JP3730437B2 - Optical signal transmission system - Google Patents

Optical signal transmission system Download PDF

Info

Publication number
JP3730437B2
JP3730437B2 JP11038699A JP11038699A JP3730437B2 JP 3730437 B2 JP3730437 B2 JP 3730437B2 JP 11038699 A JP11038699 A JP 11038699A JP 11038699 A JP11038699 A JP 11038699A JP 3730437 B2 JP3730437 B2 JP 3730437B2
Authority
JP
Japan
Prior art keywords
optical
signal
transmission system
level
optical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11038699A
Other languages
Japanese (ja)
Other versions
JP2000307518A (en
Inventor
諭一 大川
成司 松田
裕 福家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Kokusai Electric Corp
Original Assignee
NTT Docomo Inc
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc, Hitachi Kokusai Electric Inc filed Critical NTT Docomo Inc
Priority to JP11038699A priority Critical patent/JP3730437B2/en
Publication of JP2000307518A publication Critical patent/JP2000307518A/en
Application granted granted Critical
Publication of JP3730437B2 publication Critical patent/JP3730437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radio Relay Systems (AREA)
  • Optical Communication System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、無線信号を光ファイバを用いて伝送する光信号伝送システム、及び、当該システムを構成する装置に関し、特に、光変調信号から検出した無線信号成分の出力レベルを最適に維持する技術に関する。
【0002】
【従来の技術】
移動通信が可能なこと等の利点から情報の無線通信が盛んに行われており、身近な例では、ページャ(ポケットベル)システムや携帯電話システムが広く普及している。
しかしながら、このような無線通信システムは通信環境の影響を受け易く、建物による無線電波の反射、建物やトンネルによる無線電波の遮蔽、他の無線電波との干渉等により通信品質が低下し、場合によっては、通信が途絶えてしまうという弱点もある。
【0003】
そこで、このような無線通信システムの弱点を補うために光信号伝送システムを用い、通信環境が劣悪な場所等では、無線信号を光信号に変換して伝送することが検討されている。
例えば、ページャシステムでは、図4に示すような光信号伝送システムを地下街に設けて、基地局から送信されてきた無線呼出信号を地下街に存するページャで受信できるようにしている。なお、図中の仮想線はシステムを構成する装置間の境界の目安である。
【0004】
すなわち、基地局から送信されてきた無線信号(RF信号)を受信可能な位置に受信装置1を設置し、地下街に存するページャが無線信号を受信できるように光信号処理装置2を地下街内に設置し、受信装置1と光信号処理装置2とを搬送波用光ファイバ3と通信用光ファイバ4とから成る光通信路5で接続して、光信号伝送システムを構成する。
【0005】
この光信号伝送システムでは、まず、光信号処理装置2において、駆動回路6により光源(LD:レーザーダイオード)7を駆動して搬送波となる光信号を搬送波用光ファイバ3を通して出力する。そして、受信装置1においては、アンテナ8で基地局からの無線信号を受信して、搬送波用光ファイバ3を通して受光した光搬送波を、光変調器(EOM)9においてアンテナ8で受信した無線信号により変調して光変調信号に変換し、この光変調信号を通信用光ファイバ4を通して光信号処理装置2へ出力する。そして、光信号処理装置2においては、受光器(PD:フォトダイオード)10で通信用光ファイバ4から光変調信号を受信し、この光変調信号から無線信号成分を電気信号として検出し、この電気信号を増幅器11で増幅してアンテナ12から地下街内に無線送信する。
【0006】
【発明が解決しようとする課題】
ここで、上記のような従来の光信号伝送システムにおいては、光源7からの光搬送波の出力レベルが一定するように、駆動回路6で光源7の駆動電流を自動調整している。
しかしながら、受信装置1で受信する無線信号のレベルは、当該無線信号が伝播してきた通信環境の変化に応じて変動してしまうため、光搬送波のレベルが一定であると、この無線信号で変調した光変調信号のレベルが変動し、受光器10による無線信号成分の検出精度が不安定となる。すなわち、受信装置1で受信した無線信号のレベルが低すぎる場合には、光搬送波のレベルが無線信号成分を大きく上回って通信不能となってしまう可能性があり、これとは逆に、無線信号のレベルが高すぎる場合には、光変調信号の波形に歪が生じて通信品質を著しく低下させてしまう可能性があった。
【0007】
本発明は、上記従来の事情に鑑みなされたもので、従来とは全く発想を異にして、光源からの光搬送波レベルを調整することにより、光変調信号から検出した無線信号成分の出力レベルを最適に維持することを目的とする。
また、本発明は、過大レベルな無線信号で光搬送波を変調する事態を未然に回避して、光変調信号から検出した無線信号成分の出力レベルを最適に維持することを目的とする。
なお、本発明の更なる目的は、以下の説明において明らかなところである。
【0008】
【課題を解決するための手段】
まず、本発明は、受信した無線信号で光搬送波を変調した光変調信号を出力する受信装置と、光変調信号から無線信号成分を検出して電気信号に変換して出力する光信号処理装置とを、通信用光ファイバと搬送波用光ファイバとにより接続して成る光信号伝送システムとして実現される。
そして、この光信号処理装置に、駆動電流により光源を駆動して搬送波用光ファイバを通して受信装置へ供給する光搬送波を出力する光搬送波出力手段と、光変調信号から検出した無線信号成分レベルに応じて光源駆動電流を調整する制御手段と、を備える。
【0009】
これにより、受信装置が受信した無線信号レベルに対して、光搬送波レベルが高すぎる場合には光源出力を低下させ、光搬送波レベルが低すぎる場合には光源出力を高めて、受信した無線信号レベルに応じた光搬送波レベルとすることにより、通信不能となる事態の防止や通信品質の低下を防止する。
また、本発明は、上記の光信号伝送システムを構成するための光信号処理装置として実現される。
【0010】
また、本発明は、受信した無線信号で光搬送波を変調した光変調信号を出力する受信装置と、光変調信号から無線信号成分を検出して電気信号に変換して出力する光信号処理装置とを、光変調信号を伝送する光ファイバにより接続して成る光信号伝送システムとして実現される。
そして、この受信装置に、変調処理に先立って受信した無線信号レベルを減衰させるアッテネータを備える。
【0011】
これにより、光搬送波レベルに対して、受信装置が受信した無線信号レベルが高すぎる場合には当該無線信号レベルを低下させ、この後に、当該無線信号で光搬送波を変調することにより、光変調信号の波形歪を防止して通信品質の低下を防止する。
また、本発明は、上記の光信号伝送システムを構成するための受信装置として実現される。
【0012】
【発明の実施の形態】
本発明を、図に示す実施形態を参照して具体的に説明する。
なお、図4に示した従来の光信号伝送システムと同一部分には同一符号を付して重複する説明は省略する。
【0013】
図1には本発明の一実施形態に係る光信号伝送システムを示してあり、図4に示したシステム構成に加えて、このシステムでは、受光器10が光変調信号から検出した無線信号成分レベルに応じて、駆動回路6が光源7に出力する光源駆動電流を調整する制御回路13が光信号処理装置2に設けられている。
すなわち、制御回路13は、受光器10が検出した無線信号成分レベルが入力され、この無線信号成分レベルに応じて、駆動回路6による駆動電流値を調整制御して、受信装置1が受信した無線信号レベルに対して光源7から出力される光搬送波レベルが適切となるように制御する。
【0014】
具体的には、制御回路13は図2に示す手順で制御処理を行い、受光器10が光変調信号から無線信号成分を検出すると、この無線信号成分レベルが所定の上限値を越えているかを判断し(ステップS1)、越えているときには駆動回路6から光源7への駆動電流値を下げさせて(ステップS2)、光源7から搬送波用光ファイバ3を通して受信装置1へ出力される光搬送波のレベルを低下させる。一方、上限値を越えていないときには、検出された無線信号成分レベルが所定の下限値を下回っているかを判断し(ステップS3)、下回っているときには駆動回路6から光源7への駆動電流値を上げさせて(ステップS4)、光源7から搬送波用光ファイバ3を通して受信装置1へ出力される光搬送波のレベルを上昇させる。
【0015】
したがって、その時点で光信号処理装置2に伝送されている無線信号レベルに応じて、受信装置1の光変調器9が受信無線信号で変調する光搬送波レベルが調整され、上記の上限値と下限値との間に維持される。
更に言えば、上記の上限値及び下限値は、受信装置1がその時点で受信した或るレベルの無線信号を、搬送するのに適したレベルの光搬送波を光源7から出力させる駆動電流値を規定する閾値であり、必要とされる通信品質に応じて予め設定されている。
したがって、受信装置1が受信した無線信号レベルに対して、光搬送波レベルが高すぎる場合には光源7からの出力が低下し、光搬送波レベルが低すぎる場合には光源7からの出力が高まり、この結果、受信装置1における受信レベルが変動しても、光信号処理装置2において良好に無線信号成分を検出することができる。
【0016】
なお、上記の実施形態では、光信号処理装置2側での検出レベルに応じて、光搬送波レベルを随時自動調整するフィードバック方式としている。しかしながら、例えば通信環境がそれほど変化しない或る環境に光信号伝送システムを設置する場合には、システム設置時に上記のような調整を行えば済むこともあるので、本発明では、制御回路13に作業者が操作できる摘みを設けておき、システム設置時に、作業者が、光信号処理装置2の検出レベルをモニタにより確認しながら、制御回路を操作して駆動電流を調整し、光源7から出力される光搬送波レベルを当該環境に合わせられるようにしてもよい。
【0017】
また、上記の実施形態では、駆動回路6と光源7とから成る光搬送波出力手段と、受光器10と、制御回路13とを備えて光信号処理装置を構成し、更に、この光信号処理装置に増幅器11とアンテナ12とから成る送信機能をも付加しているが、この送信機能部分は別個な送信装置として構成してもよい。
【0018】
図3には本発明の他の一実施形態に係る光信号伝送システムを示してあり、図4に示したシステム構成に加えて、このシステムでは、受信装置1に変調処理に先立って受信した無線信号レベルを減衰させる減衰器(ATT:アッテネータ)14を備え、また、光信号処理装置2には光信号処理装置2の検出レベルを表示するとともに通信線15を介して減衰器14による減衰量を遠隔操作する機能を備えたモニタ16を備えている。
なお、モニタ16は光信号処置装置2に固定的に設けてもよいが、モニタ16と光信号処置装置2とにそれぞれ接続用プラグを設けて、必要な場合にモニタ16を接続して用いるようにしてもよい。
【0019】
本実施形態の光信号伝送システムでは、システム設置時やシステムの点検時等において、作業者がモニタ16により、受光器10で検出された無線信号レベルを監視し、異常である場合には減衰器14による減衰量を調整して、受信装置1が受信した無線信号のレベルを光源7から出力された光搬送波レベルに適した値に減衰させ、この無線信号を光搬送波を変調することにより、光信号処理装置2における受信状態を正常な状態に調整することができる。すなわち、受信装置1での無線信号レベルが高すぎる場合にあっても、光変調信号の波形歪を未然に防止して、良好な通信品質を維持することができる。
なお、上記の実施形態では、減衰器14を通信線15を介して遠隔操作するようにしたが、減衰器14に調整用つまみを設けて、作業者が減衰量を直接調整操作するようにしてもよい。
【0020】
なお、上記した各実施形態ではページャシステムのような単方向通信を例にしたが、本発明は携帯電話システム等の双方向通信システムにも同様に適用することができ、この場合には、上記の実施例で示した各機能を双方向に設けて構成すればよい。
【0021】
【発明の効果】
以上説明したように、本発明によると、光変調信号から検出した無線信号成分レベルに応じて光源からの光搬送波レベルを調整することができるようにしたため、光変調信号から検出した無線信号成分レベルを最適に維持することができ、光信号伝送システムにおける通信品質を向上させることができる。また、本発明によると、受信装置において過大レベルな無線信号で光搬送波を変調する事態を未然に回避することができ、光信号伝送システムにおける通信品質を向上させることができる。
このようなことから、本発明によれば、例えば地下街等の電波不感地帯においても、ページャシステムや携帯電話システムによる良好な通信を実現することができる。
【図面の簡単な説明】
【図1】 本発明に係る光信号伝送システムの一実施形態を示す図である。
【図2】 本発明の一実施形態に係る処理手順を示すフローチャートである。
【図3】 本発明に係る光信号伝送システムの他の一実施形態を示す図である。
【図4】 従来の光信号伝送システムの一例を示す図である。
【符号の説明】
1:受信装置、 2:光信号処理装置、 3:搬送波用光ファイバ、 4:通信用光ファイバ、 6:駆動回路、 7:光源、 8:アンテナ、 9:光変調器、 10:受光器、 11:増幅器、 12:アンテナ、 13:制御回路、14:減衰器(アッテネータ)、 16:モニタ、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical signal transmission system that transmits a radio signal using an optical fiber, and an apparatus that constitutes the system, and more particularly, to a technique that optimally maintains an output level of a radio signal component detected from an optical modulation signal. .
[0002]
[Prior art]
Wireless communication of information is actively performed due to advantages such as the capability of mobile communication. In familiar examples, pager (pager) systems and mobile phone systems are widely used.
However, such wireless communication systems are easily affected by the communication environment, and communication quality deteriorates due to reflection of radio waves by buildings, shielding of radio waves by buildings and tunnels, interference with other radio waves, etc. Has a weak point that communication is lost.
[0003]
In view of this, it has been studied to use an optical signal transmission system to make up for such a weak point of the wireless communication system, and to convert the wireless signal into an optical signal and transmit it in a place where the communication environment is poor.
For example, in a pager system, an optical signal transmission system as shown in FIG. 4 is provided in an underground shopping area so that a radio paging signal transmitted from a base station can be received by a pager existing in the underground shopping area. Note that the virtual line in the figure is a measure of the boundary between devices constituting the system.
[0004]
That is, the receiving device 1 is installed at a position where the radio signal (RF signal) transmitted from the base station can be received, and the optical signal processing device 2 is installed in the underground shopping area so that the pager in the underground shopping center can receive the wireless signal. Then, the receiving device 1 and the optical signal processing device 2 are connected by an optical communication path 5 including a carrier optical fiber 3 and a communication optical fiber 4 to constitute an optical signal transmission system.
[0005]
In this optical signal transmission system, first, in the optical signal processing device 2, a drive circuit 6 drives a light source (LD: laser diode) 7 to output an optical signal as a carrier wave through the carrier optical fiber 3. In the receiving apparatus 1, the radio signal received from the base station is received by the antenna 8, and the optical carrier wave received through the carrier optical fiber 3 is received by the radio signal received by the antenna 8 in the optical modulator (EOM) 9. The optical signal is modulated and converted into an optical modulation signal, and the optical modulation signal is output to the optical signal processing device 2 through the communication optical fiber 4. In the optical signal processing device 2, a light receiving signal (PD: photodiode) 10 receives an optical modulation signal from the communication optical fiber 4, detects a radio signal component from the optical modulation signal as an electric signal, and detects the electric signal. The signal is amplified by the amplifier 11 and wirelessly transmitted from the antenna 12 into the underground shopping area.
[0006]
[Problems to be solved by the invention]
Here, in the conventional optical signal transmission system as described above, the drive current of the light source 7 is automatically adjusted by the drive circuit 6 so that the output level of the optical carrier wave from the light source 7 is constant.
However, since the level of the radio signal received by the receiving device 1 fluctuates according to the change in the communication environment in which the radio signal has propagated, the optical signal is modulated with this radio signal if the level of the optical carrier wave is constant. The level of the light modulation signal fluctuates, and the detection accuracy of the radio signal component by the light receiver 10 becomes unstable. That is, when the level of the radio signal received by the receiving device 1 is too low, the optical carrier level may greatly exceed the radio signal component, and communication may be disabled. If the level is too high, the waveform of the optical modulation signal may be distorted and communication quality may be significantly reduced.
[0007]
The present invention has been made in view of the above-described conventional circumstances, and by completely adjusting the optical carrier level from the light source, the output level of the radio signal component detected from the light modulation signal is completely different from the conventional idea. Aim to maintain optimal.
Another object of the present invention is to avoid the situation in which an optical carrier wave is modulated with an excessively high level radio signal, and to maintain an optimal output level of a radio signal component detected from the optical modulation signal.
Further objects of the present invention will be apparent from the following description.
[0008]
[Means for Solving the Problems]
First, the present invention relates to a receiving device that outputs an optical modulation signal obtained by modulating an optical carrier wave with a received radio signal, an optical signal processing device that detects a radio signal component from the optical modulation signal, converts the signal into an electric signal, and outputs the electric signal. Is realized as an optical signal transmission system formed by connecting a communication optical fiber and a carrier optical fiber.
Then, the optical signal processing device drives the light source with a driving current and outputs an optical carrier wave to be supplied to the receiving device through the carrier optical fiber, and according to the radio signal component level detected from the optical modulation signal. And a control means for adjusting the light source driving current.
[0009]
This reduces the light source output if the optical carrier level is too high relative to the radio signal level received by the receiving device, and increases the light source output if the optical carrier level is too low. By setting the optical carrier level in accordance with the above, it is possible to prevent the situation where communication is disabled and the deterioration of communication quality.
Further, the present invention is realized as an optical signal processing device for constituting the optical signal transmission system.
[0010]
The present invention also relates to a receiving device that outputs an optical modulation signal obtained by modulating an optical carrier wave with a received radio signal, an optical signal processing device that detects a radio signal component from the optical modulation signal, converts it into an electric signal, and outputs the electric signal. Are realized as an optical signal transmission system in which the optical modulation signals are connected by an optical fiber for transmitting an optical modulation signal.
The receiving apparatus includes an attenuator that attenuates the received radio signal level prior to the modulation process.
[0011]
As a result, when the radio signal level received by the receiving device is too high with respect to the optical carrier level, the radio signal level is lowered, and then the optical carrier is modulated with the radio signal, thereby producing an optical modulation signal. To prevent the waveform quality from being deteriorated.
Further, the present invention is realized as a receiving device for configuring the above optical signal transmission system.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described with reference to the embodiments shown in the drawings.
The same parts as those of the conventional optical signal transmission system shown in FIG.
[0013]
FIG. 1 shows an optical signal transmission system according to an embodiment of the present invention. In addition to the system configuration shown in FIG. 4, in this system, a radio signal component level detected by a light receiver 10 from an optical modulation signal is shown. Accordingly, a control circuit 13 for adjusting a light source driving current output from the driving circuit 6 to the light source 7 is provided in the optical signal processing device 2.
That is, the control circuit 13 receives the radio signal component level detected by the light receiver 10, adjusts and controls the drive current value by the drive circuit 6 according to the radio signal component level, and receives the radio signal received by the receiver 1. Control is performed so that the optical carrier level output from the light source 7 becomes appropriate with respect to the signal level.
[0014]
Specifically, the control circuit 13 performs control processing according to the procedure shown in FIG. 2, and when the optical receiver 10 detects a radio signal component from the optical modulation signal, it determines whether the radio signal component level exceeds a predetermined upper limit value. Judgment (step S1), if it exceeds, the drive current value from the drive circuit 6 to the light source 7 is lowered (step S2), and the optical carrier wave output from the light source 7 to the receiver 1 through the carrier optical fiber 3 Reduce the level. On the other hand, when the upper limit value is not exceeded, it is determined whether the detected radio signal component level is lower than the predetermined lower limit value (step S3), and when it is lower, the drive current value from the drive circuit 6 to the light source 7 is determined. In step S4, the level of the optical carrier wave output from the light source 7 to the receiving device 1 through the carrier wave optical fiber 3 is raised.
[0015]
Therefore, according to the radio signal level transmitted to the optical signal processing device 2 at that time, the optical carrier level modulated by the received radio signal by the optical modulator 9 of the receiving device 1 is adjusted, and the above upper limit value and lower limit value are set. Maintained between values.
Furthermore, the above upper limit value and lower limit value are drive current values for causing the light source 7 to output an optical carrier wave at a level suitable for carrying a certain level of radio signal received by the receiving device 1 at that time. This is a prescribed threshold value, which is set in advance according to the required communication quality.
Accordingly, when the optical carrier level is too high with respect to the radio signal level received by the receiving device 1, the output from the light source 7 is reduced, and when the optical carrier level is too low, the output from the light source 7 is increased. As a result, even if the reception level in the receiving device 1 varies, the optical signal processing device 2 can detect the radio signal component satisfactorily.
[0016]
In the above embodiment, a feedback method is used in which the optical carrier level is automatically adjusted as needed according to the detection level on the optical signal processing device 2 side. However, for example, when the optical signal transmission system is installed in a certain environment where the communication environment does not change so much, the above adjustment may be performed at the time of system installation. A knob that can be operated by the operator is provided, and when the system is installed, the operator operates the control circuit while checking the detection level of the optical signal processing device 2 by the monitor, adjusts the drive current, and is output from the light source 7. The optical carrier level may be adapted to the environment.
[0017]
In the above embodiment, the optical signal processing device is configured by including the optical carrier wave output means including the driving circuit 6 and the light source 7, the light receiver 10, and the control circuit 13, and further this optical signal processing device. In addition, a transmission function including the amplifier 11 and the antenna 12 is also added, but this transmission function portion may be configured as a separate transmission apparatus.
[0018]
FIG. 3 shows an optical signal transmission system according to another embodiment of the present invention. In addition to the system configuration shown in FIG. 4, in this system, a radio received by the receiving apparatus 1 prior to the modulation process is shown. An attenuator (ATT: attenuator) 14 for attenuating the signal level is provided, and the detection level of the optical signal processing device 2 is displayed on the optical signal processing device 2 and the attenuation amount by the attenuator 14 is indicated via the communication line 15. A monitor 16 having a function of remote control is provided.
The monitor 16 may be fixedly provided on the optical signal treatment device 2, but a connection plug is provided on each of the monitor 16 and the optical signal treatment device 2, and the monitor 16 is connected and used when necessary. It may be.
[0019]
In the optical signal transmission system according to the present embodiment, the operator monitors the radio signal level detected by the light receiver 10 with the monitor 16 at the time of system installation, system inspection, and the like. 14 is adjusted to attenuate the level of the radio signal received by the receiver 1 to a value suitable for the optical carrier level output from the light source 7, and the optical signal is modulated by modulating the optical carrier. The reception state in the signal processing device 2 can be adjusted to a normal state. That is, even when the radio signal level at the receiving apparatus 1 is too high, waveform distortion of the optical modulation signal can be prevented and good communication quality can be maintained.
In the above embodiment, the attenuator 14 is remotely operated via the communication line 15. However, an adjustment knob is provided on the attenuator 14 so that the operator can directly adjust the attenuation. Also good.
[0020]
In each of the above-described embodiments, unidirectional communication such as a pager system is taken as an example. However, the present invention can be similarly applied to a bidirectional communication system such as a mobile phone system. Each function shown in the embodiment may be provided in both directions.
[0021]
【The invention's effect】
As described above, according to the present invention, since the optical carrier level from the light source can be adjusted according to the radio signal component level detected from the optical modulation signal, the radio signal component level detected from the optical modulation signal can be adjusted. Can be maintained optimally, and communication quality in the optical signal transmission system can be improved. Further, according to the present invention, it is possible to avoid the situation in which the optical carrier is modulated with an excessive level radio signal in the receiving apparatus, and it is possible to improve the communication quality in the optical signal transmission system.
For this reason, according to the present invention, it is possible to realize good communication using a pager system or a mobile phone system even in a radio wave insensitive zone such as an underground shopping street.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of an optical signal transmission system according to the present invention.
FIG. 2 is a flowchart showing a processing procedure according to an embodiment of the present invention.
FIG. 3 is a diagram showing another embodiment of the optical signal transmission system according to the present invention.
FIG. 4 is a diagram illustrating an example of a conventional optical signal transmission system.
[Explanation of symbols]
1: receiver, 2: optical signal processor, 3: optical fiber for carrier wave, 4: optical fiber for communication, 6: drive circuit, 7: light source, 8: antenna, 9: optical modulator, 10: light receiver, 11: Amplifier, 12: Antenna, 13: Control circuit, 14: Attenuator, 16: Monitor,

Claims (4)

受信した無線信号で光搬送波を変調した光変調信号を出力する受信装置と、光変調信号から無線信号を検出して電気信号に変換して出力する光信号処理装置とを、光変調信号を伝送する通信用光ファイバと光搬送波を伝送する搬送波用光ファイバとにより接続した光信号伝送システムにおいて、Transmits the optical modulation signal between the receiving device that outputs the optical modulation signal obtained by modulating the optical carrier wave with the received radio signal, and the optical signal processing device that detects the radio signal from the optical modulation signal, converts it into an electrical signal, and outputs the electric signal. In an optical signal transmission system connected by a communication optical fiber and a carrier optical fiber that transmits an optical carrier,
光信号処理装置は、  The optical signal processing device
駆動電流により光源を駆動して搬送波用光ファイバを通して受信装置へ供給する光搬送波を出力する光搬送波出力手段と、  An optical carrier output means for driving a light source by a drive current and outputting an optical carrier to be supplied to a receiver through a carrier optical fiber;
通信用光ファイバを通して受信装置より入力される光変調信号から検出した無線信号のレベルに応じて、光源駆動電流を調整して当該光搬送波レベルを制御する制御手段と、  Control means for controlling the optical carrier level by adjusting the light source driving current according to the level of the radio signal detected from the optical modulation signal input from the receiving device through the communication optical fiber;
を備えたことを特徴とする光信号伝送システム。  An optical signal transmission system comprising:
請求項1に記載の光信号伝送システムにおいて、The optical signal transmission system according to claim 1,
受信装置は、変調処理に先立って受信した無線信号のレベルを減衰させるアッテネータを備えたことを特徴とする光信号伝送システム。  An optical signal transmission system, wherein the receiving device includes an attenuator that attenuates the level of a radio signal received prior to modulation processing.
請求項2に記載の光信号伝送システムにおいて、The optical signal transmission system according to claim 2,
更に、光信号処理装置が検出した無線信号成分レベルを表示するとともに信号線を介してアッテネータの減衰量を遠隔操作するモニタを備えたことを特徴とする光信号伝送システム。  An optical signal transmission system further comprising a monitor for displaying the wireless signal component level detected by the optical signal processing device and remotely controlling the attenuation amount of the attenuator via the signal line.
請求項1乃至請求項3のいずれか1項に記載の光信号伝送システムにおいて、The optical signal transmission system according to any one of claims 1 to 3,
光信号処理装置は、受信装置より入力される光変調信号から検出した無線信号を無線送信する送信機能手段を備え、  The optical signal processing device includes transmission function means for wirelessly transmitting a wireless signal detected from the optical modulation signal input from the receiving device,
受信装置と光信号処理装置は、移動体通信基地局と地下街等の無線信号不感地帯との間の信号中継を行うことを特徴とする光信号伝送システム。  An optical signal transmission system, wherein the receiving device and the optical signal processing device perform signal relay between a mobile communication base station and a radio signal insensitive zone such as an underground shopping center.
JP11038699A 1999-04-19 1999-04-19 Optical signal transmission system Expired - Fee Related JP3730437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11038699A JP3730437B2 (en) 1999-04-19 1999-04-19 Optical signal transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11038699A JP3730437B2 (en) 1999-04-19 1999-04-19 Optical signal transmission system

Publications (2)

Publication Number Publication Date
JP2000307518A JP2000307518A (en) 2000-11-02
JP3730437B2 true JP3730437B2 (en) 2006-01-05

Family

ID=14534502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11038699A Expired - Fee Related JP3730437B2 (en) 1999-04-19 1999-04-19 Optical signal transmission system

Country Status (1)

Country Link
JP (1) JP3730437B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7425696B2 (en) 2004-02-19 2008-09-16 National Institute Of Information And Communications Technology Incorporated Administrative Agency Photoelectric oscillator
JP5654783B2 (en) * 2010-06-23 2015-01-14 ホーチキ株式会社 Optical receiver
JP5759682B2 (en) * 2010-06-23 2015-08-05 ホーチキ株式会社 Optical transmitter

Also Published As

Publication number Publication date
JP2000307518A (en) 2000-11-02

Similar Documents

Publication Publication Date Title
JP3974523B2 (en) Automatic gain setting in cellular communication systems.
CA2566784C (en) Detection and elimination of oscillation within cellular network amplifiers
CA2566644C (en) Processor-controlled variable gain cellular network amplifier
US20060209997A1 (en) Amplifiers with cutoff circuit to avoid overloading cellular network sites
JPH0728231B2 (en) Booster device and radio connected to the booster device
JP3730437B2 (en) Optical signal transmission system
KR20000042660A (en) Method for controling gain of optical repeating system
JP3958275B2 (en) Apparatus and method for controlling output power of portable terminal
CA2607144C (en) Cellular network amplifier with automated output power control
JPS6084030A (en) Transmission output control system in mobile communication
JPH06334577A (en) Radio repeating device
JP3154462B2 (en) Mobile communication system and mobile station device
JPH0695651B2 (en) Wireless communication device
JP3005937B2 (en) Private communication equipment
JPH0492518A (en) Transmitter/receiver
JPH11103259A (en) Radio data communication equipment
JP2008135821A (en) Optical transmission system
JPH11112438A (en) Analog light transmission circuit and its control method
JPH03258124A (en) Transmitter-receiver
JP2002223168A (en) Transmission power control method and transmission power controller
KR200309908Y1 (en) Digital TV Repeater
KR19990027770U (en) Transmission power measuring device of communication base station
JP2001053625A (en) Base station system
JPH10209886A (en) Mobile communication terminal equipment
JPH0583155A (en) Communication equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees