JPH07184415A - Autonomously traveling working vehicle - Google Patents
Autonomously traveling working vehicleInfo
- Publication number
- JPH07184415A JPH07184415A JP5330194A JP33019493A JPH07184415A JP H07184415 A JPH07184415 A JP H07184415A JP 5330194 A JP5330194 A JP 5330194A JP 33019493 A JP33019493 A JP 33019493A JP H07184415 A JPH07184415 A JP H07184415A
- Authority
- JP
- Japan
- Prior art keywords
- boundary
- vehicle
- work
- cut
- traveling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007246 mechanism Effects 0.000 claims abstract description 61
- 238000001514 detection method Methods 0.000 claims abstract description 46
- 244000025254 Cannabis sativa Species 0.000 claims description 65
- 238000005520 cutting process Methods 0.000 claims description 60
- 238000012545 processing Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 description 48
- 238000013500 data storage Methods 0.000 description 17
- 238000004891 communication Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 7
- 238000009825 accumulation Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000012935 Averaging Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000011435 rock Substances 0.000 description 4
- 239000000428 dust Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000005433 ionosphere Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
Landscapes
- Guiding Agricultural Machines (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、草・芝刈作業領域にお
ける未刈地と既刈地との刈跡境界を検出し、刈跡境界に
沿い自律走行して草・芝刈作業を行う自律走行作業車に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention detects the boundary between the uncut land and the already-cut land in the grass / lawn mowing work area, and autonomously runs along the boundary to perform grass / lawn mowing work. Regarding work vehicles.
【0002】[0002]
【従来の技術】従来、無人で自律走行する自律走行車に
対しては、自律走行のための自己位置検出として、電線
を地下に埋設し、この電線が発する磁界を磁気センサで
検出する技術が提案されているが(例えば、特開平1−
312610号公報)、ゴルフ場、河川敷堤防、公園等
の各種フィ−ルドで草刈、芝刈等の作業を無人で行う自
律走行作業車等のように、自律走行領域が広大な場合、
領域の全てに電線を埋設することは困難であり、設置費
用も大きなものとなる。2. Description of the Related Art Conventionally, for an autonomous vehicle that is autonomously autonomously traveling, there is a technique in which an electric wire is buried underground and a magnetic sensor detects a magnetic field generated by the electric wire as self-position detection for autonomous traveling. Although proposed (for example, Japanese Patent Laid-Open No. 1-
No. 312610), a golf course, a river embankment, a field such as a park, etc., where an autonomous traveling area is large, such as an autonomous traveling vehicle that performs unmanned work such as mowing and lawn mowing.
It is difficult to embed the electric wire in the whole area, and the installation cost becomes large.
【0003】これに対処するため、草・芝刈作業領域に
おいて未処理作業地としての未刈地と処理済み作業地と
しての既刈地との境界、すなわち刈跡境界を検出し、こ
の刈跡境界に沿って自律走行し、草・芝刈作業を行う自
律走行作業車が開発されている。In order to cope with this, a boundary between an uncut land as an unprocessed work site and an already cut land as a processed work site, that is, a cut boundary, is detected in the grass / lawn mowing work area, and this cut boundary is detected. An autonomous mobile work vehicle has been developed that autonomously travels along the road to perform grass and lawn mowing work.
【0004】この刈跡境界検出については、特開昭61
−139304号公報に、モニタカメラにより境界部を
撮像してこの撮像画像を平均明度差により2値化し、2
値化に当たって、微分値の正負の符号を検出し、車輌の
進行方向と照らし合わせて、作業済み/未作業・境界な
のか、或いは未作業/作業済み・境界なのかを識別し、
現在の作業行程で必要な境界のみを見い出し、この境界
に沿って自律走行する技術が開示されている。Regarding the detection of the boundary of the cut mark, Japanese Patent Laid-Open No. Sho 61-61
No. 139304, a monitor camera captures an image of a boundary portion, and the captured image is binarized by an average brightness difference.
At the time of value conversion, the positive and negative signs of the differential value are detected and compared with the traveling direction of the vehicle to identify whether it is worked / unworked / boundary or unworked / worked / boundary,
A technique is disclosed in which only the necessary boundary is found in the current work process and the vehicle autonomously travels along this boundary.
【0005】また、特公平4−39286号公報には、
発光素子と受光素子とを一対としてスリットを介して対
向する位置に配置したフォトインタラプタ式の二つの光
センサから構成される倣いセンサを、車体に対して左右
方向に並ぶように、車体に懸架された芝刈装置に固定の
前後各フレ−ムの先端部にそれぞれ取付け、発光素子と
受光素子との間を通過する芝の有無を感知することによ
って、それぞれの光センサが未刈地、既刈地のいずれの
上に有るかを判別し、その検出結果の組合せ、つまり、
境界側でかつ車体の外側にある光センサが既刈地を検出
すると共に車体の内側にある光センサが未刈地を検出し
ている状態を刈跡境界に沿っている状態として刈跡境界
と車体との位置関係を判別し、刈跡境界に沿い自律走行
する技術が開示されている。Further, Japanese Patent Publication No. 4-39286 discloses that
A scanning sensor composed of two photointerrupter type optical sensors in which a pair of a light emitting element and a light receiving element are arranged at positions facing each other through a slit is suspended on the vehicle body so as to be aligned in the left-right direction with respect to the vehicle body. Each of the optical sensors is attached to the front end of each frame before and after being fixed to the lawnmower and detects the presence of lawn passing between the light emitting element and the light receiving element. , Which is above, and the combination of the detection results, that is,
The state where the optical sensor on the boundary side and outside the vehicle body detects the already cut land and the optical sensor inside the vehicle body detects the uncut area is defined as the state along the cut line boundary. A technique is disclosed in which a positional relationship with a vehicle body is discriminated and the vehicle autonomously travels along a cut mark boundary.
【0006】[0006]
【発明が解決しようとする課題】しかし、第1の先行例
のような画像処理による倣い走行では、ビデオカメラ及
び画像処理装置等を要し、コストアップを招き、さらに
カメラレンズ等の撮像面に塵芥、泥等が付着した場合、
鮮明な画像を得られず、境界部の検出が困難になり、境
界部に沿った倣い走行が不能となり、カメラレンズ等の
撮像面の清掃等、保守点検作業をこまめに行う必要があ
り、また、ビデオカメラに防水対策を施す必要がある等
の不都合がある。However, the copying traveling by image processing as in the first prior art requires a video camera and an image processing device, which leads to an increase in cost, and the image pickup surface of a camera lens or the like. If dust, mud, etc. adheres,
A clear image cannot be obtained, it becomes difficult to detect the boundary, it becomes impossible to follow along the boundary, and maintenance work such as cleaning of the imaging surface of the camera lens etc. needs to be done frequently. However, there is an inconvenience that it is necessary to take waterproof measures for the video camera.
【0007】また、第2の先行例に示されるように、発
光素子と受光素子とを一対としてスリットを介して対向
する位置に配置したフォトインタラプタ式の二つの光セ
ンサからなる倣いセンサを用いた場合には、発光素子の
発光面および受光素子の受光面に塵芥、泥等が付着する
と、発光素子からの光が常時遮られ既刈地であっても未
刈地と誤検出してしまい、刈跡境界に沿った自律走行が
不能となる不都合があり、さらに、倣いセンサは発光素
子と受光素子とを対向配置したスリットを芝刈装置のフ
レ−ムにリジットに固定した構成であるので、地面に衝
突することによる倣いセンサの損傷を防止するため、倣
いセンサと地面との間にある程度の空間(地上高)を確
保する必要があり、ゴルフ場等のグリ−ンの芝刈等、未
刈地の芝丈が低く、未刈地と既刈地との芝丈の差が少な
い場合には、刈跡境界を検出することができない不都合
がある。Further, as shown in the second prior art example, a scanning sensor comprising two photo interrupter type optical sensors in which a light emitting element and a light receiving element are arranged in a pair so as to face each other through a slit is used. In this case, if dust, mud, or the like adheres to the light-emitting surface of the light-emitting element and the light-receiving surface of the light-receiving element, the light from the light-emitting element is always blocked, and even if it is already cut, it is erroneously detected as uncut. There is a disadvantage that autonomous traveling along the cut boundary becomes impossible.Furthermore, the copying sensor has a structure in which a slit in which a light emitting element and a light receiving element are arranged to face each other is rigidly fixed to the frame of the lawnmower, so In order to prevent damage to the scanning sensor due to collision with the ground, it is necessary to secure a certain space (ground clearance) between the scanning sensor and the ground. The grass length is low If the difference ShibaTake with non cutting locations and Sundekari land is small, there is a disadvantage that can not be detected Kariato boundaries.
【0008】本発明は上記事情に鑑み、使用環境に左右
されることなく、且つ、未刈地の草・芝丈が低く、未刈
地と既刈地との草・芝丈の差が少ない場合であっても確
実に刈跡境界を検出し、確実に刈跡境界に沿った自律走
行を行うことができ、さらに作業レ−ンの終端点を検出
して車輌を次の作業レ−ンに自動的にシフトすることが
可能な自律走行作業車を提供することを目的とする。In view of the above circumstances, the present invention does not depend on the use environment, has a low grass / turf length in uncut land, and has a small difference in grass / turf length between uncut and cut land. Even in such a case, it is possible to reliably detect the cut boundary and reliably perform autonomous traveling along the cut boundary, and further detect the end point of the work lane to move the vehicle to the next work lane. It is an object of the present invention to provide an autonomous traveling work vehicle that can be automatically shifted to.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
本発明による自律走行作業車は、自律走行作業車の車体
下部に、下端を刈刃機構における刈刃の最低地上高と略
同等かあるいはそれよりも若干高い位置に設定した複数
の揺動部材をそれぞれ揺動自在に車体左右方向に並設
し、上記揺動部材の揺動状態を検出する揺動状態検出セ
ンサを備える刈跡境界検出手段と、上記揺動状態検出セ
ンサからの信号を入力し、上記揺動部材の揺動状態に基
づき草・芝刈作業領域における既刈地と未刈地との刈跡
境界を検出し、この刈跡境界の位置デ−タに基づき操舵
機構を制御して刈跡境界に沿った倣い走行を行わせる倣
い走行制御手段と、倣い走行中に、上記揺動状態検出セ
ンサの出力値に基づき作業レ−ンの終端点に達したと判
断されるときには、予め設定されているデ−タに基づき
操舵機構及び走行制御アクチュエ−タを制御して車輌を
次の作業レ−ンにシフトさせるシフト処理手段とを備え
ることを特徴とする。In order to achieve the above object, an autonomous traveling work vehicle according to the present invention has a lower end at the lower part of the body of the autonomous traveling work vehicle, which is substantially equal to the minimum ground clearance of the cutting blade in the cutting blade mechanism, or A plurality of rocking members set at positions slightly higher than that are arranged side by side in the left-right direction of the vehicle so as to be rockable, and a cut boundary detection is provided with a rocking state detection sensor for detecting the rocking state of the rocking members. Means and a signal from the rocking state detection sensor, and based on the rocking state of the rocking member, the boundary between the cut land and the uncut land in the grass / lawn mowing work area is detected, and this cutting is performed. A copying traveling control means for controlling the steering mechanism based on the position data of the trace boundary to perform the copying traveling along the cut boundary, and the work level based on the output value of the rocking state detection sensor during the copying traveling. -When it is judged that the end point of the Because have been set de - the vehicle by controlling the motor following tasks Les - - steering mechanism and the travel control actuator on the basis of data, characterized in that it comprises a shift processing means for shifting the emission.
【0010】[0010]
【作用】上記自律走行作業車においては、車輌の進行に
伴い車体左右方向に並列に位置する複数の揺動部材が草
・芝丈に応じてそれぞれ揺動し、その揺動状態を揺動状
態検出センサにより検出し、揺動状態検出センサにより
検出される揺動部材の揺動状態に基づき草・芝刈作業領
域の既刈地と未刈地との刈跡境界を検出し、この刈跡境
界の位置デ−タに基づき操舵機構が制御されて刈跡境界
に沿った倣い走行が行われ、また、倣い走行中に、揺動
状態検出センサの出力値に基づき作業レ−ンの終端点に
達したと判断されるときには、予めセットされているデ
−タに基づき操舵機構及び走行制御アクチュエ−タが制
御されて車輌が次の作業レ−ンにシフトされる。In the above-mentioned autonomous work vehicle, a plurality of rocking members positioned in parallel in the left-right direction of the vehicle body rock according to the grass and turf height as the vehicle advances, and the rocking state is rocked. Based on the rocking state of the rocking member detected by the detection sensor and the rocking state detection sensor, the boundary between the cut and uncut land in the grass / lawn mowing work area is detected. The steering mechanism is controlled on the basis of the position data of the above to perform the profile travel along the cut boundary, and during the profile travel, at the end point of the work lane based on the output value of the rocking state detection sensor. When it is judged that the vehicle has reached the limit, the steering mechanism and the traveling control actuator are controlled based on the preset data, and the vehicle is shifted to the next work lane.
【0011】[0011]
【実施例】以下、図面を参照して本発明の実施例を説明
する。図面は本発明の一実施例を示し、図1はD−GP
S用移動局を備えた芝刈作業車とD−GPS用固定局と
を示す説明図、図2は芝刈作業車における刈刃機構と刈
跡境界検出装置の取付け位置関係を示す平面図、図3は
刈跡境界検出装置の構成を示す説明図、図4及び図5は
刈跡境界検出装置の動作を示す説明図、図6は制御装置
のブロック図、図7は操舵制御系の構成を示す説明図、
図8は走行経路及び作業領域を示す説明図、図9乃至図
12は主制御ル−チンのフロ−チャ−ト、図13及び図
14は自律走行制御ル−チンのフロ−チャ−ト、図15
はD−GPS無線通信ル−チンのフロ−チャ−ト、図1
6は作業領域における最初の外周刈の状態を示す説明
図、図17は車輌走行に伴う目標境界位置からの刈跡境
界のずれ、及び方位偏差角との関係を示すタイムチャ−
ト、図18及び図19は草・芝刈作業による1行程終了
時の車輌シフト状態を示す説明図、図20は倣い走行に
よる草・芝刈作業状態の説明図である。Embodiments of the present invention will be described below with reference to the drawings. The drawing shows an embodiment of the present invention, and FIG. 1 shows a D-GP.
FIG. 3 is an explanatory view showing a lawnmower equipped with a mobile station for S and a fixed station for D-GPS, FIG. 2 is a plan view showing a mounting position relationship between a cutting blade mechanism and a cut boundary detection device in the lawn mowing vehicle, and FIG. 4 is an explanatory view showing the configuration of the cut boundary detection device, FIGS. 4 and 5 are explanatory diagrams showing the operation of the cut boundary detection device, FIG. 6 is a block diagram of the control device, and FIG. 7 is a configuration of the steering control system. Illustration,
8 is an explanatory view showing a traveling route and a work area, FIGS. 9 to 12 are main control routine flowcharts, and FIGS. 13 and 14 are autonomous traveling control routine flowcharts. Figure 15
Is a flow chart of the D-GPS wireless communication routine, FIG.
6 is an explanatory view showing the state of the first outer peripheral cutting in the work area, and FIG. 17 is a time chart showing the relationship between the deviation of the cut boundary from the target boundary position as the vehicle travels and the azimuth deviation angle.
18 and 19 are explanatory views showing a vehicle shift state at the end of one stroke by grass / lawn mowing work, and FIG. 20 is an explanatory diagram of a grass / lawn mowing operation state by copying traveling.
【0012】図1(a)において、符号1は無人で自走
可能な自律走行作業車を示し、本実施例においては、ゴ
ルフ場等の草・芝刈作業を行う芝刈作業車である。この
芝刈作業車1は、エンジン駆動で走行し、前後輪の操舵
角を独立して制御することができるようになっており、
衛星からの電波を受信して自己位置を測定するための衛
星電波受信機、走行履歴に基づいて現在位置を測定する
ための推測航法用センサ、走行障害物を検出するための
センサ、草・芝刈作業領域において刈跡境界に沿った倣
い走行を行うための刈跡境界を検出するセンサ等が搭載
され、高精度な自律走行を行うことができる。In FIG. 1 (a), reference numeral 1 indicates an autonomous traveling work vehicle which is self-propelled and is unmanned. In this embodiment, it is a lawn mowing work vehicle for performing grass / lawn mowing work on a golf course or the like. This lawnmower vehicle 1 is driven by an engine, and the steering angles of the front and rear wheels can be independently controlled.
Satellite radio receiver for receiving radio waves from satellites and measuring own position, dead reckoning sensor for measuring current position based on traveling history, sensor for detecting obstacles, grass and lawn mowing A sensor or the like for detecting a cut boundary for performing a contour running along the cut boundary in the work area is mounted, and highly accurate autonomous running can be performed.
【0013】前記衛星電波受信機は、本実施例において
は、GPS衛星からの電波を受信して自己位置を測定す
るためのGPS受信機であり、既知の地点に配置された
固定局で位置観測を行って補正情報(ディファレンシャ
ル情報)を移動局にフィ−ドバックする、いわゆるディ
ファレンシャルGPS(以下、D−GPSと略記する)
用の移動局GPS受信機である。In this embodiment, the satellite radio receiver is a GPS receiver for receiving radio waves from GPS satellites to measure its own position, and position observation is performed by a fixed station located at a known point. So as to feed back the correction information (differential information) to the mobile station, so-called differential GPS (hereinafter abbreviated as D-GPS).
Is a mobile station GPS receiver for.
【0014】周知のように、GPSによる測位誤差の要
因としては、衛星及び受信機の時計の誤差、衛星の軌道
の誤差、電離層による電波の遅れ、大気圏による電波の
遅れ、マルチパス等があり、その他に、最も大きな誤差
要因としてセレクタブル・アベイラビリティ(S/A)
と呼ばれる運用者による意図的な精度劣化がある。これ
らの要因による誤差のうち、同位相の誤差は既知の地点
の固定局で捕捉した各衛星に対応する補正情報を利用す
ることにより除去することができ、移動局での測位精度
を数m程度まで飛躍的に向上することができる。As is well known, the causes of positioning errors by GPS are errors of clocks of satellites and receivers, errors of orbits of satellites, delay of radio waves by the ionosphere, delay of radio waves by the atmosphere, multipath, etc. In addition, the largest error factor is selectable availability (S / A)
There is a deliberate deterioration in accuracy called by the operator. Of the errors due to these factors, the in-phase error can be removed by using the correction information corresponding to each satellite captured by the fixed station at a known point, and the positioning accuracy at the mobile station is about several meters. Can be dramatically improved.
【0015】このため、前記芝刈作業車1には、移動局
GPS受信機のアンテナ2と、固定局からのディファレ
ンシャル情報を受信するための無線通信機のアンテナ3
とが立設されており、車外の既知の地点には図1(b)
に示すように、固定局GPS受信機のアンテナ41と、
移動局GPS受信機へディファレンシャル情報を送信す
るための無線通信機のアンテナ42とを備えた固定局4
0が配置される。For this reason, the lawnmower vehicle 1 has an antenna 2 for a mobile station GPS receiver and an antenna 3 for a wireless communication device for receiving differential information from a fixed station.
Are installed upright, and at a known location outside the vehicle,
As shown in, the antenna 41 of the fixed station GPS receiver,
Fixed station 4 with an antenna 42 of a wireless communication device for transmitting differential information to a mobile station GPS receiver
0 is placed.
【0016】また、前記推測航法用センサとしては、地
磁気センサ4と車速センサの一例としての車輪エンコ−
ダ5とが前記芝刈作業車1に備えられ、前記障害物検出
用センサとしては、超音波センサあるいは光センサ等の
無接触型センサ6a,6bが前記芝刈作業車1の前後部
に取付けられるとともに、マイクロスイッチ等を使用し
た接触型センサ7a,7bが前記芝刈作業車1の前後端
に取付られている。As the dead reckoning sensor, a geomagnetic sensor 4 and a wheel encoder as an example of a vehicle speed sensor.
And a contactless sensor 6a, 6b such as an ultrasonic sensor or an optical sensor as the obstacle detection sensor is attached to the front and rear parts of the lawn mowing work vehicle 1. Contact type sensors 7a and 7b using micro switches or the like are attached to the front and rear ends of the lawnmower working vehicle 1.
【0017】また、前記芝刈作業車1の車体下部には、
草・芝刈作業を行うため図2に示すようにモ−ア等の刈
刃15aを複数備えた刈刃機構15と、草・芝刈作業領
域における既刈地Cと未刈地Bとの刈跡境界Lを検出す
るための刈跡境界検出手段としての刈跡境界検出装置2
0a,20bとが備えられている。The lower part of the lawn mowing vehicle 1 is
As shown in FIG. 2, a cutting blade mechanism 15 having a plurality of cutting blades 15a such as mowers for performing grass / lawn mowing work, and a cut mark between the already cut land C and the uncut land B in the grass / lawn mowing work area Cut boundary detecting device 2 as a cut boundary detecting means for detecting the boundary L
0a and 20b are provided.
【0018】前記刈刃機構15のデッキ16には四隅に
キャスタ17が取り付けられ、作業地面と刈刃15aと
の間隔を略一定(数センチ)に保ち、刈刃機構15の変
位と車体1aとの変位を緩衝するため刈刃機構15は、
リンク機構18を介して車体1aの下部に装着される。
さらに、車載のエンジン8から前後輪11a,11bに
動力を伝達する動力伝達機構における変速機9のPTO
軸、図示しない油圧クラッチ機構、ユニバ−サルジョイ
ント10を介して刈刃機構15に動力伝達し、図示しな
い伝動機構を介して各刈刃15aを回転させて草・芝刈
を行うよう構成されている。Casters 17 are attached to the four corners of the deck 16 of the cutting blade mechanism 15 to keep the distance between the working ground and the cutting blade 15a substantially constant (several centimeters), the displacement of the cutting blade mechanism 15 and the body 1a. The cutting blade mechanism 15 for damping the displacement of
It is attached to the lower part of the vehicle body 1 a via the link mechanism 18.
Further, the PTO of the transmission 9 in the power transmission mechanism that transmits power from the vehicle-mounted engine 8 to the front and rear wheels 11a and 11b.
Power is transmitted to the cutting blade mechanism 15 via a shaft, a hydraulic clutch mechanism (not shown), and the universal joint 10, and each cutting blade 15a is rotated via a transmission mechanism (not shown) to perform grass / lawn mowing. .
【0019】前記刈跡境界検出装置20a,20bは、
車体1aの下部として刈刃機構15におけるデッキ16
の左側前後にそれぞれ取り付けられており、既刈地Cと
未刈地Bとの草・芝丈の差を検出する機構を車体左右方
向に複数、並列に配設して構成される。The cut boundary detecting devices 20a and 20b are
As the lower part of the vehicle body 1a, the deck 16 in the cutting blade mechanism 15
A plurality of mechanisms that are attached to the left and right sides of the vehicle and that detect the difference in grass / turf length between the already-cut land C and the uncut land B are arranged in parallel in the lateral direction of the vehicle body.
【0020】図3に示すように、前記各機構は、デッキ
16から延設されたフレ−ム16aに固定され車体左右
方向に横設された軸21に、所定のピッチ(例えば30
mm)で、上下に細長の複数の揺動部材22をそれぞれ
ベアリング23を介して揺動自在に装着されて構成され
ている。これら各揺動部材22は、刈跡境界検出のセン
シング部22aとして下側部分が長く形成され、上側部
分がセンサ動作部22bとして形成されており、重心が
揺動中心を境としてセンシング部22a側にあり、セン
シング部22a側が常に下方に位置するように設定され
ている。また、各揺動部材22のセンシング部22aの
下端は、前記刈刃機構15における刈刃15aの最低地
上高位置と略同等かあるいはそれよりも若干高い位置に
設定される。さらに各揺動部材22は草・芝を押し潰さ
ない程度の軽さに設定されている。As shown in FIG. 3, each of the above-mentioned mechanisms is fixed to a frame 16a extending from the deck 16 and is provided with a predetermined pitch (for example, 30
mm), a plurality of vertically slender swing members 22 are swingably mounted via bearings 23, respectively. The lower part of each of the swing members 22 is formed as a sensing part 22a for detecting a cut boundary, and the upper part is formed as a sensor operating part 22b. The center of gravity is on the sensing part 22a side with the swing center as a boundary. , And the sensing unit 22a side is set so as to be always located below. Further, the lower end of the sensing portion 22a of each rocking member 22 is set to a position substantially equal to or slightly higher than the lowest ground clearance position of the cutting blade 15a in the cutting blade mechanism 15. Furthermore, each rocking member 22 is set to be light enough not to crush grass / turf.
【0021】また、揺動部材22が鉛直状態で、センサ
動作部22bに対し、車輌進行方向にそれぞれ一定の間
隔を開けて揺動状態検出センサの一例としてマイクロス
イッチ24が対設されている。Further, when the swing member 22 is in a vertical state, a micro switch 24 is provided as an example of a swing state detecting sensor with respect to the sensor operating portion 22b with a certain interval in the vehicle traveling direction.
【0022】すなわち、図4(a)に示すように、揺動
部材22が草・芝刈作業領域における既刈地Cに位置す
るときには、上述のようにセンシング部22aの下端が
刈刃15aの最低地上高位置と略同等位置に設定されて
いることから、センシング部22aが草・芝に接してお
らず揺動部材22は鉛直状態を維持し、あるいは草・芝
に接しても揺動角が微小であるため、センサ動作部22
bがマイクロスイッチ24に接せずマイクロスイッチ2
4がOFFとなる。これに対し図4(b)のように、揺
動部材22が未刈地Bに位置するときには、草・芝丈が
高く、このためセンシング部22aが草・芝に接して車
輌の進行に伴い揺動部材22が揺動し、揺動部材22の
センサ動作部22bがマイクロスイッチ24に接してマ
イクロスイッチ24がONする。従って、図5のよう
に、車輌進行方向に対して直角方向、すなわち車体左右
方向に複数の揺動部材22を設け、車輌進行に伴う揺動
部材22の揺動状態を検出することで、未刈地Cに位置
する各揺動部材22は揺動してこれに対設するマイクロ
スイッチ24をONし、既刈地Cに位置する各揺動部材
22は鉛直状態あるいは揺動角が微小となり、これに対
設するマイクロスイッチ24がOFFとなり、これらマ
イクロスイッチ24のON,OFFの境界位置を検出す
ることで、車体位置に対する既刈地Cと未刈地Bとの刈
跡境界Lを検出できるのである。That is, as shown in FIG. 4 (a), when the swinging member 22 is located on the cut land C in the grass / lawn mowing work area, the lower end of the sensing portion 22a is the lowest of the cutting blade 15a as described above. Since it is set at a position substantially equal to the height above ground, the sensing part 22a is not in contact with the grass / turf and the swinging member 22 maintains the vertical state, or the swinging angle does not change even when it is in contact with the grass / turf. Since it is minute, the sensor operating unit 22
b does not contact the microswitch 24 and the microswitch 2
4 turns off. On the other hand, as shown in FIG. 4B, when the rocking member 22 is located in the uncut area B, the grass / turf height is high, and therefore the sensing portion 22a comes into contact with the grass / turf as the vehicle advances. The rocking member 22 rocks, the sensor operating portion 22b of the rocking member 22 contacts the micro switch 24, and the micro switch 24 is turned on. Therefore, as shown in FIG. 5, a plurality of swinging members 22 are provided in a direction perpendicular to the vehicle traveling direction, that is, in the vehicle body left-right direction, and the swinging state of the swinging member 22 as the vehicle travels is detected. Each rocking member 22 located in the cut land C rocks to turn on the micro switch 24 opposite to the rocking member 22, and each rocking member 22 located in the cut land C has a vertical state or a small rocking angle. , The microswitch 24 opposite to this is turned off, and the boundary position between ON and OFF of these microswitches 24 is detected to detect the cut boundary L between the cut land C and the uncut land B with respect to the vehicle body position. You can do it.
【0023】なお、本実施例では揺動部材22の揺動状
態を検出するため、揺動状態検出センサの一例としてマ
イクロスイッチ24を用いているが、マイクロスイッチ
と同様に動作する接触型センサ、あるいは対象物が近接
するとON動作する近接スイッチ等の無接触型センサを
用いても良い。In this embodiment, the micro switch 24 is used as an example of the rocking state detecting sensor in order to detect the rocking state of the rocking member 22, but a contact type sensor that operates in the same manner as the micro switch, Alternatively, a contactless sensor such as a proximity switch that is turned on when an object approaches may be used.
【0024】また、本実施例では、刈跡境界に沿う芝刈
作業車1の倣い走行による草・芝刈作業において、既刈
地Cを常に車体1aの左外側に位置させ、且つ、刈残し
を防止すべく所定の芝刈オ−バラップ量Oを実現するた
め、前記各刈跡境界検出装置20a,20bは、図2に
示すように車体1aの前後方向において刈刃機構15に
おける左側の刈刃15aの接線を跨ぐよう位置される。
これにより、倣い走行における芝刈作業車1の目標位置
を所定の芝刈オ−バラップ量Oを得る位置に定めたと
き、刈跡境界検出装置20a,20bにより既刈地Cと
未刈地Bとの刈跡境界Lを検出し、既刈地Cと未刈地B
との刈跡境界Lに沿った芝刈作業車1の倣い走行による
草・芝刈作業中、刈跡境界Lを刈刃15aの内側に位置
させることが可能となり、草・芝の刈残しが防止され
る。Further, in the present embodiment, in the grass / lawn mowing work by the lawn mowing work vehicle 1 following the cut mark boundary, the already-cut land C is always located on the left outer side of the vehicle body 1a and the leftover cutting is prevented. In order to realize a predetermined lawn mowing overlap amount O, the respective cut mark boundary detection devices 20a and 20b are arranged so that the left cutting blade 15a of the cutting blade mechanism 15 in the front-back direction of the vehicle body 1a as shown in FIG. Positioned to straddle a tangent.
As a result, when the target position of the lawnmower working vehicle 1 in copying travel is set to a position where a predetermined lawn mowing overlap amount O is obtained, the cut land boundary detection devices 20a and 20b separate the cut land C and the uncut land B from each other. Cut boundary L is detected, and already cut land C and uncut land B
During the grass / lawn mowing work performed by the lawnmower 1 following the cut mark boundary L, the cut mark boundary L can be positioned inside the cutting blade 15a, which prevents the grass / lawn from being left behind. It
【0025】また、図6に示すように、前記芝刈作業車
1には、マイクロコンピュ−タ等から構成される制御装
置50が搭載されており、この制御装置50にセンサ・
アクチュエ−タ類が接続されて、該制御装置50によ
り、上記刈跡境界検出装置20a,20bの各マイクロ
スイッチ24からの信号を入力し、揺動部材22の揺動
状態に基づき草・芝刈作業領域における既刈地と未刈地
との刈跡境界Lを検出し、この刈跡境界の位置デ−タに
基づき後述する操舵機構30a,30bを制御して刈跡
境界Lに沿った倣い走行を行わせる倣い走行制御手段と
しての機能、及び、倣い走行中に、各マイクロスイッチ
24の出力値に基づき作業レ−ンの終端点に達したと判
断されるときには、予め設定されているデ−タに基づき
操舵機構30a,30b及び走行制御アクチュエ−タ1
2を制御して車輌を次の作業レ−ンにシフトさせるシフ
ト処理手段としての機能が実現される。さらに制御装置
50は、移動局GPS受信機25、固定局30からのデ
ィファレンシャル情報を受信するための無線通信機26
が接続され、D−GPSによる自己位置測位機能、推測
航法による自己位置測位機能、自律走行を制御する自律
走行制御機能をも実現するようになっている。Further, as shown in FIG. 6, the lawnmower working vehicle 1 is equipped with a control device 50 composed of a microcomputer and the like.
The actuators are connected to the control device 50, and the control device 50 inputs signals from the microswitches 24 of the cut boundary detection devices 20a and 20b. Based on the swing state of the swing member 22, grass and lawn mowing work is performed. The cut boundary L between the already cut and uncut land in the area is detected, and the steering mechanisms 30a and 30b, which will be described later, are controlled based on the position data of the cut boundary to follow the cut boundary L. And the function as a copying travel control means for performing the following, and when it is determined that the end point of the work lane is reached based on the output value of each microswitch 24 during the copying travel, a preset data is set. Based on the steering mechanism 30a, 30b and the traveling control actuator 1
The function as shift processing means for controlling the vehicle 2 to shift the vehicle to the next work lane is realized. Further, the control device 50 has a wireless communication device 26 for receiving the differential information from the mobile station GPS receiver 25 and the fixed station 30.
Are also connected, and a self-positioning function by D-GPS, a self-positioning function by dead-reckoning, and an autonomous traveling control function for controlling autonomous traveling are realized.
【0026】詳細には、前記刈跡境界検出装置20a,
20bの各マイクロスイッチ24が接続される境界認識
部51、前記車輪エンコ−ダ5が接続される走行距離検
出部52、地磁気センサ4が接続されると共に走行距離
検出部52による走行距離デ−タを用いる推測航法位置
検出部53、前記移動局GPS受信機25及び無線通信
機26が接続されるD−GPS位置検出部54、前記無
接触型センサ6a,6b及び接触型センサ7a,7bが
接続される障害物検出部55、これらの認識部51,検
出部52〜55が接続される走行制御部56、この走行
制御部56によって参照される作業デ−タ・マップが格
納されている作業デ−タ蓄積部57、前記走行制御部5
6からの指示によって車輌制御を行う車輌制御部58が
前記制御装置50に備えられ、さらに、この車輌制御部
58からの出力に基づいて芝刈作業車1の各機構部を駆
動するため、駆動制御部59、操舵制御部60、及び刈
刃制御部61が備えられている。Specifically, the cut boundary detecting device 20a,
Boundary recognition section 51 to which each microswitch 24 of 20b is connected, running distance detecting section 52 to which the wheel encoder 5 is connected, geomagnetic sensor 4 and running distance data by the running distance detecting section 52. Dead reckoning position detection unit 53, D-GPS position detection unit 54 to which the mobile station GPS receiver 25 and wireless communication device 26 are connected, the non-contact type sensors 6a and 6b, and the contact type sensors 7a and 7b are connected. An obstacle detection section 55, a recognition control section 51, a travel control section 56 to which the detection sections 52 to 55 are connected, and a work data map in which a work data map referred to by the travel control section 56 is stored. -Data storage unit 57, the traveling control unit 5
The control device 50 is provided with a vehicle control unit 58 for controlling the vehicle according to an instruction from the control unit 6. Further, drive control is performed to drive each mechanism unit of the lawnmower working vehicle 1 based on the output from the vehicle control unit 58. A section 59, a steering control section 60, and a cutting blade control section 61 are provided.
【0027】前記境界認識部51では、車輌進行方向デ
−タに基づき前記刈跡境界検出装置20a,20bの一
方を選択し、選択した刈跡境界検出装置の各マイクロス
イッチ24からの信号を処理して草・芝丈の刈跡境界及
び作業レ−ンの終端点を検出し、これらのデ−タを前記
走行制御部56に出力する。The boundary recognition section 51 selects one of the cut boundary detection devices 20a and 20b based on the vehicle traveling direction data, and processes the signal from each microswitch 24 of the selected cut boundary detection device. Then, the boundaries of the cut marks of grass and lawn height and the end points of the work lane are detected, and these data are output to the traveling control unit 56.
【0028】前記走行距離検出部52は、車輪エンコ−
ダ5によって検出される車速を積分して走行距離を求
め、推測航法位置検出部53及び走行制御部56へ与え
る。The traveling distance detecting section 52 is a wheel encoder.
The vehicle speed detected by the vehicle 5 is integrated to obtain the travel distance, which is given to the dead reckoning position detection unit 53 and the travel control unit 56.
【0029】前記推測航法位置検出部53は、走行距離
を地磁気センサ4により検出した走行方向の変化に対応
させて累積することにより、基準地点からの走行履歴を
算出して自車輌の現在位置を測定し、測位デ−タを前記
走行制御部56に出力する。尚、前記推測航法位置検出
部53に接続されるセンサとしては、地磁気センサ4に
限定されることなく、ジャイロ等を用いても良い。The dead reckoning position detecting section 53 accumulates the traveling distance in correspondence with the change in the traveling direction detected by the geomagnetic sensor 4 to calculate the traveling history from the reference point and determine the present position of the vehicle. It measures and outputs the positioning data to the traveling control unit 56. The sensor connected to the dead reckoning position detection unit 53 is not limited to the geomagnetic sensor 4, and a gyro or the like may be used.
【0030】前記D−GPS位置検出部54は、前記移
動局GPS受信機25を介して捕捉したGPS衛星群
(3次元測位の場合には少なくとも4個、2次元測位の
場合には少なくとも3個)70からの航法メッセ−ジ、
すなわち、衛星の時計補正係数、軌道情報、衛星の暦、
衛星の配置等の測位情報と、無線通信機26を介して受
信した固定局40からのディファレンシャル情報とから
自車輌の位置を高精度に測定し、その測位デ−タを前記
走行制御部56に出力する。The D-GPS position detector 54 includes a group of GPS satellites captured through the mobile station GPS receiver 25 (at least four in the case of three-dimensional positioning and at least three in the case of two-dimensional positioning). ) Navigation message from 70,
That is, satellite clock correction coefficient, orbit information, satellite calendar,
The position of the vehicle is measured with high accuracy based on positioning information such as satellite placement and the differential information received from the fixed station 40 via the wireless communication device 26, and the positioning data is sent to the travel control unit 56. Output.
【0031】前記D−GPS位置検出部54に対する固
定局40は、固定局GPS受信機43が接続されるD−
GPS固定局部44、このD−GPS固定局部44から
のディファレンシャル情報を送信するためのD−GPS
情報送信部45、このD−GPS情報送信部45に接続
される無線通信機46等から構成されている。The fixed station 40 for the D-GPS position detector 54 is a D-to which a fixed station GPS receiver 43 is connected.
GPS fixed local unit 44, D-GPS for transmitting differential information from this D-GPS fixed local unit 44
The information transmitter 45 includes a wireless communication device 46 connected to the D-GPS information transmitter 45.
【0032】前記D−GPS固定局部44では、前記固
定局GPS受信機43を介して受信した衛星群70から
の測位情報を処理してディファレンシャル補正デ−タを
作成する。このディファレンシャル補正デ−タは、前記
D−GPS情報送信部45において無線通信のパケット
デ−タに変換され、無線通信機46を介して送信され
る。The D-GPS fixed station section 44 processes the positioning information from the satellite group 70 received via the fixed station GPS receiver 43 to create differential correction data. The differential correction data is converted into wireless communication packet data in the D-GPS information transmitting unit 45 and transmitted via the wireless communication device 46.
【0033】尚、本実施例においては、D−GPSの固
定局40を、前記芝刈作業車1の移動局を対象とした特
定の装置として設置するようにしているが、ディファレ
ンシャル情報を送信する無線局を備えた既存のD−GP
S固定局、あるいは、通信衛星を介してディファレンシ
ャル情報を送信する既存のD−GPS固定局等を利用す
ることも可能である。In this embodiment, the D-GPS fixed station 40 is installed as a specific device for the mobile station of the lawnmower vehicle 1, but it is a wireless device for transmitting differential information. Existing D-GP with stations
It is also possible to use an S fixed station or an existing D-GPS fixed station that transmits differential information via a communication satellite.
【0034】また、前記障害物検出部55は、予測でき
ない障害物を無接触型センサ6a,6b、及び接触型セ
ンサ7a,7bによって検出し、検出信号を前記走行制
御部56に出力する。The obstacle detecting section 55 detects an unpredictable obstacle by the non-contact type sensors 6a, 6b and the contact type sensors 7a, 7b, and outputs a detection signal to the traveling control section 56.
【0035】前記走行制御部56では、境界認識部5
1、走行距離検出部52、推測航法位置検出部53、D
−GPS位置検出部54からの各測位デ−タを適宜選択
し、作業デ−タ蓄積部57の作業デ−タを参照して現在
の自車輌の位置と目標位置との誤差量を算出し、走行経
路や車輌制御指示を決定する。In the traveling control unit 56, the boundary recognition unit 5
1, mileage detector 52, dead reckoning position detector 53, D
-Selecting each positioning data from the GPS position detector 54 as appropriate, referring to the work data in the work data storage 57 to calculate the amount of error between the current position of the vehicle and the target position. , Determine the route and vehicle control instructions.
【0036】この場合、作業領域への移動に際しては、
前記D−GPS位置検出部54での測位精度を設定レベ
ルと比較し、設定レベルを満足する場合、D−GPS位
置検出部54からの測位デ−タを使用し、設定レベルを
満足しない場合、前記推測航法位置検出部53からの測
位デ−タを使用して自律走行制御を行う。そして、作業
領域における草・芝刈作業では、前記境界認識部51か
らの境界位置デ−タ及び走行距離検出部52からの走行
距離デ−タ、車速デ−タ等を使用して倣い走行を制御す
る。また、前記境界認識部51において作業レ−ンの終
端点を検出したときには車輌を次の作業レ−ンにシフト
させるためのシフト処理を行う。尚、上記障害物検出部
55により障害物が検出されたときには、障害物回避あ
るいは車輌停止を指示する。In this case, when moving to the work area,
When the positioning accuracy in the D-GPS position detecting unit 54 is compared with a set level and the set level is satisfied, the positioning data from the D-GPS position detecting unit 54 is used, and when the set level is not satisfied, The autonomous traveling control is performed by using the positioning data from the dead reckoning position detecting section 53. In the grass / lawn mowing work in the work area, the copying traveling is controlled by using the boundary position data from the boundary recognizing unit 51, the traveling distance data from the traveling distance detecting unit 52, the vehicle speed data and the like. To do. When the boundary recognizing section 51 detects the end point of the work lane, shift processing is performed to shift the vehicle to the next work lane. When an obstacle is detected by the obstacle detection unit 55, an instruction to avoid the obstacle or stop the vehicle is issued.
【0037】前記作業デ−タ蓄積部57は、固定デ−タ
が記憶されているROMエリアと、制御実行中のワ−ク
デ−タが記憶されるRAMエリアとから構成され、RO
Mエリアには、草・芝刈作業を行う作業領域の地形デ−
タや複数の作業領域を含む領域全体の地形デ−タ等が予
め格納されており、RAMエリアには、後述するよう
に、推測航法による測位デ−タを補正するため設定時間
内でD−GPSの測位デ−タ等が蓄積されるようになっ
ている。The work data storage unit 57 comprises a ROM area in which fixed data is stored and a RAM area in which work data under control is stored.
Topographic data of the work area for grass and lawn mowing work in the M area
Data and terrain data of the entire area including a plurality of work areas are stored in advance. In the RAM area, as described later, in order to correct positioning data by dead reckoning, D- GPS positioning data and the like are stored.
【0038】前記車輌制御部58では、前記走行制御部
56からの指示を具体的な制御指示量に変換し、駆動制
御部59、操舵制御部60、刈刃制御部61に出力す
る。これにより、駆動制御部59では、変速アクチュエ
−タ、前後進切換アクチュエ−タ、スロットルアクチュ
エ−タ、ブレ−キアクチュエ−タ等の走行制御アクチュ
エ−タ12を制御して車輌走行制御を行うと共に、油圧
ポンプ27を制御して各機能部を駆動するための油圧を
発生させ、操舵制御部60では、前輪舵角センサ31
a、後輪舵角センサ31bからの入力に基づいて前輪操
舵用油圧制御弁28a、後輪操舵用油圧制御弁28bを
介して操舵制御(操舵量フィ−ドバック制御)を行い、
刈刃制御部61では、刈刃制御用油圧制御弁33を介し
て前記油圧クラッチ機構を動作して刈刃機構15の制御
を行う。The vehicle control unit 58 converts the instruction from the traveling control unit 56 into a specific control instruction amount and outputs it to the drive control unit 59, the steering control unit 60, and the cutting blade control unit 61. As a result, the drive control unit 59 controls the traveling control actuator 12 such as the shift actuator, the forward / reverse switching actuator, the throttle actuator, the brake actuator, etc. to control the traveling of the vehicle. The hydraulic pump 27 is controlled to generate hydraulic pressure for driving each functional unit, and the steering control unit 60 controls the front wheel steering angle sensor 31.
a, steering control (steering amount feedback control) is performed via the front wheel steering hydraulic control valve 28a and the rear wheel steering hydraulic control valve 28b based on the input from the rear wheel steering angle sensor 31b.
The cutting blade control unit 61 controls the cutting blade mechanism 15 by operating the hydraulic clutch mechanism via the cutting blade control hydraulic control valve 33.
【0039】図7に示すように、芝刈作業車1の操舵系
は、エンジン8によって駆動される前記油圧ポンプ27
に、前記操舵制御部60によって制御される前輪操舵用
油圧制御弁28a及び後輪操舵用油圧制御弁28bが接
続されるとともに、各油圧制御弁28a,28bに、前
輪用油圧シリンダ29a、後輪用油圧シリンダ29bが
それぞれ接続されており、各油圧シリンダ29a,29
bにより、前輪操舵機構30a、後輪操舵機構30bが
独立して駆動される構成となっている。As shown in FIG. 7, the steering system of the lawnmower working vehicle 1 includes a hydraulic pump 27 driven by an engine 8.
Is connected to a front wheel steering hydraulic control valve 28a and a rear wheel steering hydraulic control valve 28b controlled by the steering control unit 60, and the front wheel hydraulic cylinder 29a and the rear wheel are connected to the respective hydraulic control valves 28a and 28b. Hydraulic cylinders 29b are connected to the respective hydraulic cylinders 29a, 29a.
b, the front wheel steering mechanism 30a and the rear wheel steering mechanism 30b are driven independently.
【0040】そして、各操舵機構30a,30bに取付
けられた各舵角センサ31a,31bにより検出された
前後輪の各舵角が前記操舵制御部60に入力されると、
検出された舵角と目標舵角との偏差をなくすよう、前記
操舵制御部60によって各油圧制御弁28a,28bを
介して各操舵機構30a,30bが制御される。When the steering angles of the front and rear wheels detected by the steering angle sensors 31a and 31b attached to the steering mechanisms 30a and 30b are input to the steering control section 60,
The steering control unit 60 controls the steering mechanisms 30a and 30b via the hydraulic control valves 28a and 28b so as to eliminate the deviation between the detected steering angle and the target steering angle.
【0041】以下、図8に示すような複数の区画の作業
領域に対し、無人で草・芝刈作業を行う場合について説
明する。この場合、芝刈作業車1は作業開始に当たって
任意の準備位置80に待機しているものとすると、最初
の作業領域82への移動、この作業領域82における草
・芝刈作業、作業領域82から次の作業領域86への移
動、この作業領域86における草・芝刈作業、戻り位置
88への移動が、図9〜図15に示すプログラムに従っ
て自律的に行われる。The case where unmanned grass / lawn mowing work is performed on a plurality of divided work areas as shown in FIG. 8 will be described below. In this case, assuming that the lawn mowing vehicle 1 is waiting at an arbitrary preparation position 80 before starting work, it moves to the first work area 82, the grass / lawn mowing work in this work area 82, and the next from the work area 82. The movement to the work area 86, the grass / lawn mowing work in the work area 86, and the movement to the return position 88 are autonomously performed according to the programs shown in FIGS. 9 to 15.
【0042】まず、図9〜図12に示す主制御ル−チン
では、ステップS101で、G−DPSを用いて現在の自己
位置である準備位置80を計測する。この位置計測は、
緯度、経度等のD−GPSの測位デ−タ(必要に応じて
高度デ−タも加えられる)を、作業デ−タ蓄積部57に
格納されている測地系のデ−タに変換することにより行
われる。尚、この測地系へのデ−タ変換は、D−GPS
位置検出部54で行っても良く、あるいは、走行制御部
56において行っても良い。First, in the main control routine shown in FIGS. 9 to 12, in step S101, the G-DPS is used to measure the preparation position 80, which is the current self-position. This position measurement is
Converting D-GPS positioning data such as latitude and longitude (altitude data is also added as necessary) into geodetic system data stored in the work data storage unit 57. Done by. In addition, data conversion to this geodetic system is performed by D-GPS.
It may be performed by the position detection unit 54 or the travel control unit 56.
【0043】次いで、ステップS102へ進むと、作業デ−
タ蓄積部57を参照して最初の作業領域82の地形デ−
タを読出し、計測した準備位置80から作業開始地点ま
での経路81を生成してステップS103へ進む。ステップ
S103では、後述する図13及び図14の自律走行制御ル
−チンを実行して作業開始位置へ車輌を移動し、ステッ
プS104で、刈刃制御用油圧制御弁33を開弁して油圧ク
ラッチ機構に油圧を供給し、刈刃15aを作動させて草
・芝刈作業を開始し、まず、D−GPS・推測航法によ
り予め作業デ−タ蓄積部57に格納されている作業領域
デ−タを参照してD−GPS・推測航法により作業領域
に沿い経路83の外周刈を行う(図16参照)。Next, in step S102, the work data
The terrain data of the first work area 82 is referred to with reference to the data storage unit 57.
Is read out, a route 81 from the measured preparation position 80 to the work start point is generated, and the process proceeds to step S103. Step
In S103, the autonomous traveling control routine of FIGS. 13 and 14 to be described later is executed to move the vehicle to the work start position, and in step S104, the cutting blade control hydraulic control valve 33 is opened to perform the hydraulic clutch mechanism. Hydraulic pressure is supplied to the blades and the cutting blade 15a is operated to start the grass / lawn mowing work. First, the work area data stored in advance in the work data storage unit 57 is referred to by D-GPS / dead reckoning navigation. Then, the outer circumference of the route 83 is cut along the work area by D-GPS / dead reckoning (see FIG. 16).
【0044】すなわち、ステップS105で、前述のステッ
プS103と同様に自律走行時のD−GPSあるいは推測航
法により自己位置を検出した後、ステップS106で、作業
デ−タ蓄積部57の作業デ−タを参照し、作業領域82
の境界に沿う経路83に対する現在位置との誤差量を求
める。That is, in step S105, the self-position is detected by D-GPS or dead reckoning during autonomous traveling as in step S103, and then in step S106, the work data in the work data storage unit 57 is detected. Work area 82
The amount of error from the current position with respect to the path 83 along the boundary of is calculated.
【0045】次に、ステップS107へ進み、前記ステップ
S106で求めた誤差量に応じて前後輪の各目標舵角に対す
る操舵量を決定し、ステップS108で、前輪操舵用油圧制
御弁28a、後輪操舵用油圧制御弁28bを介して前輪
操舵機構30a、後輪操舵機構30bをそれぞれ駆動
し、前輪舵角センサ31a及び後輪舵角センサ31bに
より前後輪11a,11bの各舵角を検出して目標舵角
を得るよう制御する。Then, the process proceeds to step S107, and the step
The steering amount for each target steering angle of the front and rear wheels is determined according to the error amount obtained in S106, and in step S108, the front wheel steering mechanism 30a is operated via the front wheel steering hydraulic control valve 28a and the rear wheel steering hydraulic control valve 28b. The rear wheel steering mechanism 30b is driven, and the front wheel steering angle sensor 31a and the rear wheel steering angle sensor 31b detect the respective steering angles of the front and rear wheels 11a and 11b to perform control so as to obtain the target steering angle.
【0046】その後、ステップS109へ進み、例えば測位
デ−タによる現在の自車輌位置から作業領域における外
周刈の終了位置P0 に達したか否かを調べ、終了位置P
0 に達していないときには、前述のステップS105に戻っ
て、外周刈作業を続行し、外周刈の終了位置P0 に達し
たときには、ステップS109からステップS110へ進み、車
輌のシフト処理を行い操舵機構を制御して、前回の草・
芝刈作業による既刈地Cと未刈地Bとの刈跡境界Lに沿
った作業経路84の倣い走行を一定速(例えば、3〜6
Km/h)走行により行う。After that, the process proceeds to step S109, and it is checked whether or not the end position P0 of the outer circumference cutting in the work area has been reached from the current position of the vehicle based on the positioning data.
If it has not reached 0, the process returns to step S105 to continue the outer circumference cutting work, and when it reaches the end position P0 of the outer circumference cutting, the process proceeds from step S109 to step S110 to shift the vehicle and operate the steering mechanism. Control the previous grass
A constant speed (for example, 3 to 6) is used to follow the traveling of the work path 84 along the cut line boundary L between the already-cut land C and the uncut land B by the lawn mowing work.
Km / h) Carry out by running.
【0047】なお、本実施例では、倣い走行による草・
芝刈作業を直線的に行うため、外周刈における最初の所
定範囲aは直線走行を行い直線状に草・芝刈を行わせ
る。It should be noted that in this embodiment, the grass
Since the lawn mowing work is performed in a straight line, the first predetermined range a in the outer peripheral mowing is performed in a straight line to straighten the grass and lawn.
【0048】次いで、ステップS111へ進み、芝刈作業車
1の前後進状態に応じて刈跡境界検出装置20a,20
bの一方を選択する。すなわち、制御装置50内の車輌
前後進制御デ−タに基づき車輌前進Fと判断されるとき
には、刈刃機構15の前側の刈跡境界検出装置20aを
選択し、車輌後進Rと判断されるときには後側の刈跡境
界検出装置20bを選択する。そして、ステップS112へ
進み、選択された刈跡境界検出装置の各マイクロスイッ
チ24からの信号、及び車輪エンコ−ダ5からの信号を
入力処理し、ステップS113で、車輌位置に対する既刈地
Cと未刈地Bとの刈跡境界Lの位置を算出すると共に、
車速を算出し、ステップS114へ進む。Next, the process proceeds to step S111, and the cut mark boundary detecting devices 20a, 20 are selected according to the forward / backward movement state of the lawnmower work vehicle 1.
Select one of b. That is, when it is determined that the vehicle is moving forward F based on the vehicle forward-reverse control data in the controller 50, the cut mark boundary detecting device 20a on the front side of the cutting blade mechanism 15 is selected, and when it is determined that the vehicle is moving backward R. The rear cut boundary detection device 20b is selected. Then, the process proceeds to step S112, in which the signals from the respective micro switches 24 of the selected cut boundary detecting device and the signal from the wheel encoder 5 are input and processed, and in step S113, the already-cut land C corresponding to the vehicle position is obtained. While calculating the position of the cut boundary L with the uncut land B,
The vehicle speed is calculated, and the process proceeds to step S114.
【0049】ここで今、車輌前進状態で刈跡境界Lに沿
った倣い走行を行うとき、図2に示すように刈跡境界検
出装置20aにおいて、前述の如く、既刈地Cに位置す
る各マイクロスイッチ24はOFFとなり、未刈地Bに
位置する網印部分の各マイクロスイッチ24はONとな
る。従って、刈跡境界検出装置20aにおける各マイク
ロスイッチ24のON,OFFの境界を検出すること
で、車体位置に対する刈跡境界Lの位置を求める。な
お、車輌後進時には、後側の刈跡境界検出装置20bを
選択することにより同様に車体位置に対する刈跡境界L
の位置を求めることができる。Now, when the vehicle travels along the cut boundary L while the vehicle is moving forward, the cut boundary detecting device 20a as shown in FIG. The microswitches 24 are turned off, and the microswitches 24 located in the unmarked area B are turned on. Therefore, the position of the cut boundary L with respect to the vehicle body position is obtained by detecting the ON / OFF boundary of each microswitch 24 in the cut boundary detection device 20a. It should be noted that when the vehicle is moving backward, by selecting the rear side cut mark boundary detecting device 20b, the cut mark boundary L with respect to the vehicle body position is similarly selected.
The position of can be calculated.
【0050】また、前述のように、刈跡境界検出装置2
0a,20bの各揺動部材22は、軸21に揺動自在に
装着されることから、揺動部材22のセンシング部22
aの下端を低くすることができて、センシング部22a
の下端を刈刃15aの最低地上高と略同等位置あるいは
それよりも若干高い位置に設定することが可能となり、
草・芝刈作業領域における草・芝丈が低く、既刈地Cと
未刈地Bとの草・芝丈の差が少ない状態であっても、確
実に刈跡境界を検出することができる。Further, as described above, the cut boundary detecting device 2
Since the swing members 22 of 0a and 20b are swingably mounted on the shaft 21, the sensing portion 22 of the swing member 22
Since the lower end of a can be lowered, the sensing unit 22a
The lower end of the cutting blade 15a can be set at a position approximately equal to or slightly higher than the minimum ground clearance of the cutting blade 15a,
Even if the grass / turf height in the grass / lawn mowing work area is low and the difference in grass / turf length between the already-cut area C and the uncut area B is small, it is possible to reliably detect the cut mark boundary.
【0051】そして倣い走行による草・芝の刈残しを防
止すべく所定の芝刈オ−バラップ量Oを得るよう、図1
7に示すように、刈跡境界検出装置20a(20b)に
並設されている特定の揺動部材22間の位置、すなわち
特定のマイクロスイッチ24間の位置を目標境界位置L
B として予め設定しておき、この目標境界位置LB から
何番目のマイクロスイッチ24間に刈跡境界Lが存在す
るのかを算出することで、刈跡境界Lに対する車輌のず
れを求める。例えば、各揺動部材22の取付ピッチが3
0mmで、目標境界位置LB から+10番目(ここで符
号は、+…車輌前進方向左側、−…車輌前進方向右側を
示す)と+11番目とのマイクロスイッチ24間にO
N,OFFの境界があり刈跡境界Lが存在するとき、刈
跡境界Lは目標境界位置LB から左側の30mm×10
=300mmの位置にあると算出する。なお、この際の
誤差は、揺動部材の取付ピッチ以内となる。Then, in order to prevent the grass and grass from being left uncut by copying, a predetermined lawn mowing overlap amount O is obtained as shown in FIG.
As shown in FIG. 7, the position between the specific rocking members 22 arranged in parallel in the cut boundary detection device 20a (20b), that is, the position between the specific microswitches 24 is set to the target boundary position L.
The deviation of the vehicle with respect to the cut boundary L is obtained by presetting as B and calculating the number of microswitches 24 between which the cut boundary L exists from the target boundary position LB. For example, the mounting pitch of each swing member 22 is 3
At 0 mm, 0 is provided between the + 10th micro switch 24 and the + 11th microswitch 24 from the target boundary position LB (here, the symbols indicate + ... vehicle forward direction left side, −... vehicle forward direction right side).
When there is a boundary of N and OFF and a cut boundary L exists, the cut boundary L is 30 mm × 10 on the left side from the target boundary position LB.
It is calculated to be at a position of 300 mm. Note that the error at this time is within the mounting pitch of the swing member.
【0052】そして、以後の処理により刈跡境界Lの位
置が目標境界位置LB に一致するよう制御弁28a,2
8bを介して各操舵機構30a,30bを制御し、前後
輪11a,11bの舵角を修正して車体1aの進行方向
を修正する。Then, by the subsequent processing, the control valves 28a, 2a are adjusted so that the position of the cut boundary L coincides with the target boundary position LB.
The steering mechanisms 30a and 30b are controlled via 8b to correct the steering angles of the front and rear wheels 11a and 11b to correct the traveling direction of the vehicle body 1a.
【0053】ステップS114では、刈跡境界Lの位置デ−
タを加重平均し、ステップS115で平均化処理を与える単
位時間としての平均化時間が終了したかを判断し、平均
化時間が終了するまでステップS112〜S115を繰り返す。
平均化処理の終了によりステップS116へ進むと、選択さ
れている刈跡境界検出装置20a(20b)の全マイク
ロスイッチ24がOFFかを判断して倣い走行による1
行程(1列)の作業レ−ンの終端点に達したかを判断す
る。In step S114, the position data of the cut boundary L is
Then, in step S115, it is determined whether or not the averaging time as a unit time for giving the averaging process has ended, and steps S112 to S115 are repeated until the averaging time ends.
When the process proceeds to step S116 after the end of the averaging process, it is determined whether or not all the micro switches 24 of the selected cut boundary detecting device 20a (20b) are OFF, and 1
It is determined whether or not the end point of the work lane of the stroke (one column) has been reached.
【0054】すなわち、図16に示すように未刈地Bの
周囲は前述の作業領域の外周刈による既刈地C1で囲ま
れており、刈跡境界Lによる倣い走行により未刈地Bに
対する1列の草・芝刈作業を行うと、やがて芝刈作業車
1は外周刈による既刈地C1に達し、刈跡境界検出装置
20a(20b)の全マイクロスイッチ24がOFFす
る。従って、刈跡境界検出装置20a(20b)の全マ
イクロスイッチ24がOFFかを判断することによっ
て、倣い走行による1行程(1列)の作業レ−ンの終端
点に達したかを判断することが可能となる。That is, as shown in FIG. 16, the periphery of the uncut land B is surrounded by the already cut land C1 obtained by cutting the outer circumference of the work area, and the copying operation by the cut mark boundary L causes 1 to the uncut land B. When the grass and lawn mowing work on the row is performed, the lawn mowing vehicle 1 eventually reaches the already cut land C1 by the outer circumference cutting, and all the micro switches 24 of the cut mark boundary detection device 20a (20b) are turned off. Therefore, it is determined whether or not all the micro switches 24 of the cut boundary detecting device 20a (20b) are off, thereby deciding whether or not the end point of the work lane of one stroke (one row) by the copying traveling is reached. Is possible.
【0055】そして、全マイクロスイッチ24のOFF
により作業レ−ンの終端点に達して1行程の作業が終了
したと判断されるときにはステップS136へ分岐し、作業
レ−ンの終端点に達しておらず1行程の作業が未終了と
判断されるときにはステップS117へ進む。ステップS117
では前記刈跡境界Lの位置デ−タの平均値を刈跡境界位
置L0 として作業デ−タ蓄積部57にメモリし、ステッ
プS118で予め設定された制御インタ−バル(数sec)
が経過したかを判断して制御インタ−バルが経過するま
での間、処理を中断し、制御インタ−バルが経過すると
ステップS119へ進み、ステップS119ないしS122で、前記
ステップS112〜S115と同様に刈跡境界Lの位置デ−タの
平均値を求める。そしてステップS123へ進み、前記ステ
ップS116と同様、作業レ−ンの終端点に達して倣い走行
による1行程が終了したかを判断し、1行程終了のとき
にはステップS136へ分岐し、未終了のときにはステップ
S124へ進み、今回算出した刈跡境界Lの位置デ−タの平
均値を刈跡境界位置L1 として作業デ−タ蓄積部57に
メモリしてステップS125へ進む。Then, all the micro switches 24 are turned off.
When it is determined that the end of the work lane is reached and the work of one stroke is completed, the process branches to step S136 and it is determined that the end of the work lane is not reached and the work of one stroke is not completed. If so, the process proceeds to step S117. Step S117
Then, the average value of the position data of the cut boundary L is stored in the work data storage unit 57 as the cut boundary position L0, and the preset control interval (several seconds) is set in step S118.
Process is suspended until the control interval elapses by determining whether or not has elapsed, and when the control interval elapses, the process proceeds to step S119, and in steps S119 to S122, similar to steps S112 to S115. The average value of the position data of the cut boundary L is calculated. Then, the process proceeds to step S123, and similarly to step S116, it is determined whether or not the end point of the work lane is reached and one stroke of the contour traveling is completed. When one stroke is completed, the process branches to step S136, and if not completed, Step
The process proceeds to S124, the average value of the position data of the cut boundary L calculated this time is stored as the cut boundary position L1 in the work data storage unit 57, and the process proceeds to step S125.
【0056】ステップS125では、前記刈跡境界位置L0
、L1 及び両刈跡境界位置L0 、L1 間の走行距離S
に基づき、車輌進行方向の方位偏差角θを算出すると共
に、目標車体位置と現車体位置との偏差Zを求める。図
17に示すように、時間t0 における上記刈跡境界位置
L0 と制御インタ−バル経過後の時間t1 における上記
刈跡境界位置L1 との差X(=L0 −L1 ) を算出し、
時間t0 からt1 までの走行距離Sを車速により算出
し、差Xと走行距離Sとに基づき刈跡境界Lに対する車
輌進行方向の方位偏差角θを算出する。また、時間t0
における刈跡境界位置L0 を、目標車体位置と現車体位
置との偏差Zとする。At step S125, the cut boundary position L0.
, L1 and the distance S between the two cut mark boundary positions L0, L1
Based on the above, the azimuth deviation angle θ in the vehicle traveling direction is calculated, and the deviation Z between the target vehicle body position and the current vehicle body position is obtained. As shown in FIG. 17, a difference X (= L0-L1) between the cut boundary position L0 at the time t0 and the cut boundary position L1 at the time t1 after the control interval has elapsed is calculated,
The traveling distance S from the time t0 to t1 is calculated by the vehicle speed, and the azimuth deviation angle θ in the vehicle traveling direction with respect to the cut boundary L is calculated based on the difference X and the traveling distance S. Also, time t0
The cut-line boundary position L0 at is the deviation Z between the target vehicle body position and the current vehicle body position.
【0057】そして、これら方位偏差角θ及び偏差Zに
より、車体1aがどの方向にどれだけずれているのかを
認識し(なお、偏差Zの+−により車体1aが進行方向
左右のどちら側にずれているのかが判る)、この認識結
果に基づきステップS126で車体1aのずれを修正するよ
う前後輪11a,11b各々の目標舵角を設定する。こ
の目標舵角の設定は、例えば方位偏差角θと偏差Zとを
パラメ−タとして作業デ−タ蓄積部57に予め格納され
ているテ−ブルを参照することにより行う。The azimuth deviation angle θ and the deviation Z are used to recognize in which direction and how much the vehicle body 1a is deviated. Based on this recognition result, the target steering angles of the front and rear wheels 11a and 11b are set so as to correct the displacement of the vehicle body 1a based on the recognition result. The target rudder angle is set, for example, by referring to a table stored in advance in the work data storage unit 57 using the azimuth deviation angle θ and the deviation Z as parameters.
【0058】その後、ステップS127で、前,後輪舵角セ
ンサ31a,31bからの信号を入力処理して前,後輪
11a,11bの舵角をそれぞれ算出すると、ステップ
S128へ進み、先ず前輪舵角と前輪目標舵角とを比較す
る。そして前輪舵角が前輪目標舵角と等しいかあるいは
それよりも大きいと判断されるときにはステップS129へ
進み、前輪操舵用油圧制御弁28aをOFFして前輪用
油圧シリンダ29aを介して前輪操舵機構30aを動作
し、前輪11aの舵角を減じ、前輪舵角が前輪目標舵角
よりも小さいときにはステップS130へ進み、前輪操舵用
油圧制御弁28aをONして逆に前輪11aの舵角を増
加させるよう制御する。After that, in step S127, the signals from the front and rear wheel steering angle sensors 31a and 31b are input to calculate the steering angles of the front and rear wheels 11a and 11b, respectively.
The process proceeds to S128, in which the front wheel steering angle and the front wheel target steering angle are first compared. When it is determined that the front wheel steering angle is equal to or larger than the front wheel target steering angle, the process proceeds to step S129, the front wheel steering hydraulic control valve 28a is turned off, and the front wheel steering mechanism 30a is operated via the front wheel hydraulic cylinder 29a. Is operated to decrease the steering angle of the front wheels 11a, and when the front wheels steering angle is smaller than the front wheels target steering angle, the process proceeds to step S130 to turn on the front wheel steering hydraulic control valve 28a to increase the steering angles of the front wheels 11a. Control.
【0059】次いで、ステップS131へ進み、後輪舵角と
後輪目標舵角とを比較し、後輪舵角が後輪目標舵角と等
しいかあるいはそれよりも大きいときにはステップS132
へ進み、後輪操舵用油圧制御弁28bをOFFして後輪
用油圧シリンダ29bを介して後輪操舵機構30bを動
作し、後輪11bの舵角を減じ、後輪舵角が目標後輪舵
角よりも小さいときにはステップS133へ進み、逆に後輪
操舵用油圧制御弁28bをONして後輪11bの舵角を
増加させるよう制御する。そして、ステップS134で、予
め設定された制御インタ−バルが経過したかを判断し、
制御インタ−バルが経過するまでの間、ステップS127〜
S134を繰り返し、前後輪11a,11bの舵角が目標舵
角に一致するよう舵角フィ−ドバック制御を継続し、制
御インタ−バルが経過すると、ステップS135へ進み、前
回の刈跡境界位置L0 を今回の刈跡境界位置L1 の値で
書換え、前記ステップS119へ戻る。Next, the process proceeds to step S131, the rear wheel steering angle is compared with the rear wheel target steering angle, and if the rear wheel steering angle is equal to or larger than the rear wheel target steering angle, step S132
Then, the rear wheel steering hydraulic control valve 28b is turned off and the rear wheel steering mechanism 30b is operated via the rear wheel hydraulic cylinder 29b to reduce the steering angle of the rear wheel 11b so that the rear wheel steering angle is the target rear wheel. When the steering angle is smaller than the steering angle, the process proceeds to step S133, and on the contrary, the rear wheel steering hydraulic control valve 28b is turned on to control the steering angle of the rear wheel 11b to be increased. Then, in step S134, it is determined whether the preset control interval has elapsed,
Until the control interval elapses, step S127-
By repeating S134, the rudder angle feedback control is continued so that the rudder angles of the front and rear wheels 11a and 11b match the target rudder angle, and when the control interval elapses, the process proceeds to step S135 and the previous cut mark boundary position L0. Is rewritten with the value of the current cut mark boundary position L1 and the process returns to step S119.
【0060】これにより、刈跡境界に対する車体1aの
ずれ認識とこのずれ認識に基づく舵角制御とを制御イン
タ−バルにより定まる一定時間毎に繰り返し、既刈地C
と未刈地Bとの刈跡境界Lに沿った芝刈作業車1の倣い
走行による草・芝刈が実現される。As a result, the recognition of the displacement of the vehicle body 1a with respect to the boundary of the cut mark and the steering angle control based on this displacement recognition are repeated at regular intervals determined by the control interval, and the cut land C
The lawn mowing work vehicle 1 follows the cutting boundary B between the uncut area B and the uncut area B to perform grass / lawn mowing.
【0061】やがて、倣い走行による1行程(1列)の
終端点に達すると、前述のように刈跡境界検出装置20
a(20b)の全マイクロスイッチ24がOFFし、こ
れが前記ステップS116あるいはステップS123で検知され
て、ステップS136に分岐し、D−GPS・推測航法によ
るデ−タに基づき自己位置を検出し、ステップS137で、
1区画(作業領域82)の全作業を終了したか否かを判
断する。そして未だ1区画の作業を終了していないとき
には前記ステップS110へ戻り、車輌のシフト処理を行
い、走行制御アクチュエ−タ12、及び前後輪操舵用油
圧制御弁28a,28bを介して前後輪操舵機構30
a,30bを制御し、次の作業レ−ンに車輌をシフトさ
せて次行程(次の列)の倣い走行による草・芝刈作業を
行う。When the end point of one stroke (one row) due to the copying run is reached, the cut boundary detecting device 20 as described above.
All the microswitches 24 of a (20b) are turned off, this is detected in the step S116 or step S123, and the process branches to step S136 to detect the self-position based on the data by D-GPS / dead reckoning, In S137,
It is determined whether or not all work for one section (work area 82) has been completed. When the work for one section has not been completed yet, the process returns to step S110, the vehicle shift process is performed, and the front / rear wheel steering mechanism is performed via the traveling control actuator 12 and the front / rear wheel steering hydraulic control valves 28a, 28b. Thirty
By controlling a and 30b, the vehicle is shifted to the next work lane, and grass and lawn mowing work is performed by copying traveling in the next stroke (next row).
【0062】ここで、図18に示すように、芝刈作業車
1の前進Fによって作業レ−ンの終端点、すなわち草・
芝刈の1行程終端点P1 に達したときには、作業デ−タ
蓄積部57による地形デ−タ及び予めセットされている
制御デ−タに基づき、終端点位置の草・芝の刈残しを防
ぐため、そのまま点P2 まで前進し、その後、点P2か
ら点P3 まで後退Rし、点P3 から右前方に前進し、所
定の芝刈オ−バラップ量Oを得る位置P4 で、各油圧制
御弁28a,28bを介して各操舵機構30a,30b
を制御して、車体1aを前回の作業時と平行状態とし、
すなわち各刈刃15aによる幅Wから芝刈オ−バラップ
量Oを減算した分だけ芝刈作業車1を横シフトさせた
後、今度は車輌を後進R状態として、前記ステップS111
ないしS135を実行し、刈刃機構15の後方側の刈跡境界
検出装置20bにより刈跡境界Lをセンシングして刈跡
境界Lに沿った倣い走行により草・芝刈作業を行う。ま
た、図19に示すように、芝刈作業車1の後進Rにより
草・芝刈の1行程終端点P5に達したときには、同様
に、作業デ−タ蓄積部57のデ−タに基づき、終端点位
置の草・芝の刈残しを防ぐため、点P6 までそのまま後
退し、その後、点P7 まで前進して点P7 から左後方に
後進し、所定の芝刈オ−バラップ量Oを得る位置P8
で、操舵機構30a,30bを制御して、車体1aを前
回の作業時と平行状態とし、車輌を前進状態として、刈
刃機構15の前方側の刈跡境界検出装置20aにより刈
跡境界Lをセンシングして刈跡境界Lに沿った倣い走行
により次行程の草・芝刈作業を行う。従い図20のよう
に前進と後進とを交互に繰り返しながら芝刈作業車1は
倣い走行を行い、作業領域82の草・芝刈作業が行われ
る。Here, as shown in FIG. 18, by the forward movement F of the lawnmower work vehicle 1, the end point of the work lane, that is, the grass.
When reaching the end point P1 of one stroke of lawn mowing, to prevent uncut grass and lawn at the end point position based on the terrain data by the work data accumulation unit 57 and the preset control data. Then, the hydraulic control valves 28a, 28b are moved forward to the point P2, then moved backward R from the point P2 to the point P3, moved forward from the point P3 to the front right, and at the position P4 for obtaining a predetermined lawn mowing overlap amount O. Via the steering mechanisms 30a, 30b
Control to bring the vehicle body 1a into a parallel state with the previous work,
That is, after the lawn mowing work vehicle 1 is laterally shifted by the amount obtained by subtracting the lawn mowing overlap amount O from the width W of each cutting blade 15a, the vehicle is set to the reverse R state, and the step S111 is performed.
Through S135, the cut boundary detection device 20b on the rear side of the cutting blade mechanism 15 senses the cut boundary L, and the grass / lawn mowing work is performed by following along the cut boundary L. Further, as shown in FIG. 19, when the one-stroke end point P5 of grass / lawn mowing is reached by the reverse movement R of the lawn mowing work vehicle 1, the end point is similarly determined based on the data of the work data accumulation unit 57. In order to prevent leftover cutting of grass / turf at the position, it retreats as it is to point P6, then moves forward to point P7 and moves backward from point P7 to the left rear to obtain a predetermined lawn mowing overlap amount O.
Then, the steering mechanisms 30a and 30b are controlled so that the vehicle body 1a is in a parallel state with the previous work, the vehicle is in the forward state, and the cut boundary L is detected by the cut boundary detection device 20a on the front side of the cutting blade mechanism 15. By sensing and following along the cut line boundary L, the grass and lawn mowing work in the next step is performed. Therefore, as shown in FIG. 20, the lawnmower work vehicle 1 travels along a line while alternately repeating forward movement and backward movement to perform grass / lawn mowing work in the work area 82.
【0063】そして、1区画(作業領域82)での作業
を終了するまでステップS110〜S137を繰返して、前後進
による倣い走行により1区画の草・芝刈作業を継続し、
1区画の作業を終了したとき、刈刃制御用油圧制御弁3
3を閉弁して刈刃機構15の作動を停止させ、ステップ
S137からステップS138へ進んで、全区画の作業を終了し
たか否かを判断する。ここでは、まだ、次の作業領域8
6での作業を終了していないため、前述のステップS102
へ戻り、同様の手順で作業領域82から作業領域86へ
の経路85を生成すると、図13及び図14の自律走行
制御ル−チンに従って次の作業領域86に移動し、草・
芝刈作業を行う。Then, steps S110 to S137 are repeated until the work in one section (work area 82) is completed, and the grass and lawn mowing work in one section is continued by the follow-up traveling by forward and backward movement,
When the work for one section is completed, the cutting blade control hydraulic control valve 3
3 is closed to stop the operation of the cutting blade mechanism 15, and the step
The process proceeds from step S137 to step S138, and it is determined whether or not the work for all the sections has been completed. Here, the next work area 8
Since the work in 6 has not been completed, the above-described step S102
Returning to the above, when the route 85 from the work area 82 to the work area 86 is generated in the same procedure, the path 85 is moved to the next work area 86 in accordance with the autonomous traveling control routine of FIGS.
Perform lawn mowing work.
【0064】やがて、全区画の作業を終了すると、ステ
ップS138からステップS139へ進み、作業デ−タ蓄積部5
7を参照して戻り位置88への経路87を生成すると、
ステップS140で、図13及び図14の自律走行制御ル−
チンに従って戻り位置88まで移動し、ル−チンを終了
して車輌を停止させる。Eventually, when the work of all the sections is completed, the process proceeds from step S138 to step S139, and the work data storage unit 5
7, when the route 87 to the return position 88 is generated,
In step S140, the autonomous traveling control routine of FIGS.
Follow the chin to the return position 88, finish the routine and stop the vehicle.
【0065】次に、図13及び図14に示す自律走行制
御ル−チンによる経路81,83,85,87における
自律走行について説明する。尚、前述の主制御ル−チン
においては、自己位置の測位デ−タと作業デ−タ蓄積部
57の作業デ−タとから経路81,83,85,87を
生成するようにしているが、経路81,83,85,8
7そのものを予め作業デ−タ蓄積部57に記憶させてお
いても良い。Next, the autonomous traveling on the routes 81, 83, 85, 87 by the autonomous traveling control routine shown in FIGS. 13 and 14 will be described. In the main control routine described above, the routes 81, 83, 85 and 87 are generated from the positioning data of the self position and the work data of the work data storage unit 57. , Routes 81, 83, 85, 8
7 itself may be stored in the work data storage unit 57 in advance.
【0066】D−GPSによる自己位置の測定では、単
独のGPSに比較してはるかに良好な精度が得られる
が、衛星の捕捉状態や電波の受信状態等によっては、自
律走行制御時に必要とするタイミングで必要とする精度
が得られない場合がある。従って、ステップS201で、現
在のD−GPSの精度情報を得ると、ステップS202で、
この精度情報を、作業デ−タ蓄積部57に予め記憶され
ている規定の位置精度評価設定値と比較し、ステップS2
03で、D−GPSの測位精度が設定レベルを満足するか
否かを判断する。In the self-position measurement by D-GPS, much better accuracy can be obtained as compared with the case of a single GPS, but it is necessary for autonomous traveling control depending on the satellite capturing state and the radio wave receiving state. The accuracy required for timing may not be obtained. Therefore, when the current D-GPS accuracy information is obtained in step S201, in step S202
This accuracy information is compared with a prescribed position accuracy evaluation set value stored in advance in the work data storage unit 57, and step S2
At 03, it is determined whether or not the positioning accuracy of D-GPS satisfies the set level.
【0067】そして、D−GPSの測位精度が設定レベ
ルを満足する場合には、ステップS204へ進んで、芝刈作
業車1の移動速度を、作業デ−タ蓄積部57に記憶され
ている通常速度(例えば5km/h)となるよう制御
し、ステップS205で、G−DPSの位置情報と経路情報
とから自車輌位置の誤差量を求めると、ステップS206
で、誤差量に応じて前後輪の操舵量を決定する。When the positioning accuracy of D-GPS satisfies the set level, the process proceeds to step S204, and the moving speed of the lawnmower work vehicle 1 is set to the normal speed stored in the work data storage unit 57. (For example, 5 km / h), and in step S205, when the error amount of the vehicle position is obtained from the position information of the G-DPS and the route information, step S206
Then, the steering amounts of the front and rear wheels are determined according to the error amount.
【0068】次いで、ステップS207へ進むと、前輪操舵
用油圧制御弁28a、後輪操舵用油圧制御弁28bを介
して前輪操舵機構30a、後輪操舵機構30bをそれぞ
れ駆動し、目標舵角を得るよう制御し、ステップS208
で、D−GPSで測位した現在位置と目標位置とを比較
し、ステップS209で、目標位置に到達したか否かを判断
する。その結果、目標位置に到達していないときには、
ステップS204へ戻って現在位置をD−GPSによって測
位しながら走行を続け、目標位置に到達したとき、ステ
ップS225で、車輌を停止してル−チンを抜ける。Next, in step S207, the front wheel steering mechanism 30a and the rear wheel steering mechanism 30b are respectively driven via the front wheel steering hydraulic control valve 28a and the rear wheel steering hydraulic control valve 28b to obtain the target steering angle. Control, step S208
Then, the current position measured by D-GPS is compared with the target position, and it is determined in step S209 whether or not the target position has been reached. As a result, when the target position is not reached,
Returning to step S204, the vehicle continues traveling while positioning the current position by the D-GPS, and when the target position is reached, the vehicle is stopped and the routine is exited in step S225.
【0069】一方、前記ステップS203で、D−GPSの
測位精度が設定レベルを満足しない場合には、前記ステ
ップS203からステップS210へ分岐し、推測航法による自
律走行を行う。すなわち、ステップS210で、車輌の移動
速度を、作業デ−タ蓄積部57に記憶されている低速度
(例えば、3km/h)に設定することにより、車輌の
スリップによって生じる推測航法の累積誤差が最小とな
るようにし、ステップS211で、推測航法による位置情報
と経路情報とから自車輌位置の誤差量を求める。On the other hand, if the positioning accuracy of the D-GPS does not satisfy the set level in step S203, the process branches from step S203 to step S210, and the dead reckoning autonomous driving is performed. That is, in step S210, by setting the moving speed of the vehicle to a low speed (for example, 3 km / h) stored in the work data storage unit 57, the cumulative error of dead reckoning caused by the slip of the vehicle is reduced. Then, in step S211, the error amount of the vehicle position is obtained from the position information and the route information based on dead reckoning.
【0070】次いで、ステップS212で、誤差量に応じて
前後輪の操舵量を決定すると、ステップS213で、前輪操
舵用油圧制御弁28a、後輪操舵用油圧制御弁28bを
介して前輪操舵機構30a、後輪操舵機構30bをそれ
ぞれ駆動し、目標舵角を得るよう制御する。そして、ス
テップS214で、推測航法による現在位置と目標位置とを
比較し、ステップS215で、目標位置に到達したか否かを
判断する。Next, in step S212, the steering amounts of the front and rear wheels are determined according to the error amount. In step S213, the front wheel steering mechanism 30a is operated via the front wheel steering hydraulic control valve 28a and the rear wheel steering hydraulic control valve 28b. The rear wheel steering mechanism 30b is driven to control the target steering angle. Then, in step S214, the current position by dead-reckoning and the target position are compared, and in step S215, it is determined whether or not the target position has been reached.
【0071】目標位置に到達していないときには、ステ
ップS215からステップS210へ戻って現在位置を推測航法
によって測位しながら自律走行を続け、目標位置に到達
したとき、ステップS215からステップS216へ進んで車輌
を停止すると、ステップS217で、D−GPSによる現在
位置計測を行い、測位デ−タを作業デ−タ蓄積部57の
RAMエリアに蓄積する。When the target position has not been reached, the process returns from step S215 to step S210 to continue autonomous traveling while positioning the current position by dead reckoning. When the target position is reached, the process proceeds from step S215 to step S216. When is stopped, the current position is measured by the D-GPS and the positioning data is stored in the RAM area of the work data storage unit 57 in step S217.
【0072】その後、ステップS218へ進み、予め設定さ
れたデ−タ蓄積設定時間と、前記ステップS217における
デ−タ蓄積時間とを比較し、ステップS219で、設定時間
が経過したか否かを調べる。そして、設定時間が経過し
ていないときには、ステップS217へ戻ってD−GPSに
よる測位デ−タの蓄積を続行し、設定時間が経過する
と、D−GPSによる測位デ−タの蓄積を終了してステ
ップS220へ進む。Then, the process proceeds to step S218, the preset data accumulation set time is compared with the data accumulation time set in step S217, and it is checked in step S219 whether the set time has elapsed. . Then, when the set time has not elapsed, the process returns to step S217 to continue accumulating the positioning data by the D-GPS, and when the set time elapses, the accumulation of the positioning data by the D-GPS ends. Proceed to step S220.
【0073】ステップS220では、蓄積したD−GPSに
よる測位デ−タを平均し、この平均値より現在位置を求
めると、ステップS221へ進んで、現在位置と目標位置と
を比較し、ステップS222で、真の目標位置に到達してい
るか否かを判断する。その結果、真の目標に到達してい
ると判断される場合、前述のステップS225で車輌を停止
してル−チンを抜け、真の目標位置に到達していないと
判断される場合には、ステップS223で、推測航法の測位
デ−タをD−GPSによる測位デ−タの平均値で補正す
ると、ステップS224へ進んで真の目標位置への経路を生
成し、前述のステップS210へ戻って走行を再開し、真の
目標位置に到達するまで以上の処理を繰返す。In step S220, the accumulated positioning data by D-GPS is averaged, and the current position is obtained from this average value. Then, the process proceeds to step S221, the current position is compared with the target position, and in step S222. , Determine whether the true target position has been reached. As a result, when it is determined that the true target position is reached, when it is determined that the vehicle is stopped and the routine is exited in step S225 described above and the true target position is not reached, When the dead reckoning positioning data is corrected by the average value of the positioning data by D-GPS in step S223, the process proceeds to step S224, a route to the true target position is generated, and the process returns to step S210. The traveling is restarted, and the above processing is repeated until the true target position is reached.
【0074】すなわち、D−GPSの測位精度が悪化し
た場合においても、一定の地点に留まって所定時間測定
を続けることにより測位精度を向上することができ、自
律走行中にD−GPSによって必要な位置精度が得られ
ない場合、一旦、推測航法によって目標位置まで走行し
て停止し、停止状態でD−GPSの測位デ−タを設定時
間累積して平均値を取ることにより、正確な現在位置を
知ることができる。そして、推測航法による位置がずれ
ていた場合には、D−GPSの測位デ−タの設定時間の
平均値で推測航法の測位デ−タを補正することにより、
常に正確な自律走行を行うことができるのである。That is, even when the positioning accuracy of the D-GPS is deteriorated, the positioning accuracy can be improved by staying at a certain point and continuing the measurement for a predetermined time, which is required by the D-GPS during autonomous traveling. If the position accuracy is not obtained, the dead-reckoning navigation is performed to the target position and then stopped, and in the stopped state, the D-GPS positioning data is accumulated for a set time and the average value is taken to obtain the accurate current position. You can know. If the dead-reckoning position is displaced, the dead-reckoning positioning data is corrected by the average value of the set times of the D-GPS positioning data.
It is possible to always perform accurate autonomous driving.
【0075】また、D−GPSにおける固定局40と移
動局との間のデ−タ通信は、図15に示すD−GPS無
線通信ル−チンによりパケットデ−タで行われる。この
デ−タ通信では、ステップS301で、移動局GPS受信機
25を初期化し、ステップS302で、固定局GPS受信機
43を、無線通信機26,46を介したデ−タ送信で初
期化すると、ステップS303へ進み、固定局40からのデ
ィファレンシャル情報を無線デ−タ通信により得る。Data communication between the fixed station 40 and the mobile station in D-GPS is performed by packet data by the D-GPS wireless communication routine shown in FIG. In this data communication, the mobile station GPS receiver 25 is initialized in step S301, and the fixed station GPS receiver 43 is initialized by data transmission via the wireless communication devices 26 and 46 in step S302. , Proceeds to step S303 to obtain the differential information from the fixed station 40 by wireless data communication.
【0076】次いで、ステップS304へ進むと、D−GP
S位置検出部54で、固定局40からのディファレンシ
ャル情報を移動局GPS受信機25から得られる測位デ
−タに適用し、ディファレンシャル演算を行って自車輌
位置を測定する。そして、その測位情報を走行制御部5
6に送ると、ステップS303へ戻り、次のデ−タ処理を繰
返す。この場合、固定局40とのディファレンシャル演
算は、移動局受信機25固有の機能によって行っても良
い。Then, in step S304, the D-GP
In the S position detection unit 54, the differential information from the fixed station 40 is applied to the positioning data obtained from the mobile station GPS receiver 25, and differential calculation is performed to measure the own vehicle position. Then, the positioning information is transmitted to the travel control unit 5
When sent to step 6, the process returns to step S303 to repeat the next data processing. In this case, the differential calculation with the fixed station 40 may be performed by a function unique to the mobile station receiver 25.
【0077】なお、本実施例では、刈跡境界検出装置2
0a(20b)における各揺動部材22を一本の軸21
により枢支しているが、要するに、各揺動部材22は揺
動自在に支持されていれば良く、適宜、各揺動部材22
を個別に枢支する手段を採用しても良い。In this embodiment, the cut boundary detecting device 2
0a (20b) each swing member 22 to one shaft 21
However, it is sufficient that each swing member 22 is swingably supported, and each swing member 22 is appropriately supported.
It is also possible to adopt a means for individually supporting the.
【0078】また、草・芝刈作業において、既刈地Cに
対し未刈地Bが常に、芝刈作業車1の前進方向右側(後
進方向左側)になるようにし、刈跡境界検出装置20
a,20bを前進方向左側の車体下部の刈刃機構15の
前後位置にそれぞれ設置するようにしているが、既刈地
Cに対して未刈地Bが前進方向左側(後進方向右側)に
なるようにしても良く、この場合には、刈跡境界検出装
置を前進方向右側の刈刃機構15の前後に設置する。ま
た、既刈地Cと未刈地Bとの左右関係を両方とも対処す
るため、刈跡境界検出装置を前進方向右側と左側との刈
刃機構15の前後にそれぞれ設置するようにしても良
い。In the grass / lawn mowing work, the uncut land B is always on the right side in the forward direction of the lawn mowing vehicle 1 (left side in the backward direction) with respect to the already-cut land C, and the cut boundary detecting device 20 is used.
Although a and 20b are respectively installed at the front and rear positions of the cutting blade mechanism 15 at the lower part of the vehicle body on the left side in the forward direction, the uncut land B becomes the left side in the forward direction (right side in the reverse direction) with respect to the already-cut land C. However, in this case, the cut boundary detecting device is installed in front of and behind the cutting blade mechanism 15 on the right side in the forward direction. Further, in order to deal with both the left-right relationship between the already-cut land C and the uncut land B, the cut mark boundary detection devices may be installed respectively before and after the cutting blade mechanism 15 on the right side and the left side in the forward direction. .
【0079】また、本実施例では、準備位置80から作
業領域82への移動、作業領域82、86間の移動、各
作業領域82、86における最初の外周刈の作業走行、
及び作業領域86から戻り位置88への移動を、D−G
PSあるいは推測航法により無人で自律走行するように
しているが、これらを有人により走行するようにしても
良い。Further, in the present embodiment, movement from the preparation position 80 to the work area 82, movement between the work areas 82 and 86, work traveling of the first outer peripheral cutting in each work area 82 and 86,
And the movement from the work area 86 to the return position 88, DG
Although the vehicle is autonomously driven by PS or dead reckoning, it may be manned.
【0080】また、倣い走行における1行程の終端点に
達し、次の行程への車輌シフト処理において、図21に
示すように、芝刈作業車1のタ−ンを工夫し、常に前進
方向で倣い走行を行わせるようにしても良く、この場合
は、刈刃機構15の前方側左右にそれぞれ刈跡境界検出
装置20a,20cを配置し、前述の主制御ル−チンに
おけるステップS111で適宜、刈跡境界検出装置20a,
20cの一方を選択する。Further, as shown in FIG. 21, when the end point of one stroke in copying travel is reached and the vehicle is shifted to the next stroke, the turn of the lawnmower work vehicle 1 is devised so that the lawn mowing vehicle 1 always follows in the forward direction. You may make it run, and in this case, the cut boundary detection devices 20a and 20c are arrange | positioned at the front left and right of the cutting blade mechanism 15, respectively, and it cuts by step S111 in the above-mentioned main control routine suitably. Trace boundary detection device 20a,
Select one of 20c.
【0081】さらに、刈跡境界検出装置におけるマイク
ロスイッチ24を、図22に示すように、揺動部材22
のセンサ動作部22bに対し、車輌進行方向と逆側に取
付け、未刈地BにあるときOFFし、既刈地Cにあると
きONするように設定しても良い。Further, as shown in FIG. 22, the micro switch 24 in the cut boundary detecting device is set to the swing member 22.
The sensor operating unit 22b may be attached on the opposite side of the vehicle traveling direction, and may be set to be turned off when it is in the uncut land B and turned on when it is in the already cut land C.
【0082】[0082]
【発明の効果】以上説明したように本発明による自律走
行作業車によれば、車輌の進行に伴い車体左右方向に並
列に位置する複数の揺動部材が草・芝丈に応じてそれぞ
れ揺動し、その揺動状態を揺動状態検出センサにより検
出し、揺動状態検出センサにより検出される揺動部材の
揺動状態に基づき草・芝刈作業領域の既刈地と未刈地と
の刈跡境界を検出し、この刈跡境界の位置デ−タに基づ
き操舵機構が制御されて刈跡境界に沿った倣い走行が行
われるので、先行例のように光学系により刈跡境界を検
出するのと異なり、塵芥、泥等の使用環境に左右される
ことなく、確実に既刈地と未刈地との刈跡境界に沿い自
律走行することが可能となり、倣い走行の精度が向上し
て草・芝刈等の作業性を向上することができる。また、
刈跡境界を検出するための揺動部材は、その下端を刈刃
機構における刈刃の最低地上高と略同等かあるいはそれ
よりも若干高い位置に設定しているので、作業地におけ
る草・芝丈が低く、既刈地と未刈地との草・芝丈の差が
少ない状態であっても確実に既刈地と未刈地との刈跡境
界を検出できる。As described above, according to the autonomous traveling work vehicle of the present invention, a plurality of rocking members positioned in parallel in the lateral direction of the vehicle body rock in accordance with the traveling of the vehicle in accordance with the grass / turf height. The rocking state detection sensor detects the rocking state, and based on the rocking state of the rocking member detected by the rocking state detection sensor, the grass and lawn mowing work area is cut and cut and the uncut area is cut. The trace boundary is detected, and the steering mechanism is controlled based on the position data of the cut boundary, and the contour travel along the cut boundary is performed. Therefore, the cut boundary is detected by the optical system as in the prior example. Unlike the above, it is possible to reliably run autonomously along the cut line boundary between the already-cut land and the uncut land without being influenced by the environment in which dust, mud, etc. are used, and the accuracy of copy-running is improved. Workability such as grass and lawn mowing can be improved. Also,
Since the swing member for detecting the cut boundary is set at its lower end at a position approximately equal to or slightly higher than the minimum ground clearance of the cutting blade in the cutting blade mechanism, the grass / turf at the work site is Even if the height is low and the difference in grass / turf length between the already-cut land and the uncut land is small, the cut boundary between the already-cut land and the uncut land can be reliably detected.
【0083】また、倣い走行中に、揺動状態検出センサ
の出力値に基づき作業レ−ンの終端点に達したと判断さ
れるときには、予めセットされているデ−タに基づき操
舵機構及び走行制御アクチュエ−タが制御されて車輌が
次の作業レ−ンにシフトされるので、作業レ−ンの終端
点を検出して車輌を次の作業レ−ンに自動的にシフトす
ることが可能となり、作業領域での高度な自律走行が可
能となる。When it is determined that the end point of the work lane has been reached based on the output value of the rocking state detection sensor during the profile travel, the steering mechanism and the travel based on the preset data. Since the control actuator is controlled to shift the vehicle to the next work lane, the end point of the work lane can be detected and the vehicle can be automatically shifted to the next work lane. Therefore, highly autonomous driving in the work area becomes possible.
【図1】D−GPS用移動局を備えた芝刈作業車とD−
GPS用固定局とを示す説明図FIG. 1 is a lawnmower equipped with a D-GPS mobile station and D-
Explanatory drawing showing fixed station for GPS
【図2】芝刈作業車における刈刃機構と刈跡境界検出装
置の取付け位置関係を示す平面図FIG. 2 is a plan view showing a mounting position relationship between a cutting blade mechanism and a cut boundary detecting device in a lawn mowing vehicle.
【図3】刈跡境界検出装置の構成を示す説明図FIG. 3 is an explanatory diagram showing a configuration of a cut boundary detecting device.
【図4】刈跡境界検出装置の動作を示す説明図FIG. 4 is an explanatory diagram showing the operation of the cut boundary detecting device.
【図5】刈跡境界検出装置の動作を示す説明図FIG. 5 is an explanatory diagram showing the operation of the cut boundary detecting device.
【図6】制御装置のブロック図FIG. 6 is a block diagram of a control device.
【図7】操舵制御系の構成を示す説明図FIG. 7 is an explanatory diagram showing a configuration of a steering control system.
【図8】走行経路及び作業領域を示す説明図FIG. 8 is an explanatory diagram showing a travel route and a work area.
【図9】主制御ル−チンのフロ−チャ−トFIG. 9: Flow chart of main control routine
【図10】主制御ル−チンのフロ−チャ−ト(続き)FIG. 10: Flow chart of main control routine (continued)
【図11】主制御ル−チンのフロ−チャ−ト(続き)FIG. 11 Flow chart of main control routine (continued)
【図12】主制御ル−チンのフロ−チャ−ト(続き)FIG. 12 Flow chart of main control routine (continued)
【図13】自律走行制御ル−チンのフロ−チャ−トFIG. 13: Flow chart of autonomous traveling control routine
【図14】自律走行制御ル−チンのフロ−チャ−ト(続
き)[Fig. 14] Flow chart of autonomous traveling control routine (continued)
【図15】D−GPS無線通信ル−チンのフロ−チャ−
トFIG. 15 is a flowchart of a D-GPS wireless communication routine.
To
【図16】作業領域における最初の外周刈の状態を示す
説明図FIG. 16 is an explanatory view showing the state of the first outer peripheral cutting in the work area.
【図17】車輌走行に伴う目標境界位置からの刈跡境界
のずれ、及び方位偏差角との関係を示すタイムチャ−トFIG. 17 is a time chart showing the relationship between the deviation of the cut boundary from the target boundary position and the azimuth deviation angle as the vehicle travels.
【図18】草・芝刈作業による1行程終了時の車輌シフ
ト状態を示す説明図FIG. 18 is an explanatory view showing a vehicle shift state at the end of one stroke by grass / lawn mowing work.
【図19】草・芝刈作業による1行程終了時の車輌シフ
ト状態を示す説明図FIG. 19 is an explanatory view showing a vehicle shift state at the end of one stroke by grass / lawn mowing work.
【図20】倣い走行による草・芝刈作業状態の説明図FIG. 20 is an explanatory diagram of a grass / lawn mowing work state by copying traveling.
【図21】草・芝刈作業による1行程終了時の車輌シフ
ト状態の他の例を示す説明図FIG. 21 is an explanatory view showing another example of a vehicle shift state at the end of one stroke by grass / lawn mowing work.
【図22】刈跡境界検出装置の他の実施例を示す説明図FIG. 22 is an explanatory diagram showing another embodiment of the cut boundary detecting device.
1 芝刈作業車(自律走行作業車) 1a 車体 12 走行制御アクチュエ−タ 15 刈刃機構 15a 刈刃 20a,20b 刈跡境界検出装置(刈跡境界検出手
段) 22 揺動部材 24 マイクロスイッチ(揺動状態検出センサ) 30a,30b 操舵機構 50 制御装置DESCRIPTION OF SYMBOLS 1 Lawn mowing work vehicle (autonomous traveling work vehicle) 1a Body 12 Travel control actuator 15 Cutting blade mechanism 15a Cutting blades 20a, 20b Cutting mark boundary detecting device (cutting boundary detecting means) 22 Swing member 24 Micro switch (swing) State detection sensor) 30a, 30b Steering mechanism 50 Control device
Claims (1)
刃機構における刈刃の最低地上高と略同等かあるいはそ
れよりも若干高い位置に設定した複数の揺動部材をそれ
ぞれ揺動自在に車体左右方向に並設し、上記揺動部材の
揺動状態を検出する揺動状態検出センサを備える刈跡境
界検出手段と、 上記揺動状態検出センサからの信号を入力し、上記揺動
部材の揺動状態に基づき草・芝刈作業領域における既刈
地と未刈地との刈跡境界を検出し、この刈跡境界の位置
デ−タに基づき操舵機構を制御して刈跡境界に沿った倣
い走行を行わせる倣い走行制御手段と、 倣い走行中に、上記揺動状態検出センサの出力値に基づ
き作業レ−ンの終端点に達したと判断されるときには、
予め設定されているデ−タに基づき操舵機構及び走行制
御アクチュエ−タを制御して車輌を次の作業レ−ンにシ
フトさせるシフト処理制御手段と、を備えることを特徴
とする自律走行作業車。1. A plurality of oscillating members each having a lower end set at a position substantially equal to or slightly higher than a minimum ground clearance of a cutting blade in a cutting blade mechanism are freely swingable at a lower portion of a body of an autonomous traveling work vehicle. On the left and right sides of the vehicle body, the cut boundary detecting means having a rocking state detecting sensor for detecting the rocking state of the rocking member, and a signal from the rocking state detecting sensor to input the rocking boundary detecting means. Based on the rocking state of the members, the boundary between the cut and uncut areas in the grass / lawn cutting work area is detected, and the steering mechanism is controlled based on the position data of the cut boundary to control the cut boundary. Copying traveling control means for performing the following traveling along, and when it is determined during the copying traveling that the end point of the work lane is reached based on the output value of the swing state detection sensor,
An autonomous traveling work vehicle comprising: shift processing control means for controlling the steering mechanism and the traveling control actuator based on preset data to shift the vehicle to the next work lane. ..
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5330194A JPH07184415A (en) | 1993-12-27 | 1993-12-27 | Autonomously traveling working vehicle |
US08/362,258 US5528888A (en) | 1993-12-27 | 1994-12-22 | Autonomous mowing vehicle and apparatus for detecting boundary of mowed field |
GB9426126A GB2285905B (en) | 1993-12-27 | 1994-12-23 | Mowing vehicle and apparatus for detecting a boundary |
GB9512326A GB2290212B (en) | 1993-12-27 | 1994-12-23 | Vehicle |
DE4446867A DE4446867C2 (en) | 1993-12-27 | 1994-12-27 | Device for detecting the boundaries of a mown field and method for controlling a mowing vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5330194A JPH07184415A (en) | 1993-12-27 | 1993-12-27 | Autonomously traveling working vehicle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07184415A true JPH07184415A (en) | 1995-07-25 |
Family
ID=18229888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5330194A Pending JPH07184415A (en) | 1993-12-27 | 1993-12-27 | Autonomously traveling working vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07184415A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09134217A (en) * | 1995-11-07 | 1997-05-20 | Fuji Heavy Ind Ltd | Travel controller for autonomous traveling vehicle |
JPH10243708A (en) * | 1997-03-03 | 1998-09-14 | Kubota Corp | Traveling pathway-preparing apparatus for working vehicle and traveling controller |
JP2004016160A (en) * | 2002-06-19 | 2004-01-22 | Yanmar Agricult Equip Co Ltd | Agricultural working vehicle |
JP2016066206A (en) * | 2014-09-24 | 2016-04-28 | 株式会社クボタ | Automatic travel vehicle |
CN114223339A (en) * | 2021-12-14 | 2022-03-25 | 华南农业大学 | A robot chassis and agricultural robot for paddy field multifunctional operation |
CN114987609A (en) * | 2022-04-18 | 2022-09-02 | 华南农业大学 | Four-wheel independent steering paddy field agricultural robot and navigation method thereof |
CN114987608A (en) * | 2022-06-29 | 2022-09-02 | 北京仓告科技有限公司 | Automatic deviation correcting device |
-
1993
- 1993-12-27 JP JP5330194A patent/JPH07184415A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09134217A (en) * | 1995-11-07 | 1997-05-20 | Fuji Heavy Ind Ltd | Travel controller for autonomous traveling vehicle |
JPH10243708A (en) * | 1997-03-03 | 1998-09-14 | Kubota Corp | Traveling pathway-preparing apparatus for working vehicle and traveling controller |
JP2004016160A (en) * | 2002-06-19 | 2004-01-22 | Yanmar Agricult Equip Co Ltd | Agricultural working vehicle |
JP2016066206A (en) * | 2014-09-24 | 2016-04-28 | 株式会社クボタ | Automatic travel vehicle |
CN114223339A (en) * | 2021-12-14 | 2022-03-25 | 华南农业大学 | A robot chassis and agricultural robot for paddy field multifunctional operation |
CN114223339B (en) * | 2021-12-14 | 2023-10-20 | 华南农业大学 | Robot chassis for multifunctional operation of paddy field and agricultural robot |
CN114987609A (en) * | 2022-04-18 | 2022-09-02 | 华南农业大学 | Four-wheel independent steering paddy field agricultural robot and navigation method thereof |
CN114987609B (en) * | 2022-04-18 | 2023-03-10 | 华南农业大学 | Four-wheel independent steering paddy field agricultural robot and navigation method thereof |
CN114987608A (en) * | 2022-06-29 | 2022-09-02 | 北京仓告科技有限公司 | Automatic deviation correcting device |
CN114987608B (en) * | 2022-06-29 | 2023-11-10 | 内蒙古锦泰明科技集团有限公司 | Automatic deviation correcting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5528888A (en) | Autonomous mowing vehicle and apparatus for detecting boundary of mowed field | |
US5938704A (en) | Autonomous running control system for vehicle and the method there | |
US5563786A (en) | Autonomous running control system for vehicle and the method thereof | |
US6272405B1 (en) | Apparatus and method for guiding vehicle autonomously | |
JP3710451B2 (en) | Method and apparatus for measuring position of moving object | |
EP0679976B1 (en) | Integrated vehicle positioning and navigation system, apparatus and method | |
JP7003224B2 (en) | Autonomous traveling work machine | |
JPH07184415A (en) | Autonomously traveling working vehicle | |
CN112425344A (en) | Orchard self-propelled weeding machine and autonomous navigation obstacle avoidance method thereof | |
JPH09107717A (en) | Apparatus for controlling posture of working machine | |
JP3359799B2 (en) | Control system for unmanned mobile work machines | |
JPH0949729A (en) | Method for driving mobile working machine and method for forming working data | |
JPH0937610A (en) | Operation of unmanned mower | |
JPH07222509A (en) | Self-traveling working vehicle | |
JP2000029522A (en) | Autonomous traveling method and autonomously traveling vehicle | |
JPH09120313A (en) | Guidance controller for working vehicle | |
JPH07104847A (en) | Traveling controller for autonomously traveling vehicle | |
JPH07184414A (en) | Apparatus for detecting boundary of reaped track and autonomously traveling working vehicle | |
JPH07222508A (en) | Self-traveling working vehicle | |
JP3595625B2 (en) | Travel control device for autonomous vehicles | |
GB2290212A (en) | Automatic steering of agricultural machine | |
JPH07203706A (en) | Autonomous travel working vehicle | |
JPH09149706A (en) | Traveling control device for autonomous running vehicle | |
JPH07184413A (en) | Apparatus for detecting boundary of reaped track and autonomously traveling working vehicle | |
JPH07104846A (en) | Traveling controller for autonomously traveling vehicle |