JPH06252853A - Spatial optical transmission communication equipment - Google Patents

Spatial optical transmission communication equipment

Info

Publication number
JPH06252853A
JPH06252853A JP4323855A JP32385592A JPH06252853A JP H06252853 A JPH06252853 A JP H06252853A JP 4323855 A JP4323855 A JP 4323855A JP 32385592 A JP32385592 A JP 32385592A JP H06252853 A JPH06252853 A JP H06252853A
Authority
JP
Japan
Prior art keywords
station
circuit
level
opposite station
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4323855A
Other languages
Japanese (ja)
Inventor
Kaoru Suda
薫 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yagi Antenna Co Ltd
Original Assignee
Yagi Antenna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yagi Antenna Co Ltd filed Critical Yagi Antenna Co Ltd
Priority to JP4323855A priority Critical patent/JPH06252853A/en
Publication of JPH06252853A publication Critical patent/JPH06252853A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To reduce power consumption by keeping a proper output for a light emitting element so as to prevent deterioration in the characteristic and the service life even when a communications range and environment or the like are changed. CONSTITUTION:An optical signal 14 transmitted from an opposite station is received by a light receiving element 15 and converted into an electric signal and inputted to an amplifier 16. The amplifier 16 amplifies the received signal and outputs a level signal indicating the strength of the received signal to a discrimination control circuit 17. The discrimination control circuit 17 discriminates the level of the received signal and when the received optical signal 14 is weak, the output of a drive circuit 11 is increased and when the received optical signal 14 is strong, the output of the drive circuit 11 is decreased. Thus, an optical signal 13 outputted from the light emitting element 12 is always kept to a proper level even when the communications range and the environment or the like are subject to change.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大気空間を伝送媒体と
して、双方向の光通信を行なう空間伝送光通信装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spatial transmission optical communication device for performing bidirectional optical communication using an atmospheric space as a transmission medium.

【0002】[0002]

【従来の技術】空間伝送方式を用いた双方向の空間伝送
光通信装置は、送光器及び受光器からなり、伝送媒体と
して大気空間を利用して光通信を行なうものであり、従
来では図5に示すように構成されている。即ち、送光器
は、送信すべき信号を駆動回路1に入力して発光素子2
を駆動し、光信号を発生して大気空間を伝送媒体として
相手局に送出する。また、受光器は、相手局から送られ
てくる光信号を受光素子3で受光して電気信号に変換
し、利得を制御できる増幅回路4により増幅する。
2. Description of the Related Art A two-way spatial transmission optical communication device using a spatial transmission system is composed of a light transmitter and a light receiver and performs optical communication by utilizing the atmospheric space as a transmission medium. It is configured as shown in FIG. That is, the light transmitter inputs the signal to be transmitted to the drive circuit 1 to input the light emitting element 2
To generate an optical signal and send it to the partner station using the atmospheric space as a transmission medium. Further, the light receiver receives the optical signal sent from the partner station by the light receiving element 3 to convert it into an electric signal, and amplifies it by the amplifier circuit 4 capable of controlling the gain.

【0003】上記の構成において、通常は、より長い伝
送距離、より良い特性を得るために送光器から出力する
光信号を極力大きい値としている。そして、受光器は、
受信した信号のレベルにより利得を変化させ、適正な受
信レベルとする回路を用いることにより、ダイナミック
レンジを確保している。
In the above structure, the optical signal output from the light transmitter is usually set to a maximum value in order to obtain a longer transmission distance and better characteristics. And the receiver is
The dynamic range is ensured by using a circuit that changes the gain according to the level of the received signal to obtain an appropriate reception level.

【0004】しかし、実際に運用されるシステムでは、
装置の性能の限界を使用することはまれであり、必要な
光量より充分大きな値で通信を行なっている。ここで、
信号の送出レベルを必要量のぎりぎりまで下げるように
送光出力を変化させると、空間の状態により通信ができ
なくなる恐れがあるため、送光出力を下げることは好ま
しくない。
However, in an actually operated system,
It is rare to use the performance limits of the device and communicate at a value well above the required light output. here,
If the light transmission output is changed so that the signal transmission level is lowered to the required level, communication may not be possible depending on the space condition. Therefore, it is not preferable to reduce the light transmission output.

【0005】更に、移動体の通信においては、移動する
最大の距離で通信が確保できるだけの送光出力を常時出
しておく必要がある。従って、通信距離が最短となった
ときには、受光器では非常に大きな受光レベルとなるた
め、増幅する利得を制限し、適正な受信レベルとしてい
る。この結果、発光素子には、常時最大の負荷がかか
り、特性の劣化、寿命の短縮につながるだけでなく、消
費電力も最大値となる。
Furthermore, in mobile communication, it is necessary to constantly output a light-transmitting output sufficient to ensure communication at the maximum distance of movement. Therefore, when the communication distance becomes the shortest, the light receiving device has a very large light receiving level, so that the gain to be amplified is limited and an appropriate receiving level is set. As a result, the light emitting element is always subjected to the maximum load, which not only deteriorates the characteristics and shortens the life, but also maximizes the power consumption.

【0006】[0006]

【発明が解決しようとする課題】上記のように従来の空
間伝送光通信装置では、送光器の出力を最大点で一定と
し、受光器の増幅利得を調整、制御することにより、ダ
イナミックレンジを確保し、機器の汎用性、融通性を持
たせると共に、移動体との通信にも対応できるようにし
ている。
As described above, in the conventional space transmission optical communication device, the output of the light transmitter is made constant at the maximum point, and the amplification gain of the light receiver is adjusted and controlled to thereby increase the dynamic range. We have ensured that the equipment is versatile and flexible, and that it is also compatible with communication with mobile units.

【0007】しかしながら、上記発光素子の出力は、必
要の有無に拘らず、常時最大の負荷がかかり、特性、寿
命の劣化につながるだけでなく、消費電力も最大値とな
る欠点があった。
However, the output of the light emitting element is always loaded with a maximum load regardless of whether it is necessary or not, which not only leads to deterioration of characteristics and life, but also has a drawback that power consumption becomes a maximum value.

【0008】本発明は上記実情に鑑みてなされたもの
で、通信距離、環境等が変化する場合でも、発光素子を
適正な出力に保ち、特性、寿命の劣化を防止し、消費電
力を低減し得る空間伝送光通信装置を提供することを目
的とする。
The present invention has been made in view of the above circumstances. Even when the communication distance, environment, etc. change, the light emitting element is maintained at an appropriate output, deterioration of characteristics and life is prevented, and power consumption is reduced. It is an object to provide a space transmission optical communication device to be obtained.

【0009】[0009]

【課題を解決するための手段】(第1の発明)Means for Solving the Problems (First Invention)

【0010】本発明は、大気空間を伝送媒体として自局
及び対向局が設置され、双方向の光通信を行なう空間伝
送光通信装置において、光信号を対向局に送出する発光
素子と、この発光素子を駆動する駆動回路と、対向局か
ら送出される光信号を受光する受光素子と、この受光素
子により受光した信号を増幅する増幅回路と、上記受信
信号のレベルを判定し、そのレベルに応じて上記駆動回
路の出力信号を制御し、上記発光素子から出力される光
信号を適正レベルに保持する判定制御回路とを具備した
ことを特徴とする。 (第2の発明)
According to the present invention, in a spatial transmission optical communication device in which an own station and an opposite station are installed with an atmospheric space as a transmission medium and bidirectional optical communication is performed, a light emitting element for sending an optical signal to the opposite station, and this light emission. A drive circuit for driving the element, a light receiving element for receiving the optical signal sent from the opposite station, an amplifier circuit for amplifying the signal received by this light receiving element, and the level of the above received signal is determined and the level is determined according to the level. And a determination control circuit that controls the output signal of the drive circuit and holds the optical signal output from the light emitting element at an appropriate level. (Second invention)

【0011】本発明は、大気空間を伝送媒体として自局
及び対向局が設置され、一方あるいは双方の局が移動し
ながら光通信を行なう空間伝送光通信装置において、光
信号を対向局に送出する発光素子と、この発光素子を駆
動する駆動回路と、自局の現在位置と対向局の現在位置
を示す位置情報を取り込む入力回路と、自局および対向
局の現在位置に対応する予め設定された値を記憶する記
憶手段と、自局および対向局の現在位置と上記記憶回路
に記憶された値を参照し、上記発光素子から出力される
光信号を上記自局と対向局の相対距離に応じて適正レベ
ルに制御する制御回路と、対向局の発光素子から送出さ
れる光信号を受光する受光素子と、この受光素子により
受光した信号を増幅する増幅回路とを具備したことを特
徴とする。 (第3の発明)
According to the present invention, in a space transmission optical communication device in which an own station and an opposite station are installed with an atmospheric space as a transmission medium, and one or both stations move to perform optical communication, an optical signal is sent to the opposite station. A light emitting element, a drive circuit for driving the light emitting element, an input circuit for fetching position information indicating the current position of the own station and the current position of the opposite station, and presets corresponding to the current positions of the own station and the opposite station With reference to the storage means for storing the value, the current positions of the own station and the opposite station, and the value stored in the storage circuit, the optical signal output from the light emitting element is determined according to the relative distance between the own station and the opposite station. And a light receiving element for receiving the optical signal sent from the light emitting element of the opposite station, and an amplifier circuit for amplifying the signal received by the light receiving element. (Third invention)

【0012】本発明は、大気空間を伝送媒体として自局
及び対向局が設置され、双方向の光通信を行なう空間伝
送光通信装置において、光信号を対向局に送出する発光
素子と、通信用データに基づいて上記発光素子を駆動す
る駆動回路と、対向局から送出される光信号を受光する
受光素子と、この受光素子により受光した信号を増幅す
る増幅回路と、上記受光素子により受光した信号のレベ
ルを判定するレベル判定回路と、このレベル判定回路の
判定結果に従って対向局の光送信レベルを制御する制御
データを上記通信用データに付加する手段と、上記受信
した信号中の制御データに従って上記発光素子の駆動信
号レベルを制御し、上記発光素子から出力される光信号
を適正レベルに保持する手段と具備したことを特徴とす
る。
According to the present invention, in a space transmission optical communication device in which an own station and an opposite station are installed with an atmospheric space as a transmission medium, and a two-way optical communication is performed, a light emitting element for sending an optical signal to the opposite station and a communication device are used. A drive circuit for driving the light emitting element based on data, a light receiving element for receiving an optical signal sent from the opposite station, an amplifier circuit for amplifying a signal received by the light receiving element, and a signal received by the light receiving element Level determining circuit for determining the level of the signal, means for adding control data for controlling the optical transmission level of the opposite station to the communication data according to the determination result of the level determining circuit, and the control data in the received signal It is characterized by comprising means for controlling the drive signal level of the light emitting element and holding the optical signal output from the light emitting element at an appropriate level.

【0013】[0013]

【作用】(第1の発明)[Operation] (First invention)

【0014】対向局から送られてくる光信号は、受光素
子で受光され、電気信号に変換される。この受光素子で
受光した信号は、判定制御回路でレベルが判定され、そ
の判定結果に基づいて駆動回路の出力信号が制御され
る。即ち、受光した光信号が弱い場合は、判定制御回路
の出力により駆動回路の出力を増加させ、受光した光信
号が強い場合は、駆動回路の出力を小さくするような制
御が行なわれる。これにより、環境等が変化しても、適
正レベルの光信号で通信を行なうことができる。 (第2の発明)
The optical signal sent from the opposite station is received by the light receiving element and converted into an electric signal. The level of the signal received by the light receiving element is determined by the determination control circuit, and the output signal of the drive circuit is controlled based on the determination result. That is, when the received light signal is weak, the output of the drive circuit is increased by the output of the determination control circuit, and when the received light signal is strong, the output of the drive circuit is reduced. As a result, even if the environment or the like changes, communication can be performed with an optical signal of an appropriate level. (Second invention)

【0015】通信を行なう際、自局の位置情報及び対向
局の位置情報が入力回路を介して制御回路に入力され
る。制御回路は、上記位置情報を基に、記憶回路に記憶
されている情報を参照して自局及び対向局の相対位置関
係を求め、その相対距離から自局が送信すべき最適の光
信号出力を算出し、駆動回路を制御する。すなわち、制
御回路が自局と対向局との間の相対距離が長いと判断し
た場合は、駆動回路に対して送光出力が大きくなるよう
な制御を行ない、自局と対向局との間の相対距離が短い
と判断した場合は、駆動回路に対して送光出力が小さく
なるような制御を行なう。これにより、双方の局の通信
距離が変化しても、常に適正レベルの光信号を送出する
ことができる。 (第3の発明)
When performing communication, the position information of the own station and the position information of the opposite station are input to the control circuit via the input circuit. Based on the above position information, the control circuit refers to the information stored in the storage circuit to obtain the relative positional relationship between the own station and the opposite station, and outputs the optimum optical signal output from the own station based on the relative distance. Is calculated and the drive circuit is controlled. That is, when the control circuit determines that the relative distance between the own station and the opposite station is long, the control circuit controls the drive circuit so that the light output is increased, and When it is determined that the relative distance is short, the drive circuit is controlled so that the light output is reduced. As a result, even if the communication distances of both stations change, it is possible to always output the optical signal at an appropriate level. (Third invention)

【0016】対向局から送られてくる光信号は、受光素
子で受光され、電気信号に変換されてレベル判定回路に
入力される。このレベル判定回路は、受信信号のレベル
を判定し、対向局からの光信号が弱い場合には、対向局
の送光出力を大きくするような制御データを出力し、ま
た、対向局からの光信号が強い場合には、対向局の送光
出力を小さくするような制御データを出力する。この制
御データは、通信用データに付加されて対向局へ送信さ
れる。
The optical signal sent from the opposite station is received by the light receiving element, converted into an electrical signal and input to the level determination circuit. This level judgment circuit judges the level of the received signal, and when the optical signal from the opposite station is weak, outputs control data to increase the light output of the opposite station. When the signal is strong, control data that reduces the light output of the opposite station is output. This control data is added to the communication data and transmitted to the opposite station.

【0017】上記通信用データに付加された制御データ
は、受信側で分離されて解析され、対向局の要求する送
光出力レベルが認識される。この認識されたレベルに基
づいて制御信号が駆動回路へ送られ、発光素子から出力
される光信号のレベルが制御される。これにより、対向
局が要求する適正レベルの出力で光信号を伝送すること
ができる。
The control data added to the communication data is separated on the receiving side and analyzed to recognize the light output level required by the opposite station. A control signal is sent to the drive circuit based on the recognized level, and the level of the optical signal output from the light emitting element is controlled. As a result, the optical signal can be transmitted at the output of the proper level required by the opposite station.

【0018】[0018]

【実施例】以下、図面を参照して本発明の実施例を説明
する。 (第1実施例)図1は、本発明の第1実施例に係る空間
伝送光通信装置の構成を示すブロック図で、自局及び対
向局とも同様の構成となっている。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIG. 1 is a block diagram showing the structure of a spatial transmission optical communication device according to the first embodiment of the present invention, in which the local station and the opposite station have the same structure.

【0019】図1に示すように送光器は、送信すべき信
号を駆動回路11に入力して発光ダイオード、レーザダ
イオード等の発光素子12を駆動し、光信号13を発生
して大気空間を伝送媒体として対向局に送出する。ま
た、受光器は、対向局から送られてくる光信号14を受
光素子15で受光して電気信号に変換し、増幅回路16
に入力する。この増幅回路16は、受信した信号を増幅
すると共に、受信信号の強弱を示すレベル信号を判定制
御回路17に出力する。この判定制御回路17は、受信
した信号のレベルを判定し、そのレベルに応じて駆動回
路11を制御し、発光素子12から出力される光信号1
3の強さを制御する。
As shown in FIG. 1, the light transmitter inputs a signal to be transmitted to a driving circuit 11 to drive a light emitting element 12 such as a light emitting diode or a laser diode, and generates an optical signal 13 to generate an atmospheric space. It is sent to the opposite station as a transmission medium. Further, the light receiver receives the optical signal 14 sent from the opposite station by the light receiving element 15 and converts it into an electric signal, and the amplifier circuit 16
To enter. The amplifier circuit 16 amplifies the received signal and outputs a level signal indicating the strength of the received signal to the determination control circuit 17. The determination control circuit 17 determines the level of the received signal, controls the drive circuit 11 according to the level, and outputs the optical signal 1 output from the light emitting element 12.
Control strength of 3.

【0020】上記の構成において、対向局から送られて
くる光信号14は、受光素子15で受光され、電気信号
に変換されて増幅器16に入力される。この増幅器16
は、受信した信号を増幅すると共に、受信信号の強弱を
示すレベル信号を判定制御回路17に出力する。判定制
御回路17は、受信信号のレベルを判定し、その判定結
果に基づいて駆動回路11の出力信号を制御する。すな
わち、受光した光信号14が弱い場合は、判定制御回路
17の出力により駆動回路11の出力を増加させ、受光
した光信号14が強い場合は、判定制御回路17の出力
により駆動回路11の出力を小さくするような制御を行
なう。
In the above structure, the optical signal 14 sent from the opposite station is received by the light receiving element 15, converted into an electric signal and input to the amplifier 16. This amplifier 16
Amplifies the received signal and outputs a level signal indicating the strength of the received signal to the determination control circuit 17. The judgment control circuit 17 judges the level of the received signal and controls the output signal of the drive circuit 11 based on the judgment result. That is, when the received optical signal 14 is weak, the output of the drive circuit 11 is increased by the output of the determination control circuit 17, and when the received optical signal 14 is strong, the output of the drive circuit 11 is output by the output of the determination control circuit 17. The control is performed so as to reduce.

【0021】これにより、適正なレベルの光出力で信号
を伝送することができる。従って、移動局との通信のよ
うに通信距離が変わる場合だけでなく、固定通信の場合
も、通常は出力を低下させておき、大気の状態の悪い場
合、例えば霧が発生した場合等では出力を増加させるこ
とにより、発光素子12を適正な出力に保ち、特性、寿
命の劣化を防ぎ、消費電力を下げることができる。 (第2実施例)図2は、本発明の第2実施例に係る空間
伝送光通信装置の構成を示すブロック図で、自局及び対
向局とも同様の構成となっている。この第2実施例は、
自局及び対向局の双方が所定の軌道上を移動する例えば
列車等に設けられた移動局の場合について示したもので
ある。
As a result, a signal can be transmitted with an appropriate level of optical output. Therefore, not only when the communication distance changes such as when communicating with a mobile station, but also when using fixed communication, the output is usually reduced, and when the atmospheric condition is poor, for example when fog occurs, the output is output. By increasing, the light emitting element 12 can be maintained at an appropriate output, deterioration of characteristics and life can be prevented, and power consumption can be reduced. (Second Embodiment) FIG. 2 is a block diagram showing the structure of a spatial transmission optical communication device according to the second embodiment of the present invention, in which both the own station and the opposite station have the same structure. In this second embodiment,
This shows the case where both the own station and the opposite station move on a predetermined track, for example, a mobile station provided in a train or the like.

【0022】図2において、21は送光器の入力回路
で、自局の位置情報22及び対向局の位置情報23が入
力される。列車に移動局を設けた場合、列車は走行距離
を積算する距離積算装置が備えているので、その距離デ
ータにより自車両の位置を認識し、位置情報22とす
る。この場合、誤差の発生を少なくするために、列車の
停車駅において、停止位置で距離データを校正すること
により、正しい位置情報を得ている。そして、各列車の
位置情報22を無線通信で相手局に送ることにより、対
向局の位置情報23としている。なお、相手局に送る位
置情報は、光信号中に付加することも可能である。上記
入力回路21は、上記した自局の位置情報22及び対向
局の位置情報23を読み込み、制御回路24に出力す
る。
In FIG. 2, reference numeral 21 denotes an input circuit of the light transmitter, which receives the position information 22 of its own station and the position information 23 of the opposite station. When the train is provided with a mobile station, the train is equipped with a distance accumulating device for accumulating the traveled distance. Therefore, the position of the own vehicle is recognized based on the distance data and used as the position information 22. In this case, in order to reduce the occurrence of error, correct position information is obtained by calibrating the distance data at the stop position at the train stop station. Then, the position information 22 of each train is transmitted to the partner station by wireless communication, thereby making the position information 23 of the opposite station. The position information sent to the partner station can be added to the optical signal. The input circuit 21 reads the position information 22 of the own station and the position information 23 of the opposite station, and outputs them to the control circuit 24.

【0023】また、25は自局及び対向局の位置に対応
する情報を設定する設定回路で、この設定回路25によ
り設定された情報は、記憶回路26に記憶される。上記
制御回路24は、入力された位置情報を基に、記憶回路
26に記憶されている情報を参照して自局及び対向局の
相対位置関係から自局が送信すべき最適の光信号出力を
算出し、駆動回路11を制御する。駆動回路11は、制
御回路24の制御に従って発光素子12を駆動し、光信
号13を発生して対向局に送出する。また、受光器は、
相手局から送られてくる光信号14を受光素子15で受
光して電気信号に変換し、増幅回路16により増幅す
る。
Reference numeral 25 is a setting circuit for setting information corresponding to the positions of the own station and the opposite station. The information set by the setting circuit 25 is stored in the storage circuit 26. Based on the input positional information, the control circuit 24 refers to the information stored in the storage circuit 26 and determines the optimum optical signal output to be transmitted by the local station based on the relative positional relationship between the local station and the opposite station. Calculate and control the drive circuit 11. The drive circuit 11 drives the light emitting element 12 under the control of the control circuit 24, generates an optical signal 13, and sends it to the opposite station. Also, the light receiver is
The optical signal 14 sent from the partner station is received by the light receiving element 15, converted into an electric signal, and amplified by the amplifier circuit 16.

【0024】上記の構成において、自局の位置情報22
及び対向局の位置情報23が入力回路21を介して制御
回路24に入力される。制御回路24は、入力された位
置情報22,23を基に、記憶回路26に記憶されてい
る情報を参照して自局及び対向局の相対位置関係を求
め、その相対距離から自局が送信すべき最適の光信号出
力を算出し、駆動回路11を制御する。
In the above configuration, the location information 22 of the own station
And the position information 23 of the opposite station is input to the control circuit 24 via the input circuit 21. The control circuit 24 obtains the relative positional relationship between the own station and the opposite station by referring to the information stored in the storage circuit 26 on the basis of the input position information 22 and 23, and the own station transmits from the relative distance. The optimum optical signal output to be calculated is calculated, and the drive circuit 11 is controlled.

【0025】すなわち、制御回路24が自局と対向局と
の間の相対距離が長いと判断した場合は、駆動回路11
に対して送光出力が大きくなるような制御を行ない、自
局と対向局との間の相対距離が短いと判断した場合は、
駆動回路11に対して送光出力が小さくなるような制御
を行なう。
That is, when the control circuit 24 determines that the relative distance between the own station and the opposite station is long, the drive circuit 11
When it is determined that the relative distance between the own station and the opposite station is short,
The drive circuit 11 is controlled such that the light output is small.

【0026】これにより、性能限界より短い通信距離と
なった場合は発光素子12の出力を低下させ、通信距離
が遠くなり、性能限界に近い状態で使用する場合は発光
素子12の出力を最大にする制御を行なうことができ
る。従って、局の移動に伴って局相互間の通信距離が変
化しても、発光素子12の出力を適正に保ち、通信を確
実に行なうことができると共に、特性、寿命の劣化を防
ぎ、消費電力を下げることができる。
As a result, when the communication distance becomes shorter than the performance limit, the output of the light emitting element 12 is lowered, and when the communication distance becomes long, the output of the light emitting element 12 is maximized when used in a state close to the performance limit. Can be controlled. Therefore, even if the communication distance between the stations changes with the movement of the stations, the output of the light emitting element 12 can be properly maintained, communication can be reliably performed, deterioration of characteristics and life can be prevented, and power consumption can be reduced. Can be lowered.

【0027】なお、本実施例では、対向する局の双方が
それぞれ移動局の場合について説明したが、一方の局を
固定とすることも可能であり、この場合は位置情報とし
て移動局側の情報を取り込むだけでよく、設定値も移動
局の情報のみを設定、記憶すれば良い。
In this embodiment, the case where both of the opposite stations are mobile stations has been described, but it is also possible to fix one station. In this case, the location information is information on the mobile station side. Need only be loaded, and the setting values need to be set and stored only for mobile station information.

【0028】例えば自動倉庫において、軌道上を走行す
るクレーにより物品の収納、取り出しを自動的に行なう
場合、固定局から移動局としてのクレーンに光信号によ
り指令を与えている。クレーンは、例えば各収納棚に対
応して設けられている停止プレートを検出して位置情報
を得、無線通信で固定局に送信する。固定局側では、ク
レーンから送られてくる位置情報を対向局の位置情報2
3として用いる。これにより、クレーンの移動により固
定局との間の通信距離が変化しても、発光素子の出力を
適正に保ち、クレーンとの間の通信を確実に行なうこと
ができる。
For example, in an automatic warehouse, when articles are automatically stored and taken out by clay traveling on orbit, a fixed station gives a command to a crane as a mobile station by an optical signal. The crane detects a stop plate provided corresponding to each storage rack, obtains position information, and transmits the position information to a fixed station by wireless communication. On the fixed station side, the location information sent from the crane is used as the location information for the opposite station 2
Used as 3. As a result, even if the communication distance to the fixed station changes due to the movement of the crane, the output of the light emitting element can be properly maintained and the communication with the crane can be reliably performed.

【0029】また、本実施例では、それぞれの局の位置
情報に対応する値を設定する設定回路25を設けている
が、設定値を固定とすることにより、設定回路25を省
略し、事前に記憶回路26に設定情報を記憶させておく
ことも可能である。更に、対向する局との相対距離が非
常に遠くなり、通信不能の距離になった場合は、発光出
力をオフするようにしても良い、 (第3実施例)図3は、本発明の第3実施例に係る空間
伝送光通信装置の構成を示すブロック図で、自局及び対
向局とも同様の構成となっている。
Further, in this embodiment, the setting circuit 25 for setting the value corresponding to the position information of each station is provided. However, by fixing the setting value, the setting circuit 25 can be omitted and the setting circuit 25 can be omitted in advance. It is also possible to store the setting information in the memory circuit 26. Furthermore, when the relative distance to the opposite station becomes extremely large and communication becomes impossible, the light emission output may be turned off. (Third Embodiment) FIG. 3 shows the third embodiment of the present invention. FIG. 3 is a block diagram showing the configuration of a spatial transmission optical communication device according to a third example, in which the own station and the opposite station have the same configuration.

【0030】通信用データ31は、送信バッファ回路3
2に取り込まれ、駆動回路11に送られる。駆動回路1
1は、送信バッファ回路32からのデータにより発光素
子12を駆動し、光信号13を発生して対向局に送出す
る。このとき、光信号13には、通信用データ31以外
に対向局の光出力を制御する制御データ33が付加され
る。
The communication data 31 is stored in the transmission buffer circuit 3
2 and is sent to the drive circuit 11. Drive circuit 1
1 drives the light emitting element 12 by the data from the transmission buffer circuit 32, generates the optical signal 13, and sends it to the opposite station. At this time, control data 33 for controlling the optical output of the opposite station is added to the optical signal 13 in addition to the communication data 31.

【0031】また、対向局から送られてくる光信号14
にも、同様に対向局の通信用データに制御データが付加
されている。この対向局からの光信号14は、受光素子
15により受光されて電気信号に変換され、増幅再生回
路34で増幅されてデータに再生される。この再生され
たデータは、受信バッファ回路35に取り込まれ、制御
データを除いた部分が受信データ36として出力され
る。また、受信バッファ回路35は、上記分離した制御
データを解析し、対向局の要求する送光出力レベルを認
識し、制御信号37により駆動回路11を制御する。
The optical signal 14 sent from the opposite station
Similarly, the control data is added to the communication data of the opposite station. The optical signal 14 from the opposite station is received by the light receiving element 15, converted into an electric signal, amplified by the amplification / reproduction circuit 34, and reproduced as data. The reproduced data is taken into the reception buffer circuit 35, and the part excluding the control data is output as the reception data 36. Further, the reception buffer circuit 35 analyzes the separated control data, recognizes the light output level required by the opposite station, and controls the drive circuit 11 by the control signal 37.

【0032】また、上記増幅再生回路34の出力は、受
信レベル判定回路38へ送られる。この受信レベル判定
回路38は、受信している光信号14のレベルが適正の
ものであるか否かを判定し、判定結果を制御データ33
として送信バッファ回路32に出力する。送信バッファ
回路32は、通信用データ31に上記制御データ33を
付加して駆動回路11に出力する。
The output of the amplification reproduction circuit 34 is sent to the reception level determination circuit 38. The reception level determination circuit 38 determines whether or not the level of the optical signal 14 being received is proper, and the determination result is the control data 33.
To the transmission buffer circuit 32. The transmission buffer circuit 32 adds the control data 33 to the communication data 31 and outputs it to the drive circuit 11.

【0033】上記の構成において、対向局からの光信号
14が弱い場合には、受信レベル判定回路38から対向
局の送光出力を大きくするような制御データ33が出力
され、送信バッファ回路32で通信用データ31に付加
されて対向局へ送信される。また、対向局からの光信号
14が強い場合には、受信レベル判定回路38から対向
局の送光出力を小さくするような制御データ33が出力
され、送信バッファ回路32で通信用データ31に付加
されて対向局へ送信される。これにより対向局の送光出
力を制御することができる。
In the above configuration, when the optical signal 14 from the opposite station is weak, the reception level determination circuit 38 outputs control data 33 for increasing the light output of the opposite station, and the transmission buffer circuit 32 outputs the control data 33. It is added to the communication data 31 and transmitted to the opposite station. When the optical signal 14 from the opposite station is strong, the reception level determination circuit 38 outputs control data 33 for reducing the light output of the opposite station, and the transmission buffer circuit 32 adds the control data 33 to the communication data 31. And transmitted to the opposite station. As a result, the light output of the opposite station can be controlled.

【0034】また、同様に対向局からも送光出力を制御
する制御データが通信用データに付加されて送られてく
る。この制御データは、受信バッファ回路35で通信用
データから分離されて解析され、対向局の要求する送光
出力レベルが認識され、制御信号37として駆動回路1
1へ送られて光信号13の出力レベルが制御される。
Similarly, control data for controlling the light transmission output is added to the communication data and transmitted from the opposite station. This control data is separated from the communication data by the reception buffer circuit 35 and analyzed, the light output level required by the opposite station is recognized, and the drive circuit 1 outputs the control signal 37.
1 to control the output level of the optical signal 13.

【0035】これにより、対向局が要求する適正レベル
の出力で光信号13を伝送することができる。すなわ
ち、性能限界より短い距離で使用する場合は発光素子1
2の出力を低下させ、性能限界に近い状態で使用する場
合は発光素子12の出力を最大にする制御が可能とな
り、発光素子12を適正な出力に保ち、特性、寿命の劣
化を防ぎ、消費電力を下げることができる。 (第4実施例)
As a result, the optical signal 13 can be transmitted with the output of the proper level required by the opposite station. That is, when used at a distance shorter than the performance limit, the light emitting element 1
The output of the light emitting element 12 can be controlled so that the output of the light emitting element 12 is maximized when it is used in a state close to the performance limit by reducing the output of No. 2 and maintaining the light emitting element 12 at an appropriate output, preventing deterioration of characteristics and life, and Power can be reduced. (Fourth embodiment)

【0036】図4は、本発明の第4実施例に係る空間伝
送光通信装置の構成を示すブロック図で、自局及び対向
局とも同様の構成となっている。通信用データ31は、
レベル制御回路41によりレベルが制御されて合成回路
42に入力される。この合成回路42は、制御回路41
からの通信用データと対向局の送光出力を指示する制御
データ43を合成して駆動回路11を駆動し、発光素子
12より光信号13を発生させて対向局に送出する。
FIG. 4 is a block diagram showing the structure of a spatial transmission optical communication device according to the fourth embodiment of the present invention, which has the same structure as both the own station and the opposite station. The communication data 31 is
The level is controlled by the level control circuit 41 and input to the synthesis circuit 42. The synthesis circuit 42 is a control circuit 41.
The communication data from the control station and the control data 43 for instructing the light transmission output of the opposite station are combined to drive the drive circuit 11, and the light emitting element 12 generates the optical signal 13 and sends it to the opposite station.

【0037】また、対向局から送られてくる光信号14
にも、同様に対向局の通信用データに制御データが付加
されている。この対向局からの光信号14は、受光素子
15により受光されて電気信号に変換され、増幅回路1
6で増幅された後、分配回路44で通信用データ45と
制御データ46に分離される。この分離された通信用デ
ータ45は受信レベル判定回路47に入力され、制御デ
ータ46は、制御データ判定回路48に入力される。こ
の制御データ判定回路48は、制御データ46を判定し
てレベル制御回路41の出力信号レベルを制御する。
The optical signal 14 sent from the opposite station
Similarly, the control data is added to the communication data of the opposite station. The optical signal 14 from the opposite station is received by the light receiving element 15 and converted into an electric signal, and the amplifier circuit 1
After being amplified in 6, the distribution circuit 44 separates it into communication data 45 and control data 46. The separated communication data 45 is input to the reception level determination circuit 47, and the control data 46 is input to the control data determination circuit 48. The control data judgment circuit 48 judges the control data 46 and controls the output signal level of the level control circuit 41.

【0038】また、受信レベル判定回路47は、上記通
信用データ45を受信データ49として出力すると共
に、入力される通信用データ45のレベルを判定し、信
号受信レベルを制御データ発生回路50に入力する。こ
の制御データ発生回路50は、信号の受信レベルに応じ
て対向局の送光出力を指示する制御データ43を発生
し、合成回路42に入力する。この合成回路42は、上
記したようにレベル制御回路41からの通信用データと
制御データ43とを合成して駆動回路11に出力する。
The reception level determination circuit 47 outputs the communication data 45 as reception data 49, determines the level of the input communication data 45, and inputs the signal reception level to the control data generation circuit 50. To do. The control data generation circuit 50 generates control data 43 for instructing the light transmission output of the opposite station according to the reception level of the signal and inputs it to the synthesis circuit 42. The synthesizing circuit 42 synthesizes the communication data from the level control circuit 41 and the control data 43 as described above, and outputs the synthesized data to the drive circuit 11.

【0039】上記の構成において、対向局から送られて
くる光信号14は、受光素子15により電気信号に変換
され、増幅回路16で増幅された後、分配回路44で通
信用データ45と制御データ46に分配され、通信用デ
ータ45が受信レベル判定回路47へ送られる。この受
信レベル判定回路47は、通信用データ45のレベルを
判定し、そのレベルを制御データ発生回路50に通知す
る。この制御データ発生回路50は、受信信号のレベル
に応じて対向局の送光出力を指示する制御データ43を
発生し、合成回路42に入力する。すなわち、制御デー
タ発生回路50は、受光素子15で受光した光信号14
が弱い場合には、対向局に送光出力を大きくするように
指示する制御データ43を発生し、受光した光信号14
が強い場合には、対向局に送光出力を小さくするように
指示する制御データ43を発生する。この制御データ4
3は、合成回路42でレベル制御回路41からの通信用
データと合成され、対向局へ送信される。これにより、
対向局の送光出力を制御することができる。
In the above configuration, the optical signal 14 sent from the opposite station is converted into an electric signal by the light receiving element 15, amplified by the amplifier circuit 16, and then distributed by the distribution circuit 44 to the communication data 45 and the control data. 46, and the communication data 45 is sent to the reception level determination circuit 47. The reception level determination circuit 47 determines the level of the communication data 45 and notifies the control data generation circuit 50 of the level. The control data generation circuit 50 generates control data 43 instructing the light output of the opposite station according to the level of the received signal, and inputs the control data 43 to the synthesis circuit 42. That is, the control data generation circuit 50 controls the optical signal 14 received by the light receiving element 15.
If it is weak, the control data 43 for instructing the opposite station to increase the light transmission output is generated, and the received optical signal 14 is received.
If is strong, control data 43 for instructing the opposite station to reduce the light transmission output is generated. This control data 4
3 is combined with the communication data from the level control circuit 41 by the combining circuit 42 and transmitted to the opposite station. This allows
The light output of the opposite station can be controlled.

【0040】また、同様に対向局からも送光出力レベル
を指示する制御データが送られてくるので、分配回路4
4で制御データ46を分離し、制御データ判定回路48
に入力する。この制御データ判定回路48は、制御デー
タ46の内容を判定してレベル制御回路41の信号出力
レベルを制御する。即ち、対向局から送られてくる指示
に従ってレベル制御回路41の信号出力レベルを制御
し、対向局が要求する適正レベルの光信号13を送出す
る。上記のようにして、対向局が要求する適正レベルの
出力で光信号13を伝送することができる。
Similarly, since control data for instructing the light output level is sent from the opposite station, the distribution circuit 4
4, the control data 46 is separated, and the control data determination circuit 48
To enter. The control data determination circuit 48 determines the content of the control data 46 and controls the signal output level of the level control circuit 41. That is, the signal output level of the level control circuit 41 is controlled according to the instruction sent from the opposite station, and the optical signal 13 of the proper level required by the opposite station is sent out. As described above, the optical signal 13 can be transmitted at the output of the proper level required by the opposite station.

【0041】[0041]

【発明の効果】以上詳記したように本発明によれば、受
信した信号のレベルを判定して送信出力レベルを制御し
ているので、通信距離の変わる場合、大気の状態が悪い
場合等においても、発光素子を適正な出力に保ち、特
性、寿命の劣化を防止し、消費電力を低減することがで
きる。
As described above in detail, according to the present invention, the level of the received signal is judged to control the transmission output level. Therefore, when the communication distance changes, the atmospheric condition is bad, etc. Also, it is possible to keep the light emitting element at an appropriate output, prevent deterioration of characteristics and life, and reduce power consumption.

【0042】また、本発明は、自局及び対向局の位置情
報から、双方の相対位置関係を判断し、必要な送光量を
求めて送光出力を制御しているので、局の位置、環境等
が変化している場合であっても、発光素子を適正な出力
に保つことができる。
Further, according to the present invention, since the relative positional relationship between the own station and the opposite station is determined from the positional information of the own station and the opposite station, and the required light transmission amount is obtained to control the light transmission output, the station position and environment It is possible to keep the light emitting element at an appropriate output even when, etc. are changed.

【0043】更に本発明は、送受するデータに通信用デ
ータ以外に対向局の送光出力を制御するデータを付加し
て伝送し、受信側では受信した制御データの内容によ
り、送信出力レベルを制御すると共に、受信した光信号
のレベルにより、対向局の出力を低下あるいは増大させ
るための制御データを通信用データに付加して送信する
ようにしているので、通信距離、環境等が変化しても、
発光素子の出力を確実に適正レベルに保持することがで
きる。
Further, according to the present invention, in addition to the communication data, the data for controlling the light output of the opposite station is added to the data to be transmitted and transmitted, and the transmission output level is controlled on the receiving side according to the content of the control data received. At the same time, the control data for reducing or increasing the output of the opposite station is added to the communication data and transmitted depending on the level of the received optical signal, so that even if the communication distance, environment, etc. change. ,
The output of the light emitting element can be reliably maintained at an appropriate level.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る空間伝送光通信装置
の構成を示すブロック図。
FIG. 1 is a block diagram showing the configuration of a spatial transmission optical communication device according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る空間伝送光通信装置
の構成を示すブロック図。
FIG. 2 is a block diagram showing the configuration of a spatial transmission optical communication device according to a second embodiment of the present invention.

【図3】本発明の第3実施例に係る空間伝送光通信装置
の構成を示すブロック図。
FIG. 3 is a block diagram showing a configuration of a spatial transmission optical communication device according to a third embodiment of the present invention.

【図4】本発明の第4実施例に係る空間伝送光通信装置
の構成を示すブロック図。
FIG. 4 is a block diagram showing the configuration of a spatial transmission optical communication device according to a fourth embodiment of the present invention.

【図5】従来の空間伝送光通信装置を示すブロック図。FIG. 5 is a block diagram showing a conventional space transmission optical communication device.

【符号の説明】[Explanation of symbols]

11…駆動回路 12…発光素子 13…光信号 14…光信号 15…受光素子 16…増幅回路 17…判定制御回路 21…入力回路 22…自局の位置情報 23…対向局の位置情報 24…制御回路 25…設定回路 26…記憶回路 31…通信用データ 32…送信バッファ回路 33…制御データ 34…増幅再生回路 35…受信バッファ回路 36…受信データ 37…制御信号 38…受信レベル判定回路 41…レベル制御回路 42…合成回路 43…制御データ 44…分配回路 45…通信用データ 46…制御データ 47…受信レベル判定回路 48…制御データ判定回路 49…受信データ 50…制御データ発生回路 11 ... Driving circuit 12 ... Light emitting element 13 ... Optical signal 14 ... Optical signal 15 ... Light receiving element 16 ... Amplifying circuit 17 ... Judgment control circuit 21 ... Input circuit 22 ... Position information of own station 23 ... Position information of opposite station 24 ... Control Circuit 25 ... Setting circuit 26 ... Storage circuit 31 ... Communication data 32 ... Transmission buffer circuit 33 ... Control data 34 ... Amplification reproduction circuit 35 ... Reception buffer circuit 36 ... Reception data 37 ... Control signal 38 ... Reception level judgment circuit 41 ... Level Control circuit 42 ... Combining circuit 43 ... Control data 44 ... Distribution circuit 45 ... Communication data 46 ... Control data 47 ... Reception level determination circuit 48 ... Control data determination circuit 49 ... Reception data 50 ... Control data generation circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 大気空間を伝送媒体として自局及び対向
局が設置され、双方向の光通信を行なう空間伝送光通信
装置において、 光信号を対向局に送出する発光素子と、 この発光素子を駆動する駆動回路と、 対向局から送出される光信号を受光する受光素子と、 この受光素子により受光した信号を増幅する増幅回路
と、 上記受信信号のレベルを判定し、そのレベルに応じて上
記駆動回路の出力信号を制御し、上記発光素子から出力
される光信号を適正レベルに保持する判定制御回路とを
具備したことを特徴とする空間伝送光通信装置。
1. In a spatial transmission optical communication device, in which an own station and an opposite station are installed with an atmospheric space as a transmission medium, and which performs bidirectional optical communication, a light emitting element for sending an optical signal to the opposite station, and the light emitting element A drive circuit for driving, a light receiving element for receiving an optical signal sent from the opposite station, an amplifier circuit for amplifying the signal received by this light receiving element, and a level of the above received signal is determined, and the above is determined according to the level. A spatial transmission optical communication device comprising: a determination control circuit that controls an output signal of a drive circuit and holds an optical signal output from the light emitting element at an appropriate level.
【請求項2】 大気空間を伝送媒体として自局及び対向
局が設置され、一方あるいは双方の局が移動しながら光
通信を行なう空間伝送光通信装置において、 光信号を対向局に送出する発光素子と、 この発光素子を駆動する駆動回路と、 自局の現在位置と対向局の現在位置を示す位置情報を取
り込む入力回路と、 自局および対向局の現在位置に対応する予め設定された
値を記憶する記憶手段と、 自局および対向局の現在位置と上記記憶回路に記憶され
た値を参照し、上記発光素子から出力される光信号を上
記自局と対向局の相対距離に応じて適正レベルに制御す
る制御回路と、 対向局の発光素子から送出される光信号を受光する受光
素子と、 この受光素子により受光した信号を増幅する増幅回路と
を具備したことを特徴とする空間伝送光通信装置。
2. A light emitting element for transmitting an optical signal to an opposite station in a space transmission optical communication device in which an own station and an opposite station are installed with an atmospheric space as a transmission medium and one or both stations move to perform optical communication. A driving circuit for driving this light emitting element, an input circuit for fetching position information indicating the current position of the own station and the current position of the opposite station, and preset values corresponding to the current positions of the own station and the opposite station. By referring to the storage means for storing, the current positions of the own station and the opposite station, and the value stored in the above storage circuit, the optical signal output from the light emitting element is appropriate according to the relative distance between the own station and the opposite station. A spatial transmission light comprising a control circuit for controlling the level, a light receiving element for receiving an optical signal transmitted from a light emitting element of the opposite station, and an amplifier circuit for amplifying a signal received by the light receiving element. Communication Apparatus.
【請求項3】 大気空間を伝送媒体として自局及び対向
局が設置され、双方向の光通信を行なう空間伝送光通信
装置において、 光信号を対向局に送出する発光素子と、 通信用データに基づいて上記発光素子を駆動する駆動回
路と、 対向局から送出される光信号を受光する受光素子と、 この受光素子により受光した信号を増幅する増幅回路
と、 上記受光素子により受光した信号のレベルを判定するレ
ベル判定回路と、 このレベル判定回路の判定結果に従って対向局の光送信
レベルを制御する制御データを上記通信用データに付加
する手段と、 上記受信した信号中の制御データに従って上記発光素子
の駆動信号レベルを制御し、上記発光素子から出力され
る光信号を適正レベルに保持する手段とを具備したこと
を特徴とする空間伝送光通信装置。
3. In a space transmission optical communication device in which an own station and an opposite station are installed with an atmospheric space as a transmission medium, and a two-way optical communication is performed, a light emitting element for sending an optical signal to the opposite station and communication data are used. A drive circuit for driving the light emitting element based on the light receiving element, a light receiving element for receiving the optical signal sent from the opposite station, an amplifier circuit for amplifying the signal received by the light receiving element, and a level of the signal received by the light receiving element. A level determination circuit for determining whether or not the light emitting element is in accordance with the control data in the received signal, and means for adding control data for controlling the optical transmission level of the opposite station according to the determination result of the level determination circuit to the communication data. Means for controlling the drive signal level of the light emitting element and holding the optical signal output from the light emitting element at an appropriate level. .
JP4323855A 1992-12-03 1992-12-03 Spatial optical transmission communication equipment Pending JPH06252853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4323855A JPH06252853A (en) 1992-12-03 1992-12-03 Spatial optical transmission communication equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4323855A JPH06252853A (en) 1992-12-03 1992-12-03 Spatial optical transmission communication equipment

Publications (1)

Publication Number Publication Date
JPH06252853A true JPH06252853A (en) 1994-09-09

Family

ID=18159341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4323855A Pending JPH06252853A (en) 1992-12-03 1992-12-03 Spatial optical transmission communication equipment

Country Status (1)

Country Link
JP (1) JPH06252853A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022636A (en) * 1998-07-06 2000-01-21 Sony Corp Optical space transmission equipment
US7016612B1 (en) 1998-05-28 2006-03-21 Sharp Kabushiki Kaisha Digital optical communication device and method for transmitting and receiving data with light emission intensity controlled

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693443A (en) * 1979-12-27 1981-07-29 Fujitsu Ltd Optical communication system
JPS589445A (en) * 1981-07-10 1983-01-19 Fujitsu Ltd Optical transmission system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693443A (en) * 1979-12-27 1981-07-29 Fujitsu Ltd Optical communication system
JPS589445A (en) * 1981-07-10 1983-01-19 Fujitsu Ltd Optical transmission system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7016612B1 (en) 1998-05-28 2006-03-21 Sharp Kabushiki Kaisha Digital optical communication device and method for transmitting and receiving data with light emission intensity controlled
JP2000022636A (en) * 1998-07-06 2000-01-21 Sony Corp Optical space transmission equipment

Similar Documents

Publication Publication Date Title
CA1196961A (en) Earth station transmission power control system for keeping an eirp of down link signals constant irrespective of weather
JPH0320167B2 (en)
EP1126636A2 (en) System, method and recording medium for storing a program for selection of a repeater in radio communication system
JP5849988B2 (en) Field wireless relay device
JP2000082983A (en) Radio repeater amplifier device
KR100569522B1 (en) Air conditioner control system and air conditioner
JPH01147931A (en) Method of transmitting optical signals bidirectionally through optical conductor
JPH06252853A (en) Spatial optical transmission communication equipment
JP3958275B2 (en) Apparatus and method for controlling output power of portable terminal
US20150045087A1 (en) Apparatus and method for reducing power consumption in wireless communication system
US20050090210A1 (en) Communication apparatus
JPH0969817A (en) Optical communication equipment
US6212311B1 (en) Light signal transmission system and light signal transmission method
JPS60261228A (en) Transceiver
JP3730437B2 (en) Optical signal transmission system
KR100790837B1 (en) Apparatus and method for controlling current waste in portable terminal
JP3059892B2 (en) Power control circuit
JP2004023307A (en) Communication path selection method
JPH06112877A (en) Portable radio telephone set
KR100553425B1 (en) Method for Controlling Output Power of Wireless Telecommunication Terminal
JPS6112132A (en) Transmission output control circuit
KR100434041B1 (en) Automatic broadcasting device by bluetooth modulation
JP4063056B2 (en) Communication device, transport device and transport system
JPH02148920A (en) Transmission power controller for portable radio equipment
JPH02112333A (en) Spatial light transmission equipment