JPH0625365B2 - Blast furnace operating method with non-fired agglomerated ore - Google Patents
Blast furnace operating method with non-fired agglomerated oreInfo
- Publication number
- JPH0625365B2 JPH0625365B2 JP18099586A JP18099586A JPH0625365B2 JP H0625365 B2 JPH0625365 B2 JP H0625365B2 JP 18099586 A JP18099586 A JP 18099586A JP 18099586 A JP18099586 A JP 18099586A JP H0625365 B2 JPH0625365 B2 JP H0625365B2
- Authority
- JP
- Japan
- Prior art keywords
- ore
- blast furnace
- agglomerated ore
- furnace
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacture Of Iron (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は高炉に装入する原料に非焼成塊成鉱を配合した
場合の高炉操業方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a method for operating a blast furnace in which a raw material to be charged into a blast furnace is blended with a non-calcined agglomerated ore.
(従来の技術) 高炉の操業において、炉頂から装入される事前処理され
た鉄鉱石は炉下部へ移動するに伴ない、炉内ガスとの接
触により昇温還元され融着帯部で溶落する。この融着帯
位置は、鉄鉱石が炉頂部から融着帯迄(以下この部分を
塊状帯と呼ぶ)を降下する間の昇温、還元度合によりほ
ぼ決まり、これが遅れた場合には融着帯は低下し、逆に
早い場合には上昇する。融着帯位置が不必要に低下した
場合には未還元の酸化鉄溶融物の炉床への落下、および
円周方向のアンバランスが生じ易くなり、高炉の円滑な
操業を困難にするばかりでなく、ひいては高炉の冷込み
を誘発することにもなる。逆に上昇した場合には不必要
に溶銑温度の上昇、銑中〔Si〕の上昇を招くことにな
る。(Prior art) In the operation of a blast furnace, the pre-treated iron ore charged from the top of the furnace moves to the lower part of the furnace and is heated and reduced by contact with the gas in the furnace and melted in the cohesive zone. Drop it. The position of this cohesive zone is almost determined by the degree of temperature rise and reduction while the iron ore is descending from the furnace top to the cohesive zone (this part is referred to as the lump zone below). Decreases, and on the contrary, it increases when it is early. If the position of the cohesive zone is unnecessarily lowered, unreduced iron oxide melt is likely to drop into the hearth and unbalance in the circumferential direction, which not only makes smooth operation of the blast furnace difficult. Nonetheless, it also induces cooling of the blast furnace. On the contrary, if the temperature rises, it will unnecessarily increase the hot metal temperature and the [Si] in the hot metal.
このような炉熱の制御法として、例えば特開昭58−7
1308号公報に示されるように、粒度を規定した酸化
鉄を高炉羽口より吹込むものがある。As such a furnace heat control method, for example, JP-A-58-7
As disclosed in Japanese Patent No. 1308, there is one in which iron oxide having a specified grain size is blown from the tuyere of a blast furnace.
一方、装入される事前処理された鉄鉱石類は、その大部
分は焼結鉱が用いられており、一部塊鉱石と混合装入さ
れているが、近年焼結鉱製造過程で発生するSOX,NOXあ
るいは粉塵等が公害源になるという問題、さらには省エ
ネルギー上から鉄鉱石粉末にコークス粉などの燃料源を
内装し、結合材としてセメント、水などを添加混合し、
ペレツト状などに成形後、養生硬化させた非焼成塊成鉱
の開発が進み、高炉装入用原料として前記焼結鉱、塊鉱
石と配合し高炉に装入することが一部で実用化され、そ
の配合量を増やす努力がなされている。On the other hand, most of the pre-treated iron ore that is charged is sinter, and some of it is mixed with lump ore. From the problem that SOX, NOX or dust becomes a pollution source, and from the viewpoint of energy saving, iron ore powder is internally equipped with a fuel source such as coke powder, and cement, water, etc. are added and mixed as a binder,
Development of a non-fired agglomerated ore that has been cured and hardened after being formed into pellets, etc. has been partially put into practical use by blending it with the above-mentioned sintered ore and agglomerate ore as a raw material for blast furnace charging. , And efforts are being made to increase the blending amount.
(発明が解決しようとする問題点) しかし、非焼成塊成鉱は、前述の如く結合材として一般
にセメント類のような水硬性結合材を用いるため水を添
加するので、非焼成塊成鉱中の結晶水・付着水に起因す
る吸熱反応によつて炉内シヤフト上部の昇温遅れと、そ
れに伴う還元の遅延が非焼成塊成鉱の多量使用時には顕
著になる。特に結晶水の分解吸熱反応は600℃近くま
で長引くため、かなり原料の昇温を阻害する。したがつ
て非焼成塊成鉱を焼結鉱等に多量配合できない大きな原
因の一つになつていた。(Problems to be solved by the invention) However, since the non-calcined agglomerated ore generally uses a hydraulic binder such as cement as a binder as described above, water is added to the uncalcined agglomerated ore. Due to the endothermic reaction caused by the water of crystallization / adhered water, the delay in the temperature rise at the upper part of the shaft in the furnace and the accompanying delay in the reduction become remarkable when a large amount of uncalcined agglomerated ore is used. In particular, the decomposition endothermic reaction of water of crystallization is prolonged to near 600 ° C., which considerably hinders the temperature rise of the raw materials. Therefore, it was one of the major causes of the inability to mix a large amount of non-fired agglomerated ore with sinter ore.
本発明はこのような実情により、非焼成塊成鉱の装入に
よる還元遅れを羽口より酸化鉄を吹込んで炉熱を適正に
コントロールし、安定した高炉操業方法を提供せんとす
るものである。The present invention is intended to provide a stable blast furnace operating method by appropriately controlling the furnace heat by blowing iron oxide from the tuyere to reduce the reduction delay due to the charging of non-calcined agglomerated ore based on such circumstances. .
(問題点を解決するための手段、および作用) 本発明の要旨は高炉装入原料に非焼成塊成鉱を配合した
高炉操業方法において、前記非焼成塊成鉱の配合量、お
よび水分量に応じて、送風羽口より粉鉄鉱石、または酸
化鉄粉を吹込み、炉熱を制御することを特徴とするもの
である。(Means for Solving Problems and Actions) The gist of the present invention is to provide a blast furnace operating method in which a non-calcined agglomerated ore is mixed with a blast furnace charging raw material, Accordingly, the iron ore powder or the iron oxide powder is blown from the blast tuyere to control the furnace heat.
次に本発明法を詳細に説明する。Next, the method of the present invention will be described in detail.
高炉炉頂部へ装入された鉄鉱石は炉内ガス(CO,CO2,H2,
N2)により昇温、還元されながら塊状帯を降下する。そ
のガスは融着帯より噴出してくるため概略一定温度であ
る。このため昇温還元すべき原料の性状、原料単位当り
のガス量、鉄鉱石の降下スピードがその昇温、還元スピ
ードを決定する。炉頂から装入する非焼成塊成鉱の比率
を変化させた場合には塊状帯での吸熱量の変化△Qは式
(1)で表わされる。The iron ore charged at the top of the blast furnace is the gas in the furnace (CO, CO 2 , H 2 ,
It descends through the massive zone while being heated and reduced by N 2 ). Since the gas is ejected from the cohesive zone, the temperature is approximately constant. Therefore, the property of the raw material to be heated and reduced, the amount of gas per unit of raw material, and the descending speed of iron ore determine the heating and reducing speed. When the ratio of non-calcined agglomerated ore charged from the furnace top is changed, the endothermic change in the massive zone ΔQ is
It is represented by (1).
但し△Qi:下記反応に共う反応熱量 H2O(l)→H2O(g) △Q1 Fe2O3・H2O→Fe2O3+H2O(g) △Q2 Al2O3・3H2O→Al2O3+3H2O(g) △Q3 Al2O3・2SiO2・2H2O→Al2O3+2SiO2+2H2O(g) △Q4 Ca(OH)2→CaO+H2O(g) △Q5 CaCO3→CaO+CO2(g) △Q6 △Vi:非焼成塊成鉱配合比増減に伴うi物質の増減量 この吸熱量変化を炉内ガス量の増減で補正するためのガ
ス量変化は式(2)で算出できる。 However, ΔQi: heat of reaction H 2 O (l) → H 2 O (g) ΔQ 1 Fe 2 O 3 · H 2 O → Fe 2 O 3 + H 2 O (g) ΔQ 2 Al 2 O 3 / 3H 2 O → Al 2 O 3 + 3H 2 O (g) △ Q 3 Al 2 O 3・ 2SiO 2・ 2H 2 O → Al 2 O 3 + 2SiO 2 + 2H 2 O (g) △ Q 4 Ca ( OH) 2 → CaO + H 2 O (g) △ Q 5 CaCO 3 → CaO + CO 2 (g) △ Q 6 △ Vi: Increase / decrease in i substance due to increase / decrease in uncalcined agglomerate composition ratio The change in the amount of gas to be corrected by increasing or decreasing the amount can be calculated by equation (2).
△ガス量=△Q÷(△T×Cガス)・・・・(2) 但し△T:融着帯からのガス噴出温度一炉頂ガス温度 Cガス:炉内ガス比熱 この△ガス量をCO,CO2ガスで増減させるための必
要燃料比(カーボン比)の増減量は式(3)で算出でき
る。△ Gas amount = △ Q ÷ (△ T × C gas) ・ ・ ・ (2) However, △ T: Gas ejection temperature from the cohesive zone-top furnace gas temperature C gas: Specific heat of gas in the furnace The amount of increase / decrease in the required fuel ratio (carbon ratio) to increase / decrease with CO and CO 2 gas can be calculated by equation (3).
△燃料比=△ガス量÷22.4×12÷燃料中のカーボン含有率・・・・式(3) 燃料比の変化はガス量(CO,CO2,N2,H2)の変化ばかりで
なく式(4)に示すようにガス化する場合には羽口で反応
熱を伴うことから、羽口先を滴下する溶融物の顕熱、カ
ーボンによるSiO(g)の還元等の反応を増減させる。これ
は高炉操業の安定化、溶銑品質の安定化を阻害すること
になる。△ fuel ratio = △ gas amount ÷ 22.4 × 12 ÷ carbon content in fuel ... Equation (3) The fuel ratio changes only in the gas amount (CO, CO 2 , N 2 , H 2 ). In the case of gasification as shown in equation (4), the heat of reaction accompanies the tuyere, so the reactions such as sensible heat of the melt dripping at the tip of the tuyere, reduction of SiO (g) with carbon, etc. Let This hinders the stabilization of blast furnace operation and the stabilization of hot metal quality.
C+1/2O2→CO・・・・・(4) これを防止するべく本発明法は、この燃料比変化を羽口
より吹込む粉鉄鉱石量の増減により非焼成塊成鉱配合比
変更前と同一燃料比(ベース燃料比)とするものであ
る。すなわち前記計算燃料比の増減に対し式(5)により
羽口から吹込む粉鉄鉱石の増減量を算出し、実行するも
のである。C + 1 / 2O 2 → CO (4) In order to prevent this, according to the method of the present invention, before the change of the non-calcined agglomerated ore composition ratio due to the increase or decrease of the amount of fine iron ore blown from the tuyere, this fuel ratio change And the same fuel ratio (base fuel ratio). That is, with respect to the increase / decrease in the calculated fuel ratio, the increase / decrease amount of the fine iron ore blown from the tuyere is calculated by the formula (5) and executed.
△粉鉄石吹込量=△燃料比÷(ベース燃料比×酸化鉄の銑鉄生成量原単位)・・
・・式(5) これにより非焼成塊成鉱配合比を変化させた場合、およ
びその塊状帯での吸熱量が変化した場合にも、塊状帯で
の昇温、還元状況を変化させることなく温度、成分等の
溶銑品質を一定にできる高炉操業方法となるものであ
る。△ Powdered iron stone injection amount = △ Fuel ratio ÷ (Base fuel ratio × Iron oxide production basic unit of iron oxide) ・ ・
・ ・ Equation (5) Even if the unfired agglomerated ore mixture ratio is changed and the endothermic amount in the agglomerated zone changes, the temperature rise and reduction conditions in the agglomerated zone do not change. This is a method of operating a blast furnace in which the quality of hot metal such as temperature and components can be made constant.
本発明法に使用する酸化鉄粉としては、鉄鉱石,ミルス
ケール、金属精錬スラグ等であり、FeO,Fe3O4Fe2O3等酸
化鉄を含有するものであれば効果的である。その粒度は
なるべく微粒にすることが好ましい。その理由は粒度が
大きいと鉄に還元されることなく炉底に達し、スラグ中
FeO濃度の上昇による溶銑中〔S〕の上昇をまねく恐れが
あるからである。The iron oxide powder used in the method of the present invention is iron ore, mill scale, metal refining slag, or the like, and any iron oxide such as FeO, Fe 3 O 4 Fe 2 O 3 is effective. It is preferable to make the particle size as fine as possible. The reason is that if the particle size is large, it reaches the bottom of the furnace without being reduced to iron,
This is because there is a risk that the increase in FeO concentration may lead to an increase in [S] in the hot metal.
また配合装入される非焼成塊成鉱は前記理由の如く含有
水分が高いほど効果的であるが、水分が少なくても分解
吸熱反応による還元遅れを防止できるので本発明法は充
分発揮できるものである。Further, the non-calcined agglomerated ore compounded and charged is more effective as the water content is higher as described above, but even if the water content is low, the reduction delay due to the decomposition endothermic reaction can be prevented, so that the method of the present invention can be sufficiently exerted. Is.
(実施例) 炉容積4000m3の高炉において本発明を実施した。鉄
鉱石粉を主体にカーボンを内装し、セメントおよび水を
添加混練し、粒径8〜16mmのペレツトとし、養生硬化
させた非焼成塊成鉱の成分、および水分を第1表に示
す。(Example) The present invention was carried out in a blast furnace having a furnace volume of 4000 m 3 . Table 1 shows the components and water content of the non-calcined agglomerate, which is mainly composed of iron ore powder, carbon is added, cement and water are added and kneaded to form pellets having a particle size of 8 to 16 mm, and cured and hardened.
酸化鉄粉として、粒度構成−0.044mm58%,0.044〜0.12
5mm30%,0.125〜0.25mm12%の微粉鉄鉱石を用いた。そ
の成分を第2表に示す。 As iron oxide powder, particle size composition-0.044mm58%, 0.044-0.12
Fine iron ore of 5% 30% and 0.125 to 0.25 mm 12% was used. The components are shown in Table 2.
図に示したように、第1表に示した成分の非焼成塊成鉱
を焼結鉱に対し配合割合を変えて混合装入した。一方各
羽口より第2表に示した成分の微粉鉄鉱石を吹込装置を
用いて非焼成塊成鉱の配合割合に応じて吹込み通常の高
炉操業を行なつた。 As shown in the figure, the non-calcined agglomerated ore having the components shown in Table 1 was mixed and charged into the sinter with different blending ratios. On the other hand, the fine iron ore having the components shown in Table 2 was blown from each tuyere using a blowing device according to the blending ratio of the non-calcined agglomerated ore, and the normal blast furnace operation was performed.
その結果を、比較例として酸化鉄を吹込まない従来の操
業方法と共に同図に示した。この図からも明らかな如く
非焼成塊成鉱の配合割合に応じて酸化鉄として羽口より
粉鉱石を吹込み、操業を行うことによつて燃料比を低値
一定にし、溶銑温度、銑中〔Si〕をほぼ一定にすること
が可能となつた。The results are shown in the same figure as a comparative example together with a conventional operation method in which iron oxide is not blown. As is clear from this figure, according to the blending ratio of the non-calcined agglomerated ore, powdered ore was blown from the tuyere as iron oxide, and the fuel ratio was kept constant at a low value by operating, and the hot metal temperature and the pig iron It became possible to keep [Si] almost constant.
(発明の効果) 以上の如く本発明法によれば、非焼成塊成鉱の装入配合
量を増加させて吸熱量が変化した場合でも塊状帯での昇
温、還元状況を変化させることなく、溶銑品質を一定に
することが出来るので、非焼成塊成鉱の使用量を増大さ
せることができ、原料処理のコスト低減、省エネルギー
上優れた高炉操業方法である。(Effects of the Invention) As described above, according to the method of the present invention, even if the endothermic amount is changed by increasing the charging amount of the non-calcined agglomerated ore, the temperature rise and reduction conditions in the massive zone are not changed. Since the quality of the hot metal can be kept constant, the amount of non-fired agglomerated ore used can be increased, the cost of raw material processing can be reduced, and the blast furnace operating method is excellent in energy saving.
図は実施例における高炉操業経過時間と、非焼成塊成配
合量に対する粉鉱石吹込量および燃料比、溶銑温度、銑
中〔Si〕の関係図である。The figure is a relational diagram of the elapsed time of blast furnace operation, the amount of powdered ore injected and the fuel ratio, the hot metal temperature, and the in-pigment [Si] with respect to the non-fired agglomeration compounded amount in the examples.
Claims (1)
炉操業方法において、前記非焼成塊成鉱の配合量、およ
び水分量に応じて、送風羽口より粉鉄鉱石、または酸化
鉄粉を吹込み、炉熱を制御することを特徴とする非焼成
塊成鉱を配合装入した高炉操業方法。1. A blast furnace operating method in which a non-calcined agglomerated ore is mixed with a blast furnace charging raw material, and powdered iron ore or oxidization is carried out from a blast tuyere according to a compounded amount of the non-calcined agglomerated ore and a water content. A method for operating a blast furnace in which non-sintered agglomerated ore is compounded and charged, which comprises injecting iron powder and controlling furnace heat.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18099586A JPH0625365B2 (en) | 1986-07-31 | 1986-07-31 | Blast furnace operating method with non-fired agglomerated ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18099586A JPH0625365B2 (en) | 1986-07-31 | 1986-07-31 | Blast furnace operating method with non-fired agglomerated ore |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6335707A JPS6335707A (en) | 1988-02-16 |
JPH0625365B2 true JPH0625365B2 (en) | 1994-04-06 |
Family
ID=16092892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18099586A Expired - Lifetime JPH0625365B2 (en) | 1986-07-31 | 1986-07-31 | Blast furnace operating method with non-fired agglomerated ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0625365B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6402742B2 (en) | 2016-04-28 | 2018-10-10 | 株式会社豊田自動織機 | Tractor |
-
1986
- 1986-07-31 JP JP18099586A patent/JPH0625365B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6335707A (en) | 1988-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101665871B (en) | Method for producing titanium carbide slag | |
AU2009234752B2 (en) | Titanium oxide-containing agglomerate for producing granular metallic iron | |
JP2004285399A (en) | Method for producing granular metallic iron | |
US20080127778A1 (en) | Process for producing molten iron | |
KR100661878B1 (en) | Process for producing molten iron | |
RU2669653C2 (en) | Method of producing granular metallic iron | |
JPH0447004B2 (en) | ||
JP4984488B2 (en) | Method for producing semi-reduced sintered ore | |
JP2000192153A (en) | Sintered ore and production thereof, and operation of blast furnace | |
KR20040057191A (en) | A method for making molten iron by using hot compaction of fine dri and calcined additives in non-coking coal based iron making process | |
JPH0625365B2 (en) | Blast furnace operating method with non-fired agglomerated ore | |
JP2002226920A (en) | Sintered ore manufacturing method, and sintered ore | |
JP3068967B2 (en) | Blast furnace operation method | |
JP3014556B2 (en) | Blast furnace operation method | |
JP4661077B2 (en) | Method for producing sintered ore | |
JP3590543B2 (en) | How to inject iron-containing powder into the blast furnace | |
JP3864506B2 (en) | Semi-reduced iron agglomerate, method for producing the same, and method for producing pig iron | |
US708331A (en) | Process of treating fine iron ores for blast-furnaces. | |
JP2666397B2 (en) | Hot metal production method | |
JPH09310111A (en) | Pellet for producing sponge iron and production of sponge iron | |
JPS6114203B2 (en) | ||
JP2000290709A (en) | Method for charging raw material into blast furnace | |
JPS6248749B2 (en) | ||
JPS62167809A (en) | Production of molten chromium iron | |
KR970010798B1 (en) | Agglomeration method of fine powder using non-coking coal |