の小さい細粒コークスを装入するこ
とによつて、炉周辺部のガス流を抑制すると共に前記細
粒コークスを有効利用する方法が示されている。又、特
開昭55−28308号公報には鉱石及びコークスから
なる原料をそれぞれ所定の粒径を有する複数の種類に区
分しておき、ガス流分布に応じて前記原料の種別と装入
量と装入すべき箇所を選定し、区別装入してガス流を制
御する方法が示されている。
Conventionally, the control of the gas flow distribution is generally performed by making the layer thickness ratio of ore and coke (hereinafter, referred to as Lo / Lc) different in the radial direction. Recently, a method has been proposed which focuses on the difference in ventilation resistance caused by the difference in particle size of the charge. For example, JP-A-57-15830
In JP-A-4, coarse coke having a large grain size is charged so that a concave portion is formed in the circumferential direction in the vicinity of the furnace wall, and thereafter, fine coke having a small grain diameter is mounted in the concave portion. The method of suppressing the gas flow around the furnace and effectively utilizing the fine-grain coke is disclosed. Further, in Japanese Patent Laid-Open No. 55-28308, raw materials composed of ore and coke are classified into a plurality of types each having a predetermined particle size, and the type and charging amount of the raw materials are classified according to the gas flow distribution. A method for controlling the gas flow by selecting a charging point and separately charging is shown.

ところが前述した種々の装入制御を行つているにかかわ
らずその効果は充分なものではなく、特に重油等の価格
上昇に伴い、省コストを図るために最近、積極的に採用
されているオールコークス操業においては、炉下部周辺
部の炉体温度が低下し、高炉操業の円滑な走行が損なわ
れていた。(以下、この現象を炉下部不活性化現象と言
う。) (発明が解決しようとする問題点) 前記炉下部不活性化現象としては種々の原因が考えられ
るが、結局は炉周辺部における固体側の熱容量とガス側
の熱容量との比、つまり熱流比(熱流比=固体側の熱容
量/ガス側の熱容量。尚、熱容量は当該物質の比熱と質
量速度を掛けたものを言う)が高すぎで、鉱石の昇温・
還元・溶解が円滑に行われないことによると推察され
る。
However, the effect is not sufficient regardless of the various charging controls described above, and the all-coke that has been actively adopted recently in order to save cost especially with the price increase of heavy oil and the like. During operation, the temperature of the furnace body around the lower part of the furnace decreased, impairing the smooth running of the blast furnace operation. (Hereinafter, this phenomenon is referred to as a furnace bottom deactivation phenomenon.) (Problems to be solved by the invention) There are various possible causes for the furnace bottom deactivation phenomenon, but in the end, solids in the furnace peripheral portion The ratio of the heat capacity on the gas side to the heat capacity on the gas side, that is, the heat flow ratio (heat flow ratio = heat capacity on the solid side / heat capacity on the gas side. Note that heat capacity is the product of the specific heat of the substance and the mass velocity). Then, the temperature of the ore
It is presumed that the reduction / dissolution is not carried out smoothly.

これを改善するために周知のムーバブルアーマーにより
装入物の落下点を制御することによつて周辺部の前記L
o/Lcを低くする対策を講じてきたが、炉下部不活性
化現象を解決するためには周辺部Lo/Lcを大幅に低
下させる必要があり、この場合には逆に中心部のLo/
Lcが上昇しすぎて中心部のガス流が不安定になる場合
が多く、高炉操業の円滑な進行が難しかつた。
In order to improve this, a well-known movable armor is used to control the dropping point of the charge so that the L
Although measures have been taken to lower the o / Lc, in order to solve the furnace inactivation phenomenon, the peripheral Lo / Lc must be significantly reduced.
In many cases, Lc increased too much to make the gas flow in the center unstable, which made it difficult to smoothly perform the blast furnace operation.

本発明は前記従来の問題点の抜本的な解決を図り、中心
部の通気性の安定化を阻害することなく、炉下部不活性
化現象を解消する高炉操業を可能ならしめる原料装入法
を提供するものである。
The present invention seeks to radically solve the above-mentioned conventional problems, and a raw material charging method that enables a blast furnace operation that eliminates the inactivation phenomenon of the lower part of the furnace without impairing the stabilization of the air permeability of the central part. It is provided.

(問題点を解決するための手段) 本発明は、鉄鉱石とコークスを層状に装入するに際し、
1チャージ当たりの鉄鉱石を2以上の複数バッチに分割
する高炉の原料装入法において、前記鉄鉱石バッチ間
に、前記層状に装入するコークスの10〜25重量%
で、且つ、粒径8〜30mmの細粒コークスを炉周辺部
に装入することにより前記問題点の解決を可能としたも
のである。
(Means for Solving Problems) The present invention, when charging iron ore and coke in layers,
In a blast furnace raw material charging method in which iron ore per charge is divided into two or more batches, 10 to 25% by weight of the layered coke charged between the iron ore batches
In addition, by inserting fine coke having a particle size of 8 to 30 mm into the peripheral portion of the furnace, the above problems can be solved.

(作 用) 第1図は本発明に基づく原料装入法の説明するための高
炉炉内の部分断面図である。この第1図において1は炉
内に装入された鉱石を、同様に2はコークスを示す。該
鉱石1とコークス2は交互に装入され、それぞれ鉱石層
10及びコークス層20の層状をなしている。鉱石1及
びコークス2の1チャージ当たりの装入量は予め炉容、
生産量、当該操業条件及び設備的能力等より設定されて
おり、この装入量とホツパー容量や分布制御目的等に基
づき1チャージ当たりのバツチ数が決定される。
(Operation) FIG. 1 is a partial cross-sectional view of the inside of a blast furnace for explaining the raw material charging method according to the present invention. In FIG. 1, 1 indicates an ore charged in the furnace, and 2 indicates a coke. The ore 1 and the coke 2 are charged alternately and form a layer of an ore layer 10 and a coke layer 20, respectively. Charge amount of ore 1 and coke 2 per charge is the furnace volume,
The number of batches per charge is determined based on the production amount, the operating conditions, the facility capacity, etc., and the charging amount, the hopper capacity, the purpose of distribution control, and the like.

本発明においては前記鉱石1の1チャージ当たりの装入
を少なくとも2以上の複数バツチに分割してその装入パ
ターンを設定する。第1図の例は1チャージ当たりの鉱
石の装入を2バツチに分割し、装入したもので、1バツ
チ目の装入と2バツチ目の装入の間にコークス2を装入
することによつて1バツチ目装入鉱石層10aと2バツ
チ目装入鉱石層10bとの間にコークス介在層3が形成
されている。本発明で鉱石層間とは前述したような1チ
ャージの装入において分割装入された上下の鉱石層の境
界部を言う。而して前記コークス介在層3を形成させる
ためのコークス2は、通常操業に使用される前記コーク
ス層20を形成するコークスの一部を用いること、或い
は前記コークス2とは粒度分布の異なるものをホツパー
に貯留しておき、それを用いることのいずれを採用して
も良い。その装入量は後述する融着層において所定の通
気性を効率的に確保しうる範囲で適宜設定すれば良い。
本発明者らの経験では通常のコークス、1チャージ当た
り装入量の1/10〜1/4(重量%)の量でコークス
介在層3を形成すると前記機能を発揮する上で効果的で
あつた。
In the present invention, the charging per charge of the ore 1 is divided into at least two or more batches to set the charging pattern. The example in Fig. 1 is one in which the charge of ore per charge is divided into two batches, and charging is carried out. Coke 2 is charged between the charging of the first batch and the charging of the second batch. As a result, the coke intervening layer 3 is formed between the first and second batch ore layers 10a and 10b. In the present invention, the ore layer means a boundary portion between upper and lower ore layers separately charged in the charging of one charge as described above. As the coke 2 for forming the coke intervening layer 3, a part of the coke forming the coke layer 20 which is usually used in the operation is used, or a coke having a particle size distribution different from that of the coke 2 is used. It is possible to use any of the methods of storing it in the hopper and using it. The charging amount may be appropriately set within a range in which a predetermined air permeability can be efficiently ensured in the fusion layer to be described later.
According to the experience of the present inventors, forming the coke intervening layer 3 in an amount of 1/10 to 1/4 (% by weight) of the normal coke and the charging amount per charge is effective in exhibiting the above function. It was

尚、鉱石1チャージのバツチ数を3以上の複数に分割し
た場合、当然のことながら前記鉱石層間も2以上の複数
個表れる。かかる場合、コークス介在層3はその総ての
鉱石層間に形成すること、或いは特定の鉱石層間のみに
形成することのいずれでもよいが、コークス介在層3を
形成するための装入量は前記範囲内とすることが好まし
い。又、コークス介在層3の形成位置は、本発明者らの
経験では第1図に示すように炉周辺部に形成することが
炉周辺部における鉱石の昇温・還元・溶解を改造する上
から好ましかつた。このコークス介在層3の形成位置の
制御はムーバブルアーマー6の傾斜角を適宜変更するこ
とによつて可能である。
When the number of batches for one charge of ore is divided into a plurality of 3 or more, naturally, a plurality of ore layers of 2 or more appear. In such a case, the coke intervening layer 3 may be formed between all the ore layers, or may be formed only between specific ore layers, but the charging amount for forming the coke intervening layer 3 is within the above range. It is preferable to set the inside. Further, according to the experience of the present inventors, the formation position of the coke intervening layer 3 is to be formed in the peripheral portion of the furnace as shown in FIG. 1 in order to modify the heating, reduction and melting of the ore in the peripheral portion of the furnace. I liked it. The formation position of the coke intervening layer 3 can be controlled by appropriately changing the inclination angle of the movable armor 6.

さて前述のように装入された装入物は順次炉下部へ降下
し、これに伴つて鉱石1及びコークス2は昇温され、鉱
石1は溶解されていく。第1図において4は前述した鉱
石1が溶解していく融着層を示す。この融着層4は鉱石
層10に比較して通気性が悪く、還元ガス7が流通しに
くい。而して本発明によつて形成された前記コークス介
在層3は前記炉下部の融着層4においてもほぼ初期の形
状を維持して残留し、融着層4中に還元ガスの通路を確
保するスペーサーの機能を果たす。これによつて融着層
4での鉱石の昇温・還元・溶解が円滑に進行する。
Now, the charging materials charged as described above are sequentially lowered to the lower part of the furnace, and with this, the temperature of the ore 1 and the coke 2 is raised and the ore 1 is melted. In FIG. 1, 4 indicates a fusion layer in which the above-mentioned ore 1 is melted. The fusible layer 4 has poor air permeability as compared with the ore layer 10, and the reducing gas 7 does not easily flow therethrough. Thus, the coke intervening layer 3 formed according to the present invention remains in the fusion layer 4 in the lower part of the furnace while maintaining its almost initial shape, and a passage for reducing gas is secured in the fusion layer 4. Fulfills the function of a spacer. As a result, the temperature rise, reduction and melting of the ore in the fusion layer 4 proceed smoothly.

以上のように本発明は鉱石層間において薄いコークス介
在層3を形成することにより周辺部のLo/Lcを若干低
下させると同時に炉下部における融着層4の通気性を確
保することができ、融着層4での鉱石の昇温・還元・溶
解を改善できた。これによつて中心部の通気性を不安定
にすることなく、炉下部不活性化現象を解消でき、高炉
操業の円滑な進行が可能になつた。
As described above, according to the present invention, by forming the thin coke intervening layer 3 between the ore layers, Lo / Lc in the peripheral portion can be slightly reduced, and at the same time, the air permeability of the fusion layer 4 in the lower part of the furnace can be secured. It was possible to improve the temperature rise, reduction, and dissolution of the ore in the coating layer 4. As a result, the deactivation phenomenon of the lower part of the furnace can be resolved without destabilizing the air permeability of the central part, and the smooth progress of the blast furnace operation becomes possible.

(実施例) 実施例 1 本発明に基づくコークス介在層の挙動を調査するために
3000m3級高炉の1/3の模型炉をつくり、鉱石が融
着する以前の状況をシユミレートした。第2図は炉半径
方向におけるコークスと鉱石の堆積状況を、従来方法
(A)と本発明に基づく方法(B)とで比較して表したもので
あり、第3図は前記第2図の堆積状況でのガス流分布の
調査結果の一例を示す線図である。
(Example) Example 1 In order to investigate the behavior of the coke intervening layer based on the present invention, a model furnace of 1/3 of 3000 m 3 class blast furnace was made, and the situation before ore fusion was simulated. Fig. 2 shows the state of coke and ore deposition in the radial direction of the furnace by the conventional method.
FIG. 3 (A) is a comparison with the method (B) according to the present invention, and FIG. 3 is a diagram showing an example of the results of investigation of gas flow distribution in the deposition state of FIG. .

第2図より1チャージ当たりに装入される鉱石を2バツ
チに分割装入し、その上下の鉱石層間にコークス介在層
を形成することが可能であることが確認された。又、第
3図より従来の原料装入法に比較して本発明の装入法で
は炉周辺部のガス流速を上昇させることが可能であつ
た。このことは前述した炉周辺部の熱流比の改善に効果
的であり、炉下部不活性化現象を解消することに効果的
であることが推測された。
From FIG. 2, it was confirmed that it is possible to separately charge the ore charged per charge into two batches and form a coke intervening layer between the ore layers above and below the charge. Further, from FIG. 3, it was possible to increase the gas flow velocity in the peripheral portion of the furnace by the charging method of the present invention as compared with the conventional raw material charging method. It was presumed that this was effective in improving the heat flow ratio in the peripheral portion of the furnace described above, and was effective in eliminating the furnace inactivation phenomenon.

実施例 2 3000m3の高炉において本発明を実施した。Example 2 The present invention was carried out in a 3000 m 3 blast furnace.

本実施例における装入パターンは第1表に示す通りであ
り、鉱石層間に装入されるコークスとしては30〜8mm
の細粒コークスを使用し、その装入量は3.5屯とし
た。これは通常の1チャージ当たりコークス装入量の約
15%に相当する。
The charging pattern in this embodiment is as shown in Table 1, and the coke charged between the ore layers is 30 to 8 mm.
The fine grain coke was used and the charging amount was 3.5 tons. This corresponds to about 15% of the usual amount of coke charged per charge.

又、コークス介在層を第2図に示すように周辺部に形成
するために、直前に装入される鉱石層の周辺部に凹陥部
ができるようムーバブルアーマーの傾斜角を調整した。
第4図は従来の装入法と本発明による装入法において操
業した際における炉頂部、半径方向でのガス温度分布を
調査した結果を示すもので、前記実施例1で推測したよ
うに炉周辺部の温度が上昇しており、炉周辺部のガス流
速が増えたものと考えられる。
Further, in order to form the coke intervening layer in the peripheral portion as shown in FIG. 2, the inclination angle of the movable armor was adjusted so that a concave portion was formed in the peripheral portion of the ore layer charged immediately before.
FIG. 4 shows the results of investigating the gas temperature distributions in the furnace top and in the radial direction during operation in the conventional charging method and the charging method according to the present invention. It is considered that the temperature around the furnace was rising and the gas flow velocity around the furnace increased.

この結果、第5図に示すように炉下部温度の大幅な上昇
を図ることも可能となつた。尚、第5図は縦軸に炉高方
向を冷却盤の段数(段数が低い方が炉下部)で表し、横
軸に温度を表したものである。
As a result, it was possible to significantly increase the temperature of the lower part of the furnace as shown in FIG. In FIG. 5, the vertical axis represents the furnace height direction by the number of stages of the cooling platen (the lower the number of stages is the lower part of the furnace), and the horizontal axis represents the temperature.

次に第6図は本実施例による効果を長期間にわたつて調
査した結果の一例を示すもので冷却盤の13段及び21
段レベルにおける温度の推移と、その時の荷降下状況を
示すものである。荷降下状況は、周知の1日に発生する
棚(H)、スリツプ(S)、ドロツプ(D)の回数〔4H+2S
+D(回/日)〕として表した。この第6図から明らか
なように本発明の実施により炉下部の温度を、常に15
0℃以上の高めに保持でき、これによつて荷降下の安定
を図れた。この結果、前記第6図に示すようにコークス
比の低減及び溶銑品質の安定化が可能となり、生産量
(出銑量)についても、日間の変動も少なく、長期間安
定した操業が可能となつた。
Next, FIG. 6 shows an example of the result of investigating the effect of this embodiment over a long period of time.
It shows the temperature transition at the stage level and the load drop situation at that time. The load drop situation is the number of times of known shelves (H), slips (S), and drops (D) that occur every day [4H + 2S
+ D (times / day)]. As is apparent from FIG. 6, the temperature of the lower part of the furnace was always 15
It can be maintained at a high temperature of 0 ° C or higher, which helps stabilize the load drop. As a result, as shown in FIG. 6, the coke ratio can be reduced and the hot metal quality can be stabilized, and the production amount (amount of hot metal) does not fluctuate day by day, which enables stable operation for a long period of time. It was

(発明の効果) 本発明の実施により、炉中心部の通気性や安定化を阻害
することなく炉下部不活性化現象を効果的に解消でき
た。この結果長期間安定した高炉操業を維持することが
可能となつた。
(Effects of the Invention) By carrying out the present invention, it was possible to effectively eliminate the inactivation phenomenon of the lower part of the furnace without inhibiting the air permeability and stabilization of the central part of the furnace. As a result, it was possible to maintain stable blast furnace operation for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に基づく原料装入法を説明するための高
炉炉内の部分断面図、第2図〜第6図は本発明の効果を
調査した図であり、第2図は炉半径方向におけるコーク
スと鉱石の堆積状態を従来法と比較して表した図、第3
図は前記第2図の堆積状況でのガス流分布の調査結果の
一例を示す線図、第4図は従来の装入法と本発明による
装入法において操業した際における炉頂部、半径方向で
のガス温度分布を調査した結果を示す図、第5図は炉下
部の温度を従来法と比較して表した図、第6図は本発明
に基づく実施例による効果を長期間にわたつて調査した
結果の一例を示す図である。 1……鉱石 10……鉱石層 2……コークス 20……コークス層 3……コークス介在層 4……融着層 6……ムーバブルアーマー 7……還元ガス
FIG. 1 is a partial cross-sectional view of the inside of a blast furnace for explaining a raw material charging method based on the present invention, FIGS. 2 to 6 are views for investigating the effects of the present invention, and FIG. 2 is a furnace radius. Diagram showing the state of coke and ore deposition in the direction of comparison with the conventional method, No. 3
FIG. 4 is a diagram showing an example of gas flow distribution survey results in the deposition state of FIG. 2, and FIG. 4 is a furnace top portion and a radial direction when operating in the conventional charging method and the charging method according to the present invention. Fig. 5 shows the results of investigation of gas temperature distribution in Fig. 5, Fig. 5 shows the temperature of the lower part of the furnace in comparison with the conventional method, and Fig. 6 shows the effect of the embodiment according to the present invention over a long period of time. It is a figure which shows an example of the result of investigation. 1 ... Ore 10 ... Ore layer 2 ... Coke 20 ... Coke layer 3 ... Coke intervening layer 4 ... Fusion layer 6 ... Movable armor 7 ... Reducing gas

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉄鉱石とコークスを層状に装入するに際
し、1チャジ当たりの鉄鉱石を2以上の複数バッチに分
割する高炉の原料装入法において、前記鉄鉱石バッチ間
に、前記層状に装入するコークスの10〜25重量%
で、且つ、粒径8〜30mmの細粒コークスを炉周辺部に
装入することを特徴とする高炉原料装入法。
1. A method for charging a raw material of a blast furnace, wherein when iron ore and coke are charged in layers, the iron ore per chazi is divided into two or more batches. 10-25% by weight of coke charged
And a fine blast coke having a particle size of 8 to 30 mm is charged into the peripheral portion of the furnace, and the blast furnace raw material charging method.
JP60154063A 1985-07-15 1985-07-15 Blast furnace raw material charging method Expired - Lifetime JPH0625369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60154063A JPH0625369B2 (en) 1985-07-15 1985-07-15 Blast furnace raw material charging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60154063A JPH0625369B2 (en) 1985-07-15 1985-07-15 Blast furnace raw material charging method

Publications (2)

Publication Number Publication Date
JPS6217105A JPS6217105A (en) 1987-01-26
JPH0625369B2 true JPH0625369B2 (en) 1994-04-06

Family

ID=15576086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60154063A Expired - Lifetime JPH0625369B2 (en) 1985-07-15 1985-07-15 Blast furnace raw material charging method

Country Status (1)

Country Link
JP (1) JPH0625369B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423013A (en) * 1977-07-21 1979-02-21 Kobe Steel Ltd Charging method for furnace raw material
JPS6041121B2 (en) * 1981-11-20 1985-09-14 川崎製鉄株式会社 Material charging method for bellless blast furnace

Also Published As

Publication number Publication date
JPS6217105A (en) 1987-01-26

Similar Documents

Publication Publication Date Title
JP6447614B2 (en) Raw material charging method to blast furnace
EP2851437B1 (en) Method for loading raw material into blast furnace
EP2851435B1 (en) Method for charging starting material into blast furnace
JPH0625369B2 (en) Blast furnace raw material charging method
JP3729026B2 (en) Raw material charging method to blast furnace
JP2002003910A (en) Method for operating blast furnace
JP2001279309A (en) Method for charging raw material into blast furnace
JPS63161104A (en) Method for charging raw material into vertical type furnace
JPS63140006A (en) Method for charging raw material into blast furnace
JP2725595B2 (en) Blast furnace charging method
JPH06279818A (en) Operation of blast furnace
JP3700457B2 (en) Blast furnace operation method
JP3995380B2 (en) Raw material charging method to blast furnace
JPH0826368B2 (en) A method for estimating the deviation of the filling state of the solid reducing agent layer in the core
JPS63317605A (en) Method for charging raw material in blast furnace
JP3700458B2 (en) Low Si hot metal manufacturing method
JPH09125112A (en) Method for mixing and charging ore and coke into ball-less blast furnace
JPH06271908A (en) Method for charging raw material in multi-batches into bell-less blast furnace
KR100418978B1 (en) Layer injection method for preventing complex layer to radial direction in blast furnace
JP2021121689A (en) Method for estimating amount of ore layer collapse in bell-armor type blast furnace
JP2933468B2 (en) Method of charging molded coke into blast furnace
JPH058244B2 (en)
JP2001262207A (en) Raw material charging method in blast furnace
JPH07197114A (en) Coke packing layer type vertical smelting furnace
JPH11217605A (en) Method for charging charging material into blast furnace

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term