JPH06253611A - Weed state detecting system for mower - Google Patents

Weed state detecting system for mower

Info

Publication number
JPH06253611A
JPH06253611A JP4847693A JP4847693A JPH06253611A JP H06253611 A JPH06253611 A JP H06253611A JP 4847693 A JP4847693 A JP 4847693A JP 4847693 A JP4847693 A JP 4847693A JP H06253611 A JPH06253611 A JP H06253611A
Authority
JP
Japan
Prior art keywords
grass
weed
absence
vehicle
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4847693A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ueda
上田  吉弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4847693A priority Critical patent/JPH06253611A/en
Publication of JPH06253611A publication Critical patent/JPH06253611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Harvester Elements (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

PURPOSE:To provide a weed state detecting system for a mower designed to favorably maintain the detective accuracy for weed circumstances in proper response to the variation of weed presence/absence detection range (in particular, in the case that it becomes narrower) as the object of discriminating weed circumstances even in case vehicle speed is changed (in particular, toward lower speed side). CONSTITUTION:The system is provided with (A) a means 22 to detect weed presence/absence for each of plural sections divided at specified intervals along the lateral width direction of a vehicle and (B) a means 100 to discriminate weed circumstance by sampling weed presence/absence information for the respective sections for each specified time longer than the detection time while discriminating as weed presence in case weed presence is detected within a detection time for the respective sections based on the information from the means 22. The means 100 can conduct discriminative operations using information sampled in such a frequency in lower speed running of the vehicle as to be larger than that in higher speed running thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車体横幅方向に沿って
所定間隔で区分けされた複数個の区間毎に草の有無を検
出する草有無検出手段と、その草有無検出手段の情報に
基づいて、前記複数個の区間夫々について検出時間内に
草有りが検出されると草有りであると判別しながら、前
記検出時間以上の所定時間毎に前記複数個の区間夫々に
ついての草有無情報をサンプリングして草の存在状態を
判別する判別手段とが設けられた草刈機の草状態検出装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is based on grass presence detection means for detecting the presence or absence of grass in each of a plurality of sections divided at predetermined intervals along the lateral direction of a vehicle body, and based on the information of the grass presence detection means. When the presence of grass is detected within the detection time for each of the plurality of sections, the presence / absence information of grass is detected for each of the plurality of sections at every predetermined time that is equal to or longer than the detection time. The present invention relates to a grass state detection device for a mowing machine, which is provided with a determination means for sampling and determining the presence state of grass.

【0002】[0002]

【従来の技術】この種の草刈機の草状態検出装置は、例
えば、草としての芝を刈る作業を人手を介さずに行うた
めの自走式の芝刈り作業車に用いられるものであり、そ
の際、車体横幅方向に沿って所定間隔で区分けされた複
数個の区間毎の草有無情報を所定時間毎にサンプリング
し、そのサンプリング情報に基づいて、例えば未処理作
業地と処理済作業地との境界を、草(芝)の存在状態と
して判別するものである。但し、従来では、例えば、上
記サンプリング情報のうちの例えば現時点の1回の情報
のみを用いて上記判別動作(例えば未処理作業地と処理
済作業地の境界の検出)を行うようにしていた。尚、上
記境界情報は、それに基づいて境界に対する車体操向位
置の偏位を検出し、この偏位を小さくするように境界に
沿って車体を走行させるための走行制御情報として使用
される。
2. Description of the Related Art A grass condition detecting device for a grass mower of this type is used, for example, in a self-propelled lawnmower vehicle for cutting grass as grass without manpower. At that time, grass presence information for each of a plurality of sections divided at predetermined intervals along the lateral direction of the vehicle body is sampled at predetermined intervals, and based on the sampling information, for example, an unprocessed work site and a processed work site The boundary of is discriminated as the presence state of grass (turf). However, conventionally, for example, the determination operation (for example, the detection of the boundary between the unprocessed work site and the processed work site) is performed by using, for example, only one piece of information of the sampling information at the present time. The boundary information is used as traveling control information for detecting the deviation of the vehicle body steering position with respect to the boundary based on it and causing the vehicle body to travel along the boundary so as to reduce this deviation.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、例えば車速が高速と低速の2段階切り換え
であるときに(通常、作業中は高速状態である)、エン
ジンの負荷が重くなり過ぎたり、あるいは、前記境界に
対する車体操向位置の偏位が過大になった等の原因で車
速が低速に変速された場合には、草有無情報のサンプリ
ング間隔に相当する所定時間に走行する距離が短くなる
ため、草の存在状態の判別手段の対象となる草有無情報
の検出領域が狭くなる。この検出領域の変動を図13に
て具体的に説明すれば、高速時の車速vH と低速時の車
速vL との速度比を例えば3:1とすると、低速時に走
行する距離は高速時の1/3(図中、vL 及びvH の各
矢印にて示される距離の比)であり、従って、草有無検
出手段が例えば車体横幅方向に往復移動操作するように
構成されている場合に、低速時にその片道移動経路KL1
によって横切られる検出領域(vL の矢印にて示される
距離×W)は、高速時にその片道移動経路KH によって
横切られる検出領域(vH の矢印にて示される距離×
W)の1/3の面積になる。そして、この狭くなった検
出領域が例えば草の植立密度が局部的に小さい場所であ
るような場合には、その領域は本来未処理作業地である
にもかかわらず、処理済作業地と誤検出されるおそれが
あった。そして、この場合には、未処理作業地と処理済
作業地との境界を実際の境界よりも未処理作業地側に入
った位置として判別することになるので、車体操向位置
が適正位置よりも未処理作業地側に入り込むように操向
制御され、未処理作業地に刈り残しを発生することにな
る。
However, in the above-mentioned prior art, when the vehicle speed is switched between two stages of high speed and low speed (usually in a high speed state during work), the engine load becomes too heavy. Alternatively, when the vehicle speed is shifted to a low speed due to an excessive deviation of the vehicle body steering position with respect to the boundary, the distance traveled in a predetermined time corresponding to the sampling interval of the grass presence information is short. Therefore, the detection area of the grass presence / absence information, which is the target of the grass presence state determination means, becomes narrow. This variation in the detection region will be specifically described with reference to FIG. 13. If the speed ratio between the vehicle speed v H at high speed and the vehicle speed v L at low speed is, for example, 3: 1, the distance traveled at low speed is at high speed. 1/3 (the ratio of the distances indicated by the arrows v L and v H in the figure), and therefore the grass presence / absence detection means is configured to reciprocate in the lateral direction of the vehicle body, for example. At low speed, the one-way travel route KL1
The detection area (distance indicated by the arrow of v L × W) crossed by is the detection area (distance indicated by the arrow of v H × X crossed by the one-way travel route K H at high speed ×
The area is 1/3 of W). If the narrowed detection area is a place where the planting density of grass is locally small, for example, the area is originally an unprocessed work site, but is mistaken as a treated work site. It might have been detected. Then, in this case, the boundary between the unprocessed work site and the processed work site is determined as a position that is closer to the unprocessed work site than the actual boundary. The steering control is also performed so that the unprocessed work site enters the unprocessed work site, and uncut material is left on the unprocessed work site.

【0004】本発明は、上記実情に鑑みてなされたもの
であって、その目的は、車速が変速された場合(特に低
速側に)であっても、草の存在状態の判別対象となる草
有無検出領域の変動(特に狭くなる場合)に適切に対応
して草の存在状態の検出精度を良好に維持できる草刈機
の草状態検出装置を得ることにある。
The present invention has been made in view of the above circumstances, and an object thereof is to determine the presence state of grass even when the vehicle speed is changed (especially on the low speed side). An object of the present invention is to obtain a grass condition detecting device for a mower that can appropriately maintain the accuracy of detecting the presence condition of grass by appropriately responding to the variation (especially when it becomes narrow) of the presence detection region.

【0005】[0005]

【課題を解決するための手段】本発明による草刈機の草
状態検出装置の第1の特徴構成は、前記判別手段は、低
速走行のときの方が高速走行のときよりも、多数回の前
記サンプリング情報を用いて前記判別動作を行うように
構成されている点にある。
A first characteristic configuration of a grass condition detecting device for a mower according to the present invention is characterized in that the determining means performs the low speed traveling a large number of times as compared with the high speed traveling. The point is that the determination operation is performed using sampling information.

【0006】又、第2の特徴構成は、前記草有無検出手
段が、所定速度で車体横幅方向に沿って往復移動操作さ
れる草有無検出部を備えるように構成されている点にあ
る。
A second characteristic configuration is that the grass presence / absence detecting means is provided with a grass presence / absence detecting section that is operated to reciprocate along the lateral direction of the vehicle body at a predetermined speed.

【0007】[0007]

【作用】本発明の第1の特徴構成によれば、車体横幅方
向に沿って所定間隔で区分けされた複数個の区間毎の草
有無検出情報が所定時間毎にサンプリングされ、低速走
行のときには、高速走行のときよりも多数回の上記サン
プリング情報を用いて、例えば、高速走行のときは現時
点のサンプリング情報のみを用いるのに対して、低速走
行のときには現時点及び現時点より以前のサンプリング
情報を用いて、草の存在状態(例えば、未処理作業地と
処理済作業地との境界)が判別される。
According to the first characteristic configuration of the present invention, the grass presence / absence detection information for each of a plurality of sections divided at predetermined intervals along the lateral direction of the vehicle body is sampled at predetermined intervals, and when traveling at low speed, By using the above sampling information a number of times more than when traveling at high speed, for example, when sampling at high speed, only the sampling information at the present time is used, while at the time of traveling at low speed, sampling information at the present time and before the current time is used. , The presence state of grass (for example, the boundary between an unprocessed work site and a processed work site) is determined.

【0008】又、第2の特徴構成によれば、草有無検出
手段に備えられた草有無検出部が、所定速度で車体横幅
方向に往復移動操作され、その草有無検出部が上記検出
用の複数個の各区間に位置したときに各区間における草
の有無が検出される。
According to the second characteristic configuration, the grass presence / absence detecting section provided in the grass presence / absence detecting means is reciprocally operated in the lateral direction of the vehicle body at a predetermined speed, and the grass presence / absence detecting section is used for the above detection. The presence or absence of grass in each section is detected when it is located in each of the plurality of sections.

【0009】[0009]

【発明の効果】従って、本発明の第1の特徴構成によれ
ば、低速走行の場合において、草有無検出手段の1回毎
のサンプリング情報が対象とする検出対象領域が狭くな
っても、草の存在状態の判別精度の低下を有効に防止で
き、もって、車速の変動にもかかわらず草状態検出装置
の信頼性を確保できる。
Therefore, according to the first characteristic configuration of the present invention, even if the detection target area targeted by the sampling information for each time of the grass presence / absence detecting means is narrowed in the case of low speed traveling, the grass is detected. It is possible to effectively prevent a decrease in the accuracy of determining the existence state of the grass, and thus to ensure the reliability of the grass condition detecting device despite the change in the vehicle speed.

【0010】又、第2の特徴構成によれば、1個の草有
無検出部で複数個の区間の草有無検出が可能となるの
で、例えば検出用の複数個の各区間毎に草有無検出部を
設ける場合等に比べて、草有無検出手段の装置構成を簡
素化できる。
Further, according to the second characteristic configuration, it is possible to detect the presence / absence of grass in a plurality of sections by using one grass presence / absence detection unit. Therefore, for example, the presence / absence detection of grass is detected in each of a plurality of sections for detection. The device configuration of the grass presence / absence detection means can be simplified as compared with the case where a part is provided.

【0011】[0011]

【実施例】以下、本発明を草刈機としての芝刈り作業車
に適用した実施例について図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a lawnmower working vehicle as a mower will be described below with reference to the drawings.

【0012】図4乃至図6に示すように、エンジンEを
搭載した車体Vの下部に芝刈り用の回転刃体2を取付け
るとともに、車体Vの前後部に、操向輪としての遊転前
輪1Fと、高速又は低速の2段階に車速を切り換えが可
能な車速変速手段としての駆動ケース3を介してエンジ
ンEの駆動力が伝達される左右一対の駆動後輪1L,1
Rとを取付けて芝刈り作業車を構成してある。尚、上記
高速時の車速vH と低速時の車速vL との速度比は3:
1に設定されている。又、前記回転刃体2は、電磁操作
式のモアクラッチ15(図1参照)を介してエンジンE
に連結されている。前輪1Fは、これを直接操向するス
テアリングギア1Aと、自動操向用のステアリングモー
タM1と、ステアリングモータM1の駆動力をステアリ
ングギア1Aに伝達するモータギア1Bとからなる操向
機構を介して前記車体Vに取付けてある。尚、ステアリ
ングギア1Aの回転軸部には、前輪1Fの操舵角θiを
検出する第2ポテンショメータFが設置されている。
又、前輪1Fの回転軸部には、その回転数を検出する第
1エンコーダ14が設けられている。尚、この第1エン
コーダ14の回転パルスを積算して走行距離が算出され
る。又、前記車体Vには、作業車の走行時の現在方位を
検出するために、トロイダルコアを用いたフラックスゲ
ート方式の地磁気センサS0が設置されている。
As shown in FIGS. 4 to 6, a rotary blade 2 for lawn mowing is attached to a lower portion of a vehicle body V on which an engine E is mounted, and free front wheels as steering wheels are provided on the front and rear portions of the vehicle body V. 1F and a pair of left and right drive rear wheels 1L, 1 to which the driving force of the engine E is transmitted via a drive case 3 as a vehicle speed changing means capable of switching the vehicle speed between two stages of high speed and low speed.
R and R are attached to form a lawnmower work vehicle. The speed ratio between the high speed vehicle speed v H and the low speed vehicle speed v L is 3:
It is set to 1. Further, the rotary blade body 2 is connected to the engine E via an electromagnetically operated mower clutch 15 (see FIG. 1).
Are linked to. The front wheel 1F is provided with a steering mechanism including a steering gear 1A that directly steers the front wheel, a steering motor M1 for automatic steering, and a motor gear 1B that transmits the driving force of the steering motor M1 to the steering gear 1A. It is attached to the vehicle body V. A second potentiometer F for detecting the steering angle θi of the front wheels 1F is installed on the rotary shaft of the steering gear 1A.
A first encoder 14 that detects the number of rotations of the front wheel 1F is provided on the rotation shaft portion of the front wheel 1F. The traveling distance is calculated by integrating the rotation pulses of the first encoder 14. In addition, a fluxgate type geomagnetic sensor S0 using a toroidal core is installed in the vehicle body V in order to detect the current azimuth of the work vehicle during traveling.

【0013】前記車体Vの前方下部には、前輪1Fが位
置する部分以外の車体前方側下部を覆うガード板11が
その下面を水平方向に沿うような状態で設けられ、この
ガード板11により、上方に伸びる芝の先端側が車体V
の走行に伴って進行方向に押されてガード板11の下側
に入り込む状態となる。前記ガード板11の上部でかつ
その前端部よりも後方側位置に、図2にも示すように、
左右一対の円筒体12が、車体Vに固定された軸受部1
3によって縦軸芯回りに揺動自在に且つ落下しないよう
に支持された状態で設けられている。そして、この左右
一対の円筒体12夫々の下部前面側に、互いの検出方向
が所定角度(例えば15度)をなすように設定された一
対の反射式フォトインタラプタでなる2つの芝高さ検出
センサS1,S2あるいはS3,S4を分散配置してあ
り、これら合計4つの芝高さ検出センサS1,S2,S
3,S4は、後述の揺動機構23によって前記左右一対
の円筒体12が揺動されるのに伴って車体Vの横幅方向
に沿ってその検出位置を変化させながら、車体前方側に
検出用の光信号を発射してその反射光を検出することで
未刈り芝の有無を検出する。即ち、反射光があれば芝有
り状態を検出する一方、反射光がなければ芝が刈り取ら
れている芝無し状態を検出する。
At the lower front portion of the vehicle body V, there is provided a guard plate 11 that covers the lower portion on the front side of the vehicle body other than the portion where the front wheels 1F are located, with its lower surface extending along the horizontal direction. The tip of the grass that extends upward is the vehicle body V
As the vehicle travels, it is pushed in the traveling direction and enters the lower side of the guard plate 11. As shown in FIG. 2, at the upper part of the guard plate 11 and at the position rearward of the front end part thereof,
Bearing part 1 in which a pair of left and right cylindrical bodies 12 are fixed to the vehicle body V
It is provided so as to be swingable about the axis of the vertical axis and supported by 3 so as not to fall. Then, on the lower front surface side of each of the pair of left and right cylindrical bodies 12, two grass height detection sensors formed of a pair of reflective photointerrupters set so that their detection directions form a predetermined angle (for example, 15 degrees). S1, S2 or S3, S4 are arranged in a distributed manner, and a total of these four grass height detection sensors S1, S2, S
3 and S4 are for detection on the front side of the vehicle body while changing the detection position along the lateral width direction of the vehicle body V as the pair of left and right cylindrical bodies 12 are rocked by a rocking mechanism 23 described later. The presence or absence of uncut grass is detected by emitting the optical signal of and detecting the reflected light. That is, if there is reflected light, the turf-presence state is detected, while if there is no reflected light, the turf-plucked state is detected.

【0014】前記揺動機構23は、図2にも示すよう
に、前記左右一対の円筒体12のうちの一方側(右側)
の上部側面から車体内方側に突き出たアーム24と、こ
のアーム24の先端部に縦軸芯回りに枢支された転輪2
4Aに接当するように配置された偏心カム25と、この
偏心カム25を回転させるためにその上部に設けたセン
サ揺動用モータm等にて構成されている。尚、前記アー
ム24は図示しないバネ材等によって前記偏心カム25
に接当する方向に付勢されている。又、前記左右一対の
円筒体12夫々の上部側面から車体前方側に突き出るよ
うにアーム26が設けられ、これら左右のアーム26の
先端部同士がこれらに両端部を枢支されたリンク棒28
によって連結されている。以上の構成により、偏心カム
25がセンサ揺動用モータmにて回転されると、右側の
円筒体12が車幅方向に揺動するとともに、これに連動
して左側の円筒体12も車幅方向に揺動して、左右一対
の芝高さ検出センサS1,S2或いはS3,S4の夫々
の芝有無検出位置が車幅方向に往復移動走査される。
As shown in FIG. 2, the swing mechanism 23 has one side (right side) of the pair of left and right cylindrical bodies 12.
Of the arm 24 projecting from the upper side surface of the vehicle toward the inside of the vehicle body, and the rolling wheel 2 pivotally supported around the longitudinal axis at the tip of the arm 24.
4A, an eccentric cam 25 arranged so as to abut the 4A, and a sensor swinging motor m and the like provided on the upper part for rotating the eccentric cam 25. The arm 24 is made of a spring material (not shown) or the like, and the eccentric cam 25
It is urged toward the abutment. An arm 26 is provided so as to project from the upper side surface of each of the pair of left and right cylindrical bodies 12 toward the front side of the vehicle body, and the tip ends of these left and right arms 26 are linked to each other by link bars 28.
Are linked by. With the above configuration, when the eccentric cam 25 is rotated by the sensor swing motor m, the right cylindrical body 12 swings in the vehicle width direction, and in conjunction with this, the left cylindrical body 12 also swings in the vehicle width direction. The turf is swung to the left and right, and the turf presence detection positions of the pair of left and right turf height detection sensors S1, S2 or S3, S4 are reciprocatingly scanned in the vehicle width direction.

【0015】そして、上記芝有無検出位置は、図2に示
すように、前記ガード板11の先端部付近の車幅方向に
沿う所定幅W内の芝の有無を検出するように構成されて
いる。つまり、前記揺動機構23により移動走査される
芝高さ検出センサS1,S2或いは芝高さ検出センサS
3,S4の各センサによって、前記ガード板11の下面
位置よりも所定高さ上方位置における芝の有無が、前記
幅Wを8分割した間隔で区分けされた区間毎に検出さ
れ、これにより一対の芝高さ検出センサS1,S2或い
はS3,S4の揺動走査により8個の芝有無データD0
〜D7或いはD8〜D15が得られる。各データD0〜
D15は、芝有り時に“1”、芝無し時に“0”を示す
デジタルデータである。尚、上記区間は、右側の円筒対
12の回転軸に設けられた第1ポテンショメータGによ
りその揺動角度を検出することで定められ、各区間内を
各センサの検出位置が移動している時間(これを検出時
間と称す)内に芝有りが検出された場合には、その区間
のデータは芝有りデータとする。以上より、前記芝高さ
検出センサS1,S2,S3,S4と前記揺動機構23
とによって、車体横幅方向に沿って所定間隔で区分けさ
れた複数個の区間毎に芝つまり草の有無を検出する草有
無検出手段22が構成され、この草有無検出手段22
が、所定速度で車体横幅方向に沿って往復移動操作され
る草有無検出部としての芝高さ検出センサS1,S2,
S3,S4を備えることになる。
As shown in FIG. 2, the lawn presence / absence detection position is configured to detect the presence / absence of lawn within a predetermined width W in the vehicle width direction near the tip of the guard plate 11. . That is, the turf height detection sensors S1 and S2 or the turf height detection sensor S that are moved and scanned by the swing mechanism 23.
The presence / absence of grass at a predetermined height above the lower surface position of the guard plate 11 is detected by each of the sensors S3 and S4 for each section divided into intervals at which the width W is divided into eight parts. Eight lawn presence / absence data D0 by swing scanning of the lawn height detection sensors S1, S2 or S3, S4
.About.D7 or D8 to D15 are obtained. Each data D0
D15 is digital data indicating "1" when there is grass and "0" when there is no grass. The above section is defined by detecting the swing angle of the section with the first potentiometer G provided on the rotary shaft of the right cylinder pair 12, and the time during which the detection position of each sensor is moving within each section. If the presence of grass is detected within (this is referred to as the detection time), the data in that section is the grass presence data. From the above, the lawn height detection sensors S1, S2, S3, S4 and the swing mechanism 23
By the above, grass presence detecting means 22 for detecting the presence of grass, that is, grass, is configured for each of a plurality of sections divided at predetermined intervals along the lateral direction of the vehicle body.
Is a grass height detection sensor S1, S2 as a grass presence / absence detection unit that is reciprocally moved along the lateral direction of the vehicle body at a predetermined speed.
S3 and S4 will be provided.

【0016】前記車速変速手段としての駆動ケース3
は、図7に示すように、ボール式のクラッチ機構で構成
されている。即ち、前記エンジンEの出力部に連結され
た伝動軸27の後方側には、その軸芯方向に並設された
状態で低速側一次ギア31L及び高速側一次ギア31H
が空回り自在に外嵌されている。尚、低速側一次ギア3
1Lは低速側二次ギア34Lと咬合し、高速側一次ギア
31Hは高速側二次ギア34Hと咬合するようになって
いる。両一次ギア31L,31Hは夫々、対向配置され
るボス部32L,32Hを備えており、それら両ボス部
32L,32Hの適宜位置には、夫々、複数のボール3
3L,33Hが内外両方向へ突出可能に保持されてい
る。伝動軸27の前記ボス部対応位置には、ボール33
L,33Hを内方向へ突出させた状態で夫々落とし込ま
せて係合させる環状凹部27a,27bが形成されてい
る。両ボス部32L,32Hの周囲には、軸芯方向への
移動が自在であり且つ両端部にて夫々ボール33L,3
3Hの一方を外から内方向へ押圧し得るクラッチスリー
ブ35が配置されている。尚、前記伝動軸27の後端部
にはその回転数を検出する第2エンコーダ18が取付け
られており、この第2エンコーダ18の検出回転数から
エンジンEの回転数が判別される。
Drive case 3 as the vehicle speed shifting means
Is composed of a ball-type clutch mechanism, as shown in FIG. That is, on the rear side of the transmission shaft 27 connected to the output part of the engine E, the low speed side primary gear 31L and the high speed side primary gear 31H are arranged side by side in the axial direction thereof.
Is loosely fitted on the outside. The low-speed primary gear 3
1L meshes with the low speed side secondary gear 34L, and the high speed side primary gear 31H meshes with the high speed side secondary gear 34H. Both the primary gears 31L and 31H are provided with boss portions 32L and 32H, respectively, which are arranged to face each other, and a plurality of balls 3 are respectively provided at appropriate positions of the boss portions 32L and 32H.
3L and 33H are held so that they can project in both the inner and outer directions. The ball 33 is provided at the position corresponding to the boss portion of the transmission shaft 27.
The annular recesses 27a and 27b are formed so that the L and 33H can be dropped and engaged with the L and 33H in a state of protruding inward. Around the bosses 32L and 32H, the bosses 32L and 32H are freely movable in the axial direction, and balls 33L and 3 are respectively provided at both ends.
A clutch sleeve 35 that can press one of the 3H inward from the outside is arranged. A second encoder 18 for detecting the rotation speed of the transmission shaft 27 is attached to the rear end portion of the transmission shaft 27, and the rotation speed of the engine E is determined from the rotation speed detected by the second encoder 18.

【0017】前記クラッチスリーブ35を軸芯方向へ移
動させる変速用モータ36と、この変速用モータ36の
回転駆動力がウォーム減速機構37を経由した後伝達さ
れる第1ギア38及びこれに咬合する第2ギア39が設
けられている。更に第2ギア39の軸芯位置にその軸芯
方向に平行で且つ空回り自在な状態で内嵌された旋回軸
42が配置され、この旋回軸42の基端部に偏心カム4
3が取付られると共に先端部にその軸芯方向と直交する
状態で棒状の係止片41が取付られ、コイルバネ40
が、その一端部を第2ギア39に固定されて保持され、
他端部を係止片41に接当させて配置されている。そし
て、変速用モータ36を回転駆動すると第2ギア39が
低速回転してコイルバネ40の弾性力を介して係止片4
1が所定方向に押圧され、これによって旋回軸42すな
わち偏心カム43が旋回し、この偏心カム43の旋回に
応じてクラッチスリーブ35の軸芯方向への往復移動が
行われるようになる。
A gear shifting motor 36 for moving the clutch sleeve 35 in the axial direction, a first gear 38 to which the rotational driving force of the gear shifting motor 36 is transmitted after passing through a worm speed reduction mechanism 37, and the gear 38 meshes therewith. A second gear 39 is provided. Further, a swivel shaft 42 is disposed at the axial center position of the second gear 39 so as to be parallel to the axial center direction of the second gear 39 and to be freely rotatable, and the eccentric cam 4 is provided at the base end portion of the swivel shaft 42.
3 is attached, and a rod-like locking piece 41 is attached to the tip end portion in a state orthogonal to the axial center direction of the coil spring 40.
, One end of which is fixed and held by the second gear 39,
The other end is arranged so as to abut on the locking piece 41. Then, when the speed change motor 36 is rotationally driven, the second gear 39 rotates at a low speed, and the locking piece 4 is caused by the elastic force of the coil spring 40.
1 is pressed in a predetermined direction, whereby the swivel shaft 42, that is, the eccentric cam 43 swivels, and the clutch sleeve 35 reciprocates in the axial direction according to the swiveling of the eccentric cam 43.

【0018】そして、クラッチスリーブ35が図9
(イ)に示す如く高速側ギアの方向へ移動すると、低速
側一次ギア31L側のボール33Lがクラッチスリーブ
35の端部にて押圧されて環状凹部27aに入って係合
し、伝動軸27の回転駆動力が低速側一次ギア31Lへ
伝えられる(その駆動力は更に低速側二次ギア34Lへ
伝えられる)ようになる一方、クラッチスリーブ35が
図9(ロ)に示す如く低速側ギアの方向へ移動すると、
高速側一次ギア31H側のボール33Hがクラッチスリ
ーブ35の端部にて押圧されて環状凹部27bに入って
係合し、伝動軸27の回転駆動力が高速側一次ギア31
Hへ伝えられる(その駆動力は更に高速側二次ギア34
Hへ伝えられる)ようになり、もって、変速操作が行わ
れることとなる。尚、低速側二次ギア34L及び高速側
二次ギア34Hを共に支持する回転軸44には、前後進
切換クラッチ16の一部を構成する一次ベベルギア61
が取付られている。又、クラッチスリーブ35が図7に
示す位置にある場合には、伝動軸27の回転駆動力が伝
動下手側に伝達されないので、駆動ケース3は、前記駆
動後輪1L,1Rへの動力伝達を遮断する断続手段とし
ても機能する。
The clutch sleeve 35 is shown in FIG.
When it moves in the direction of the high speed side gear as shown in (a), the ball 33L on the low speed side primary gear 31L side is pressed by the end of the clutch sleeve 35 and enters into the annular recess 27a to be engaged with the transmission shaft 27. The rotational driving force is transmitted to the low speed side primary gear 31L (the driving force is further transmitted to the low speed side secondary gear 34L), while the clutch sleeve 35 is in the direction of the low speed side gear as shown in FIG. When you move to
The ball 33H on the high speed side primary gear 31H side is pressed by the end of the clutch sleeve 35 and enters into the annular recess 27b to be engaged, and the rotational driving force of the transmission shaft 27 is increased by the high speed side primary gear 31.
It is transmitted to H (the driving force thereof is higher secondary gear 34).
(Transferred to H), and gear shift operation is performed accordingly. A primary bevel gear 61 that constitutes a part of the forward / reverse switching clutch 16 is provided on the rotary shaft 44 that supports both the low speed side secondary gear 34L and the high speed side secondary gear 34H.
Is attached. Further, when the clutch sleeve 35 is at the position shown in FIG. 7, the rotational driving force of the transmission shaft 27 is not transmitted to the lower side of the transmission, so the drive case 3 transmits the power to the drive rear wheels 1L, 1R. It also functions as an interrupting means for shutting off.

【0019】前記変速操作のための偏心カム43の旋回
位置決めは、図8に示すような構成にて行われる。第1
ギア38の回転軸38bには、その第1ギア38に沿う
姿勢で従動するように被検知片38aが装着されてお
り、ウォーム減速機構37の第1ギア38側の表面に
は、その出力部の周りに、被検知片38aを近接状態で
検知する4個の近接センサ37aが90°ずつ位相をず
らせた状態に取り付けられている。尚、4個の近接セン
サ37aのうちの180°位相がずれた一対の近接セン
サ37aは、その一方が高速状態確認の位置に配置され
ると共に、他方が低速状態確認の位置に配置されてい
る。尚、他の二つの近接センサ37aはニュートラル状
態に対応する。かかる近接センサ37aを用いると、第
1ギア38の回転状態が上述の各状態の何れに対応して
いるかを正確に把握することができ、その把握に基づい
て第1ギア38に前述のように機械的に連係する偏心カ
ム43を低速状態及び高速状態に正確に旋回位置決めす
ることができる。
Rotational positioning of the eccentric cam 43 for the gear shifting operation is performed by the structure shown in FIG. First
A detection piece 38a is attached to the rotary shaft 38b of the gear 38 so as to be driven in a posture along the first gear 38, and the surface of the worm speed reduction mechanism 37 on the first gear 38 side has its output portion. Four proximity sensors 37a, which detect the detected piece 38a in the proximity state, are attached around the, in a state in which the phases are shifted by 90 °. Of the four proximity sensors 37a, the pair of proximity sensors 37a, which are 180 ° out of phase with each other, are arranged such that one of them is located at a high speed state confirmation position and the other is located at a low speed state confirmation position. . The other two proximity sensors 37a correspond to the neutral state. By using the proximity sensor 37a, it is possible to accurately ascertain which of the above-mentioned states the rotation state of the first gear 38 corresponds to, and based on the grasping, the first gear 38 is provided with the above-mentioned state. The eccentric cam 43, which is mechanically linked, can be accurately pivotally positioned in the low speed state and the high speed state.

【0020】図10及び図11に示すように、前記左右
一対の駆動後輪1L,1Rの内側部分には、旋回時に旋
回中心側に位置する駆動後輪1L,1Rを地面から浮上
させるように下降する下降状態と、旋回が完了した後に
旋回中心側に位置する駆動後輪1L,1Rを接地させる
ように上昇する上昇状態とに昇降自在で、且つ、上記下
降状態において旋回中心を形成する左右一対の昇降式接
地体9を接地機構を介して車体Vに取付けてあり、又、
上記昇降式接地体9の地面に接地する接地部9Aは、縦
軸芯周りに回転自在な状態で昇降式接地体9の基端側に
よって支持されている。前記接地機構は、左右一対のく
の字型のリンク4の屈曲部を夫々の支点P1,P2周り
に揺動自在に前記駆動ケース3に取付け、リンク4の一
端部に昇降式接地体9を、他端部に昇降式接地体9を上
方に付勢するスプリング5を取り付けると共に、そのス
プリング5の付勢力に抗してリンク4の他端部を昇降式
接地体9を接地させるように揺動操作するカム機構6と
で構成してある。前記カム機構6は、カム6Aと、カム
6Aを回転するための1組のギア7と、このギア7に連
結された接地用モータ8とで構成してあり、カム6Aが
90°回転するたびに、左右一対の昇降式接地体9の夫
々が、上記昇降式接地体9側の前記左右一対の駆動後輪
1L,1Rを浮上させるように下降する下降状態と、そ
の浮上した駆動後輪1L,1Rを接地させるように上昇
する上昇状態とを、交互に繰り返すようになっている。
As shown in FIGS. 10 and 11, inside the left and right pair of driving rear wheels 1L and 1R, the driving rear wheels 1L and 1R located on the turning center side during turning are floated above the ground. Left and right that can descend and descend to a descending state and an ascending state in which the rear drive wheels 1L and 1R located on the center side of the turning after the turning is completed are raised so as to touch the ground, and the turning center is formed in the descending state. A pair of lifting type grounding bodies 9 are attached to the vehicle body V through a grounding mechanism, and
The grounding portion 9A of the lifting / lowering grounding body 9 that grounds to the ground is supported by the base end side of the lifting / lowering grounding body 9 in a rotatable state about the vertical axis. In the grounding mechanism, the bent portions of a pair of left and right doglegged links 4 are swingably attached to the drive case 3 around respective fulcrums P1 and P2, and a lifting grounding body 9 is attached to one end of the link 4. , A spring 5 for urging the elevating grounding body 9 upward is attached to the other end, and the other end of the link 4 is rocked to ground the elevating grounding body 9 against the urging force of the spring 5. The cam mechanism 6 is operated dynamically. The cam mechanism 6 is composed of a cam 6A, a pair of gears 7 for rotating the cam 6A, and a grounding motor 8 connected to the gear 7, and each time the cam 6A rotates 90 °. In addition, the pair of left and right elevating type grounding bodies 9 descends so as to levitate the pair of left and right driving rear wheels 1L and 1R on the side of the elevating type grounding body 9 and the lifted driving rear wheels 1L. , 1R and the ascending state of ascending so as to be grounded are alternately repeated.

【0021】図1に示すように、マイクロコンピュータ
利用の制御装置Hが設けられ、この制御装置Hに、前記
地磁気センサS0、前記第1エンコーダ14、前記第2
エンコーダ18、前記芝高さ検出センサS1,S2,S
3,S4、前記第1ポテンショメータG、前記第2ポテ
ンショメータF、及び前記4個の近接センサ37aから
の各信号が入力されている。又、前記制御装置Hから
は、前記ステアリングモータM1、前記モアクラッチ1
5、前記変速用モータ36、前記センサ揺動用モータ
m、及び前記接地用モータ8に対して駆動信号が出力さ
れる。又、上記制御装置Hは情報記憶用のメモリMEM
に接続されている。
As shown in FIG. 1, a control device H utilizing a microcomputer is provided, and the control device H includes the geomagnetic sensor S0, the first encoder 14, and the second encoder.
Encoder 18, the lawn height detection sensors S1, S2, S
Signals from S3, S4, the first potentiometer G, the second potentiometer F, and the four proximity sensors 37a are input. Further, from the control device H, the steering motor M1, the mower clutch 1
5, a drive signal is output to the shift motor 36, the sensor swing motor m, and the grounding motor 8. Further, the control device H is a memory MEM for storing information.
It is connected to the.

【0022】前記メモリMEM及び前記地磁気センサS
0を利用して、作業開始時に作業者により車体Vが向け
られる第1作業行程K1の方向、即ち、未処理作業地A
と処理済作業地Bとの境界Lが示す方向(図3参照)と
地磁気センサS0が検出する地磁気の向きJとのなす角
度θを基準方位θ0 として前記メモリMEMに記憶する
ことにより、未処理作業地Aと処理済作業地Bとの境界
Lが示す方向を基準方位として設定する基準方位設定手
段10が構成される。
The memory MEM and the geomagnetic sensor S
0, the direction of the first work stroke K1 in which the worker directs the vehicle body V at the start of work, that is, the unprocessed work site A
By storing in the memory MEM the angle θ formed by the direction (see FIG. 3) indicated by the boundary L between the processed work site B and the direction J of the geomagnetism detected by the geomagnetic sensor S0 as the reference azimuth θ 0 , The reference azimuth setting means 10 is configured to set the direction indicated by the boundary L between the processing work site A and the processed work site B as the reference azimuth.

【0023】前記制御装置Hを利用して、前記草有無検
出手段22の情報に基づいて、前記複数個の区間夫々に
ついて検出時間内に芝有りが検出されると芝有りである
と判別しながら、前記検出時間以上の所定時間毎に前記
複数個の区間夫々についての芝有無情報をサンプリング
して芝の存在状態を判別する判別手段100が構成され
ている。ここでは、判別すべき芝の存在状態を、車体横
幅方向での未処理作業地Aと処理済作業地Bとの境界L
としている。尚、上記芝有無情報のサンプリング間隔を
与える所定時間は、前記芝高さ検出センサS1,S2或
いはS3,S4を前記車体横幅方向に沿った検出幅Wの
一端から他端に片道移動操作させるのに要する時間に設
定される。更に、前記判別手段100は、低速走行のと
きの方が高速走行のときよりも、多数回の前記サンプリ
ング情報を用いて前記判別動作を行うように構成されて
いる。そして、前記制御装置Hは、上記判別手段100
によって判別された前記境界Lに対する車体Vの適正位
置からの位置ずれ量を検出するように構成されている。
Using the control device H, if grass is detected within the detection time for each of the plurality of sections based on the information of the grass presence / absence detection means 22, it is determined that grass is present. A determining unit 100 is configured to determine the presence state of grass by sampling the grass presence information for each of the plurality of sections at every predetermined time equal to or longer than the detection time. Here, the existence state of the grass to be discriminated is determined by the boundary L between the unprocessed work site A and the processed work site B in the lateral direction of the vehicle body.
I am trying. The grass height detection sensors S1, S2 or S3, S4 are moved one way from one end to the other end of the detection width W along the lateral direction of the vehicle body for a predetermined time to give the sampling interval of the grass presence information. Is set to the time required. Further, the discriminating means 100 is configured to perform the discriminating operation using the sampling information a large number of times when the vehicle travels at a low speed than when traveling at a high speed. Then, the control device H uses the determination means 100.
The displacement amount from the proper position of the vehicle body V with respect to the boundary L discriminated by is detected.

【0024】以下、前記境界Lの判別動作及び位置ずれ
量検出動作について、図2の状態を例に説明する。図1
3に示すように、高速時の車速vH と低速時の車速vL
との速度比が3:1であるので、低速時に走行する距離
は高速時の1/3である。そこで、低速走行のときは、
前記芝高さ検出センサS1,S2,S3,S4を3回の
片道移動経路KL1, KL2, KL3に移動操作して得られた
データについて、各区間D0〜D7毎に論理和演算を行
って各区間毎の芝有無データとする。論理和演算は、各
区間の3個のデータのうち1個でも芝有りであればその
区間のデータは芝有りになることを意味する。一方、高
速走行のときは、1回の片道移動経路KH にて得られた
データをそのまま各区間毎の芝有無データD0〜D7と
する。そして、各区間毎の芝有無データD0〜D7にお
いて、処理済作業地B側に最も近い未処理作業地Aのデ
ータ“1”のビット位置(図2ではD3)と未処理作業
地A側に最も近い処理済作業地Bのデータ“0”のビッ
ト位置(図2ではD2)との中間の位置を、前記境界L
として判別する。そして、車体Vの車体横幅方向での適
正操向位置として決められている前記一対の芝高さ検出
センサS1,S2或いはS3,S4の中央位置、即ち、
8個の芝有無データD0〜D7(或いはD8〜D15)
のうちのビットD3(或いはD11)とビットD4(或
いはD12)との中間位置が、境界Lに対して偏位して
いる偏位量Δyが前記位置ずれ量として検出される。
尚、偏位量Δyの符号は、上記適正操向位置が境界Lよ
りも車体横幅方向の左側に偏位しているときを正とする
ので、図2はΔy=−1の状態を表す。
The operation of discriminating the boundary L and the operation of detecting the amount of displacement will be described below with reference to the state of FIG. Figure 1
As shown in 3, vehicle speed v H at high speed and vehicle speed v L at low speed
Since the speed ratio between the and is 3: 1, the distance traveled at low speed is 1/3 that at high speed. Therefore, when traveling at low speed,
Data obtained by moving the lawn height detection sensors S1, S2, S3, S4 to one-way moving routes KL1, KL2, KL3 three times are logically ORed for each section D0 to D7. The grass presence data for each section is used. The logical OR operation means that if at least one of the three data in each section has grass, the data in that section has grass. On the other hand, when traveling at a high speed, the data obtained by one-way moving route KH is used as it is as the grass presence / absence data D0 to D7 for each section. Then, in the grass presence / absence data D0 to D7 for each section, the bit position (D3 in FIG. 2) of the data “1” of the unprocessed work site A closest to the processed work site B side and the unprocessed work site A side. An intermediate position between the bit position (D2 in FIG. 2) of the data “0” of the closest processed work site B is set to the boundary L.
Is determined as. Then, the center position of the pair of lawn height detection sensors S1, S2 or S3, S4, which is determined as the proper steering position of the vehicle body V in the lateral direction of the vehicle body, that is,
Eight grass presence data D0 to D7 (or D8 to D15)
The displacement amount Δy in which the intermediate position between the bit D3 (or D11) and the bit D4 (or D12) is displaced with respect to the boundary L is detected as the displacement amount.
The sign of the deviation amount Δy is positive when the proper steering position is deviated to the left side of the boundary L in the lateral direction of the vehicle body, and therefore FIG. 2 shows a state of Δy = −1.

【0025】又、前記制御装置Hは、前記位置ずれ量と
して検出された偏位量Δy及び前記第2ポテンショメー
タFの情報に基づいて、前記偏位量Δy(実際はその絶
対値)が大きいほど前記操向輪1Fの目標操舵角θst
(実際はその絶対値)を大に設定し、且つ、前記検出さ
れた操舵角θiが前記目標操舵角θstになるように前記
操向輪1Fを操向制御するように構成されている。尚、
上記検出された操舵角θi及び目標操舵角θstの夫々
は、車体Vが直進状態となる操向中立状態に対応する値
を零として、右に操向する場合を正、左に操向する場合
を負の値にするように符号が設定されている。又、前記
制御装置Hは、前記操舵角θiと前記目標操舵角θstと
の角度差(実際には、両操舵角θi,θstの符号が同符
号であれば両操舵角θi,θstの絶対値の差となり、異
符号であれば両操舵角θi,θstの絶対値の和となる)
が設定角度(例えば25度)を越える場合には、前記駆
動ケース3を低速側に変速操作して低速走行させるよう
に構成されている。
Further, the control device H, based on the displacement amount Δy detected as the displacement amount and the information of the second potentiometer F, the larger the displacement amount Δy (actually its absolute value) is, the larger the displacement amount Δy becomes. Steering wheel 1F target steering angle θst
(Actually, its absolute value) is set to a large value, and steering control of the steered wheels 1F is performed so that the detected steering angle θi becomes the target steering angle θst. still,
Each of the detected steering angle θi and target steering angle θst has a value corresponding to a steering neutral state in which the vehicle body V is in a straight traveling state, and is zero when steering to the right and steering to the left. The sign is set so that is a negative value. Further, the control device H controls the angular difference between the steering angle θi and the target steering angle θst (actually, if the two steering angles θi and θst have the same sign, the absolute values of the two steering angles θi and θst are the same). The difference is the sum of the absolute values of both steering angles θi and θst.
Is set to exceed a set angle (for example, 25 degrees), the drive case 3 is configured to shift to the low speed side to run at low speed.

【0026】上記目標操舵角設定動作について、図12
にて具体的に説明する。(イ)は、未処理作業地Aと処
理済作業地Bとの境界Lが始めやや左に湾曲してから右
に大きく湾曲しているような状況を示す。そのため、境
界Lに沿うように車体Vは始め少し左に操向操作される
状態(操舵角θi<0)であるが、次の境界Lの検出位
置は右に大きく移動してその偏位量Δyが大きな正の値
となり(図(ロ)はΔy=3を示す)、目標操舵角θst
はこの偏差量Δyより下式によって、正の大きな角度
(θst>0)に設定される。尚、この場合の両操舵角θ
i,θstは異符号であるのでその角度差は絶対値の和と
なり、その角度差は前記設定角度(例えば25度)を越
えている。因みに、この場合に低速走行に変速せずに高
速走行を続けると、未処理作業地Aのうちの領域Cで示
す部分に刈り残しが発生する。
The above-mentioned target steering angle setting operation will be described with reference to FIG.
Will be described in detail. (A) shows a situation in which the boundary L between the unprocessed work site A and the processed work site B is slightly curved to the left at the beginning and then largely curved to the right. Therefore, the vehicle body V is initially in a state of being steered slightly to the left along the boundary L (steering angle θi <0), but the detected position of the next boundary L largely moves to the right and its deviation amount is increased. Δy becomes a large positive value ((b) shows Δy = 3), and the target steering angle θst
Is set to a large positive angle (θst> 0) by the following formula from this deviation amount Δy. Both steering angles θ in this case
Since i and θst have different signs, the angular difference is the sum of absolute values, and the angular difference exceeds the set angle (for example, 25 degrees). By the way, in this case, if the high-speed traveling is continued without shifting to the low-speed traveling, uncut residue is generated in a portion of the unprocessed work site A indicated by the area C.

【0027】[0027]

【数1】θST=p・Δy (pはゲイン係数である)[Equation 1] θ ST = p · Δy (p is a gain coefficient)

【0028】次に、図14〜図17に示すフローチャー
トに基づいて、前記制御装置Hの制御動作について説明
する。
Next, the control operation of the control unit H will be described with reference to the flow charts shown in FIGS.

【0029】先ず、手動運転によって作業対象地の最初
の作業行程K1の始端部に車体Vを移動させ、その作業
行程K1の方向に車体Vの向きを合わせた状態で自動走
行制御をスタートさせると、車体Vが向いた方向を基準
方位θ0 として記憶するとともに、前輪1Fの操向角θ
iを操向中立状態つまりθi=0の状態になるように操
向させ、又、前記旋回用の昇降式接地体9が上昇状態に
あることを確認する等の初期設定を行う。尚、自動走行
制御をスタートさせる前に、最初の作業行程K1の終端
部におけるターン方向(図3の例では左側)を入力設定
する。
First, when the vehicle body V is moved to the starting end portion of the first work stroke K1 of the work site by manual operation, and the automatic traveling control is started in a state where the direction of the vehicle body V is aligned with the direction of the work stroke K1. , The direction in which the vehicle body V is facing is stored as the reference azimuth θ 0 , and the steering angle θ of the front wheel 1F is stored.
i is steered to be in the steering neutral state, that is, the state of θi = 0, and initial setting such as confirming that the lifting / lowering grounding body 9 for turning is in a raised state is performed. Before starting the automatic travel control, the turn direction (left side in the example of FIG. 3) at the terminal end of the first work stroke K1 is input and set.

【0030】次に、制御用の諸変数の初期値を設定す
る。つまり、走行距離、幅MAX 、オーバーロードフラ
グ、及びターンフラグを0にリセットし、芝の数左、芝
の数右、前芝の数左、及び前芝の数右を夫々4に設定す
る。尚、芝の数左及び芝の数右は、夫々左側のセンサS
1,S2又は右側のセンサS3,S4が検出した芝有り
データの数を表し、前芝の数左及び前芝の数右は、夫々
現在地点より1つ前の検出地点での上記芝有りデータの
数を表す。幅MAX については後述する。そして、モアク
ラッチ15をオンさせたあと、高速状態に変速操作して
走行を開始する。走行を開始したあとはターンフラグの
状態をチェックし、ターンフラグがオンしている場合に
は、後述のターン処理(図17)を行う。一方、ターン
フラグがオフ状態のときは、所定時間毎にサンプリング
された芝有無データから前述のように、即ち、車速が低
速のときには今回及び今回より以前の2回の合計3回の
データを論理和演算したもの、車速が高速のときには今
回のデータをそのまま使って各区間毎の芝有無データD
0〜D15を決定する。そして、この各区間毎の芝有無
データD0〜D15のうちの前記設定されたターン方向
とは反対側(つまり境界Lが位置している側)のセンサ
のデータD8〜D15或いはD0〜D7に基づいて前述
のようにして境界Lの位置を検出し、車体Vの適正操向
位置に対する前記位置ずれ即ち偏差量Δyを検出する。
Next, the initial values of various control variables are set. That is, the mileage, the width MAX, the overload flag, and the turn flag are reset to 0, and the left number of grass, the right number of grass, the left number of front grass, and the right number of front grass are set to 4, respectively. In addition, the left number of grass and the right number of grass are the sensors S on the left side, respectively.
1, S2 or the number of grass-existing data detected by the sensors S3, S4 on the right side, and the number of front grasses on the left and the number of front grasses on the right are respectively the above-mentioned grass-existing data at the detection point one before the current point. Represents the number of. The width MAX will be described later. Then, after the mower clutch 15 is turned on, the gear shift operation is performed in a high speed state to start traveling. After the running is started, the state of the turn flag is checked. If the turn flag is on, turn processing (FIG. 17) described later is performed. On the other hand, when the turn flag is in the OFF state, the lawn presence / absence data sampled at every predetermined time is used as described above, that is, when the vehicle speed is low, this time and two times before this time, a total of three times of data are logically calculated. Calculated sum, when the vehicle speed is high, this time's data is used as it is and the grass presence data D for each section
0 to D15 are determined. Then, based on the data D8 to D15 or D0 to D7 of the sensor on the opposite side (that is, the side where the boundary L is located) of the turf presence data D0 to D15 for each section from the set turn direction. Then, the position of the boundary L is detected as described above, and the positional deviation, that is, the deviation amount Δy from the proper steering position of the vehicle body V is detected.

【0031】次に、前記境界Lが位置している側とは反
対側のセンサのデータD0〜D7或いはD8〜D15に
おいて、車体最外方側のビット位置を0基準として(図
12の例では、センサS1のD0ビットが0になる)上
記境界Lとは反対側の未処理作業地Aの端つまり芝無し
データの最も処理済作業地B側のビット位置を検出し、
これを幅左あるいは幅右の値とする。従って、上記0基
準の位置から車体内方側になるに従い、幅左あるいは幅
右の値は0から大きくなる。尚、全てのビットが芝無し
データであるときは、幅左あるいは幅右の値は8とす
る。そして、この幅左あるいは幅右の値が幅MAX の値よ
り大きいときだけ幅左あるいは幅右の値を幅MAX の値と
して置き換える。以上より、幅MAX の値が大きいほど、
操向制御用の境界Lとは反対側の未処理作業地Aの端が
処理済作業地B側に位置し、刈り取られずに残っている
未処理作業地Aの幅が狭いことになる。ここでは、幅MA
X の値が7以上のときは、現在走行している行程によっ
て未処理作業地Aが処理され、残りの作業行程がないよ
うに設定されている。
Next, in the data D0 to D7 or D8 to D15 of the sensor on the side opposite to the side on which the boundary L is located, the bit position on the outermost side of the vehicle body is used as the 0 reference (in the example of FIG. 12, , The D0 bit of the sensor S1 becomes 0) The end of the unprocessed work site A opposite to the boundary L, that is, the bit position of the most processed work site B side of the lawnless data is detected,
This is the width left or width right value. Therefore, the value on the left side or the right side of the width increases from 0 toward the inside of the vehicle body from the 0 reference position. When all the bits are turfless data, the width left or width right value is set to 8. Then, only when the value of the width left or the width right is larger than the value of the width MAX, the value of the width left or the width right is replaced as the value of the width MAX. From the above, the larger the value of width MAX,
The end of the unprocessed work site A on the side opposite to the boundary L for steering control is located on the processed work site B side, and the width of the unprocessed work site A that remains uncut is narrow. Where width MA
When the value of X is 7 or more, it is set that the unprocessed work site A is processed by the currently traveling process and there is no remaining process process.

【0032】次に、前記境界Lが位置している側とは反
対側のセンサの前記芝の数左(或いは芝の数右)を検出
し、それを1つ前の検出地点での前芝の数左(或いは前
芝の数右)を1/4した値と比較する。そして、現在の
芝の数左(或いは芝の数右)が1つ前の前芝の数左(或
いは前芝の数右)を1/4した値よりも小さいときは、
ターンフラグをオンする(1をセットする)。即ち、上
記のように、芝の数が大きく減少したときは、枕地等の
作業行程の終端部に到達したことを表すので、次の作業
行程へのターンの準備をさせているのである。上記のこ
とから、前記判別手段100が判別する芝の存在状態と
して、前記境界Lの検出以外に、作業行程の終端部位置
の検出が該当することになる。
Next, the left side (or right side) of the grass is detected by the sensor on the side opposite to the side where the boundary L is located, and the front grass at the detection point immediately before is detected. Compare the number left of (or right of the front lawn) with 1/4. When the current left number of grass (or right number of grass) is less than 1/4 of the previous left number of front grass (or right number of front grass),
Turn on the turn flag (set 1). That is, as described above, when the number of turf is greatly reduced, it means that the end of the work process such as headland has been reached, and the preparation for the turn to the next work process is made. From the above, as the grass existence state determined by the determination unit 100, detection of the end position of the work stroke corresponds to detection of the boundary L, in addition to detection of the boundary L.

【0033】次に、前述のように偏位量Δyから目標操
舵角θstを求め、この目標操舵角θstに操舵角θiがな
るように操向操作を開始する。同時に、異常処理(図1
6)を実行する。異常処理では、車速が高速状態であれ
ば(通常の走行では高速状態である)、エンジン回転数
が適正範囲内にあるかどうか、つまり、適正な負荷状態
であるかどうかを判断し、適正範囲内でなければ、オー
バーロードフラグをオンする(1をセットする)ととも
に低速状態に変速操作する。エンジン回転数が適正範囲
内にあれば、目標操舵角θstと操舵角θiとの角度差が
設定角度(25度)を越えるかどうかを判断し、越えて
いれば、低速状態に変速操作する。
Next, as described above, the target steering angle θst is obtained from the deviation amount Δy, and the steering operation is started so that the target steering angle θst becomes the steering angle θi. At the same time, the error handling (Fig. 1
Perform 6). In the abnormality processing, if the vehicle speed is high speed (high speed in normal driving), it is judged whether the engine speed is within the proper range, that is, the proper load state, and the proper range is determined. If it is not within the range, the overload flag is turned on (1 is set) and the gear is changed to the low speed state. If the engine speed is within the proper range, it is determined whether or not the angle difference between the target steering angle θst and the steering angle θi exceeds a set angle (25 degrees).

【0034】一方、車速が低速状態であれば、オーバー
ロードフラグがオンしているかどうかを調べる。オーバ
ーロードフラグがオフであれば、前記のように目標操舵
角θstと操舵角θiとの角度差が設定角度(25度)を
越えるために低速走行になったことを示すので、この場
合は、前記偏位量Δyが0になったことが確認され、か
つ、前記低速状態へ変速操作されて低速走行を開始した
地点より2m以上走行した場合にのみ高速状態に変速さ
せる。一方、オーバーロードフラグがオンであれば、前
記のようにエンジンEが適正な負荷状態にないとして低
速状態に変速されたことを示すので、エンジン回転数が
適正範囲内に復帰しているかどうかを調べ、エンジン回
転数が適正範囲内に復帰し、かつ、前記オーバーロード
フラグがオンされた地点より2m以上走行した場合にの
みオーバーロードフラグをオフして高速状態に変速させ
る。
On the other hand, if the vehicle speed is low, it is checked whether the overload flag is on. If the overload flag is off, it means that the vehicle is traveling at low speed because the angle difference between the target steering angle θst and the steering angle θi exceeds the set angle (25 degrees) as described above. In this case, Only when it is confirmed that the deviation amount Δy has become 0 and the vehicle has traveled for 2 m or more from the point where the shift operation to the low speed state is started and the low speed traveling is started, the speed is changed to the high speed state. On the other hand, if the overload flag is ON, it means that the engine E is not in the proper load state and the speed is changed to the low speed state as described above. Therefore, it is determined whether the engine speed has returned to the proper range. Only when the engine speed has returned to the proper range and the vehicle has traveled 2 m or more from the point where the overload flag was turned on, the overload flag is turned off to shift to a high speed state.

【0035】ターン処理(図17)では、芝高さ検出セ
ンサS1,S2,S3,S4の検出動作を停止させると
ともに、操向中立状態に操向操作した後、前記幅MAX の
値が7以上か否かを判断する。幅MAX の値が7未満であ
れば、未処理作業地Aに作業行程が残っていると判断さ
れるので、前記ターンフラグがオンした地点より900
mm前進してから自動旋回動作を行うとともに、前記タ
ーン方向を切り換え、次の作業行程での走行に移行す
る。尚、上記旋回動作の際、前記地磁気センサS0で車
体Vの向きを確認して180°旋回したかどうかの情報
と、前記エンコーダ14にて検出される上記旋回中心で
ない側の駆動後輪1L,1Rの走行量とから次の作業行
程に向いたことの判別を行う。一方、幅MAX の値が7以
上であれば、未処理作業地Aに作業行程が残っていない
即ち今まで走行してきた行程が最終行程であると判断さ
れるので、その地点で走行を停止して作業を終了させ
る。
In the turn process (FIG. 17), the detection operation of the lawn height detection sensors S1, S2, S3, S4 is stopped, and after the steering operation is performed in the steering neutral state, the value of the width MAX is 7 or more. Determine whether or not. If the value of the width MAX is less than 7, it is determined that the work process remains in the unprocessed work site A.
After moving forward by mm, the automatic turning operation is performed, the turn direction is switched, and the operation is shifted to the next working stroke. During the turning operation, the geomagnetic sensor S0 is used to confirm the direction of the vehicle body V and whether or not the vehicle has made a 180 ° turn, and the drive rear wheel 1L on the side other than the turning center detected by the encoder 14, It is determined from the traveling amount of 1R that the vehicle is ready for the next work stroke. On the other hand, if the value of the width MAX is 7 or more, it is determined that there is no work stroke left in the unprocessed work site A, that is, the stroke that has been traveled so far is the final stroke, so the travel is stopped at that point. To finish the work.

【0036】〔別実施例〕上記実施例では、草有無検出
手段22を、草有無検出部としての芝高さ検出センサS
1,S2,S3,S4を所定速度で車体横幅方向に沿っ
て往復移動操作させて得た検出信号から、車体横幅方向
に沿って所定間隔で区分けされた複数個の区間毎の草の
有無を検出するように構成し、具体的には、1個の草有
無検出部(センサS1,S2,S3,S4)が4区間に
対応し合計16個の区間について検出するようにした
が、草有無検出部(センサ)の数と検出区間との対応は
これに限らず種々設定できる。又、移動式の草有無検出
部を設けるのではなく、例えば各区間毎に固定式の草有
無検出部(センサ)を設けるように構成してもよい。
尚、固定式の草有無検出部(センサ)の場合はその検出
幅を区間の幅と同程度にするのが望ましい。
[Other Embodiment] In the above embodiment, the grass presence / absence detecting means 22 is used as the grass presence / absence detecting section S as a grass height detecting sensor S.
Based on the detection signal obtained by reciprocating 1, S2, S3, S4 at a predetermined speed along the lateral direction of the vehicle body, the presence or absence of grass in each of a plurality of sections divided at a predetermined interval along the lateral direction of the vehicle body is determined. It is configured to detect, and specifically, one grass presence / absence detection unit (sensors S1, S2, S3, S4) detects four grass zones corresponding to four zones. The correspondence between the number of detection units (sensors) and the detection section is not limited to this, and various settings can be made. Further, instead of providing the movable grass presence / absence detection unit, for example, a fixed grass presence / absence detection unit (sensor) may be provided for each section.
In the case of a fixed grass presence / absence detection unit (sensor), it is desirable that the detection width be approximately the same as the width of the section.

【0037】又、上記実施例では、車速を高速と低速の
2段階(変速比が3:1)切換えとして、草の存在状態
を判別する判別手段100が、高速時には所定時間毎に
草有無検出手段22によってサンプリングされる草有無
検出情報の1回のサンプリング情報を用い、低速時には
高速時よりも多数回(3回)のサンプリング情報を用い
て判別動作を行う場合を例示したが、判別手段100の
構成はこれに限るものではなく、例えば、変速段数や変
速比の変更に応じて使用するサンプリング情報の回数は
適宜変更できる。例えば、車速を、高速、中速、低速の
3段階(変速比が3:2:1)に切り換える場合におい
て、高速時は1回、中速時は2回、低速時は3回のサン
プリング情報を用いるように構成することができる。
Further, in the above embodiment, the vehicle speed is switched between high speed and low speed in two stages (gear ratio is 3: 1), and the discrimination means 100 for discriminating the presence state of grass detects the presence or absence of grass every predetermined time at high speed. The case where the determination operation is performed by using the sampling information of the grass presence / absence detection information sampled once by the means 22 and by using the sampling information a number of times (three times) more than at the time of high speed is exemplified. The configuration is not limited to this, and the number of times of sampling information to be used can be appropriately changed depending on, for example, the number of gears or the gear ratio. For example, when the vehicle speed is switched to three stages of high speed, medium speed, and low speed (gear ratio is 3: 2: 1), sampling information of once at high speed, twice at medium speed, and three times at low speed Can be configured to use.

【0038】又、上記実施例では、判別手段100が判
別すべき草の存在状態として、未処理作業地Aと処理済
作業地Bとの境界Lや作業行程の終端を検出するものを
例示したが、これ以外に、例えば、草の植立密度や刈り
幅等を判別の対象にしもよい。又、上記実施例では、判
別動作において、論理和演算するものを例示したが、処
理の構成は論理輪演算に限らず、例えば、草の植立密度
を検出する場合において、複数回の情報を単純に加算処
理するものでもよい。
Further, in the above-mentioned embodiment, as an example of the grass existence state to be discriminated by the discriminating means 100, the boundary L between the unprocessed work site A and the processed work site B and the end of the work process are detected. However, in addition to this, for example, the planting density of the grass, the cutting width, and the like may be targets for determination. Further, in the above embodiment, the example of performing the logical sum operation in the determination operation is illustrated, but the configuration of the processing is not limited to the logical wheel operation, and for example, in the case of detecting the planting density of grass, information of multiple times is given. A simple addition process may be used.

【0039】又、上記実施例では、操舵角θiと操舵目
標角θstとの角度差が設定角度を越えた場合に、走行は
停止させずに低速走行に切り換えるように構成したが、
走行をいったん停止させて操舵角θiが操舵目標角θst
になるようにステアリング操作し、その後走行を再開す
るようにしてもよい。
Further, in the above embodiment, when the angle difference between the steering angle θi and the steering target angle θst exceeds the set angle, the traveling is switched to the low speed traveling without being stopped.
Once the vehicle is stopped, the steering angle θi becomes the steering target angle θst.
Alternatively, the steering operation may be performed so that the traveling is restarted.

【0040】又、上記実施例では、操舵角θiと操舵目
標角θstの角度差の判断基準である設定角度を25°に
したが、この設定角度は、操向輪1Fのステアリング性
能や回転刃体2の刈り幅等によって適宜変更することが
できる。
In the above embodiment, the set angle, which is the criterion for determining the angle difference between the steering angle θi and the steering target angle θst, is set to 25 °. However, this set angle is the steering performance of the steering wheel 1F and the rotary blade. It can be appropriately changed depending on the cutting width of the body 2 and the like.

【0041】又、上記実施例では、本発明を芝刈り作業
車に適用したものを例示したが、これ以外の種々の草刈
機に適用することができる。
Further, in the above embodiment, the present invention is applied to the lawnmower work vehicle, but it can be applied to various mowers other than this.

【0042】尚、特許請求の範囲の項に図面との対照を
便利にする為に符号を記すが、該記入により本発明は添
付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configurations of the accompanying drawings by the entry.

【0043】[0043]

【図面の簡単な説明】[Brief description of drawings]

【図1】制御構成のブロック図FIG. 1 is a block diagram of a control configuration.

【図2】草有無検出手段の平面図FIG. 2 is a plan view of a grass presence detection unit.

【図3】作業形態の説明図FIG. 3 is an explanatory diagram of a work form

【図4】車体の概略平面図FIG. 4 is a schematic plan view of a vehicle body.

【図5】車体の概略側面図FIG. 5 is a schematic side view of a vehicle body.

【図6】車体の概略正面図FIG. 6 is a schematic front view of a vehicle body.

【図7】車速変速手段の縦断側面図FIG. 7 is a vertical sectional side view of the vehicle speed changing means.

【図8】変速位置検出センサの平面図FIG. 8 is a plan view of a shift position detection sensor.

【図9】車速変速手段の動作説明図FIG. 9 is an explanatory diagram of the operation of the vehicle speed shifting means.

【図10】旋回機構の背面図FIG. 10 is a rear view of the turning mechanism.

【図11】旋回機構の動作説明図FIG. 11 is an operation explanatory view of the turning mechanism.

【図12】操向制御の説明図FIG. 12 is an explanatory diagram of steering control.

【図13】判別手段の説明図FIG. 13 is an explanatory diagram of a discriminating means.

【図14】制御作動のフローチャートFIG. 14 is a flowchart of control operation.

【図15】制御作動のフローチャートFIG. 15 is a flowchart of control operation.

【図16】制御作動のフローチャートFIG. 16 is a flowchart of control operation.

【図17】制御作動のフローチャートFIG. 17 is a flowchart of control operation.

【符号の説明】[Explanation of symbols]

22 草有無検出手段 100 判別手段 S1,S2,S3,S4 草有無検出部 22 Grass Existence Detection Means 100 Discrimination Means S1, S2, S3, S4 Grass Existence Detection Units

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 車体横幅方向に沿って所定間隔で区分け
された複数個の区間毎に草の有無を検出する草有無検出
手段(22)と、その草有無検出手段(22)の情報に
基づいて、前記複数個の区間夫々について検出時間内に
草有りが検出されると草有りであると判別しながら、前
記検出時間以上の所定時間毎に前記複数個の区間夫々に
ついての草有無情報をサンプリングして草の存在状態を
判別する判別手段(100)とが設けられた草刈機の草
状態検出装置であって、 前記判別手段(100)は、低速走行のときの方が高速
走行のときよりも、多数回の前記サンプリング情報を用
いて前記判別動作を行うように構成されている草刈機の
草状態検出装置。
1. A grass presence / absence detecting means (22) for detecting the presence / absence of grass in each of a plurality of sections divided at predetermined intervals along the lateral direction of the vehicle body, and based on information of the grass presence / absence detecting means (22). When the presence of grass is detected within the detection time for each of the plurality of sections, the presence / absence information of grass is detected for each of the plurality of sections at every predetermined time that is equal to or longer than the detection time. A grass state detecting device for a mowing machine, comprising: a determining means (100) for sampling and determining the presence state of grass, wherein the determining means (100) is used when the vehicle is traveling at a low speed and traveling at a high speed. Rather than the above, a grass condition detection device for a mower, which is configured to perform the determination operation using the sampling information of a large number of times.
【請求項2】 前記草有無検出手段(22)が、所定速
度で車体横幅方向に沿って往復移動操作される草有無検
出部(S1,S2,S3,S4)を備えるように構成さ
れている請求項1記載の草刈機の草状態検出装置。
2. The grass presence / absence detecting means (22) is configured to include a grass presence / absence detecting section (S1, S2, S3, S4) which is reciprocally operated along a lateral direction of the vehicle body at a predetermined speed. The grass condition detection device for a mower according to claim 1.
JP4847693A 1993-03-10 1993-03-10 Weed state detecting system for mower Pending JPH06253611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4847693A JPH06253611A (en) 1993-03-10 1993-03-10 Weed state detecting system for mower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4847693A JPH06253611A (en) 1993-03-10 1993-03-10 Weed state detecting system for mower

Publications (1)

Publication Number Publication Date
JPH06253611A true JPH06253611A (en) 1994-09-13

Family

ID=12804445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4847693A Pending JPH06253611A (en) 1993-03-10 1993-03-10 Weed state detecting system for mower

Country Status (1)

Country Link
JP (1) JPH06253611A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187951A (en) * 2013-03-27 2014-10-06 Brother Ind Ltd Autonomous mobile lawn mower
JP2018007615A (en) * 2016-07-13 2018-01-18 株式会社リコー Working robot
JP2020000158A (en) * 2018-06-29 2020-01-09 株式会社クボタ Grass mower

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187951A (en) * 2013-03-27 2014-10-06 Brother Ind Ltd Autonomous mobile lawn mower
JP2018007615A (en) * 2016-07-13 2018-01-18 株式会社リコー Working robot
JP2020000158A (en) * 2018-06-29 2020-01-09 株式会社クボタ Grass mower

Similar Documents

Publication Publication Date Title
JPH06253611A (en) Weed state detecting system for mower
JP2622461B2 (en) Mower travel control device
EP0774388A1 (en) Turn assisting mechanism for a vehicle
JPH06121603A (en) Travel-controlling device of mower
JPH07184415A (en) Autonomously traveling working vehicle
JP2731679B2 (en) Mower boundary detection device
JPH05262209A (en) Turning device for working vehicle
JPH064129A (en) Travel controller for lawn mowing machine
JP2896017B2 (en) Lawn mower
JP2755871B2 (en) Travel control device for lawn mower
JPH05346821A (en) Travel controller for lawn mowing working wagon
JPH04259014A (en) Automatic steering type working vehicle
JPH04260871A (en) Turning device for working vehicle
JPH05260804A (en) Device for controlling traveling of working vehicle for mowing lawn
JPH0446499Y2 (en)
JPH064128A (en) Border detecting device for lawn mowing machine
JPH05252803A (en) Boundary sensor for lawn mowing working car
JPH05108150A (en) Travelling controller of work vehicle
JPH01179602A (en) Boundary sensor for self-propelled lawn mowing working car
JPH0397012A (en) Self traveling working robot
JPH0720405B2 (en) Steering control device for lawnmower
JPH07104722B2 (en) Work vehicle with steering control device
JP2571238B2 (en) Steering control device for self-propelled lawnmower
JPH0492907A (en) Steering controller for lawn-mowing vehicle
JPH05260805A (en) Device for controlling traveling of working vehicle