JPH06251906A - Composition for thermistor - Google Patents
Composition for thermistorInfo
- Publication number
- JPH06251906A JPH06251906A JP3848793A JP3848793A JPH06251906A JP H06251906 A JPH06251906 A JP H06251906A JP 3848793 A JP3848793 A JP 3848793A JP 3848793 A JP3848793 A JP 3848793A JP H06251906 A JPH06251906 A JP H06251906A
- Authority
- JP
- Japan
- Prior art keywords
- composition
- thermistor
- constant
- cobalt
- manganese
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、サーミスタ用組成物に
関し、更に詳しくは、温度測定用サーミスタ、温度補償
用サーミスタ、ラッシュ電流防止用サーミスタ等に用い
るサーミスタ組成物に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermistor composition, and more particularly to a thermistor composition used for a temperature measuring thermistor, a temperature compensating thermistor, a rush current preventing thermistor and the like.
【0002】[0002]
【従来の技術】従来、この種のサーミスタ組成物として
は、マンガン、コバルト、ニッケル等の遷移金属酸化物
のうち2種類以上を選択し、所定の配合比で混合した組
成物の原料を900〜1400℃にて焼成して得られた
複合酸化物セラミックが知られている。2. Description of the Related Art Conventionally, as the thermistor composition of this type, two or more kinds of transition metal oxides such as manganese, cobalt and nickel are selected and mixed at a predetermined compounding ratio to produce a raw material of 900- A composite oxide ceramic obtained by firing at 1400 ° C. is known.
【0003】また、更にこの種のサーミスタ組成物にお
いては幅広い比抵抗を有するサーミスタ組成物が要望さ
れており、この要望に応じて鉄、アルミニウム、チタ
ン、マグネシウムを添加して高抵抗化を図ったり、或い
は銅を添加して低抵抗化を図ったりしてサーミスタの特
性の調整を行っていた。Further, in this type of thermistor composition, there is a demand for a thermistor composition having a wide range of specific resistance. In response to this request, iron, aluminum, titanium and magnesium are added to increase the resistance. Alternatively, the resistance of the thermistor was adjusted by adding copper to reduce the resistance.
【0004】サーミスタは温度に対して敏感な抵抗体で
あるため、温度に対して抵抗値の変化が大きいのが特徴
である。即ち、温度係数(B定数)が高い程サーミスタ
としては性能が優れているとされている。Since the thermistor is a resistor sensitive to temperature, it is characterized by a large change in resistance value with respect to temperature. That is, the higher the temperature coefficient (B constant), the better the performance as a thermistor.
【0005】[0005]
【発明が解決しようとする課題】前記マンガン、コバル
ト、ニッケル等の遷移金属酸化物のうち2種類以上を選
択して得られたサーミスタ用組成物は比抵抗(ρ25Ω・
cm)とB定数(K)とは一定の関係があり、Mn−Co
−Ni系組成物の場合を例として説明すれば、図2に白
丸印で示すように得られるB定数は比抵抗によっておお
よそ決定される状態にあり、更にB定数を向上させたサ
ーミスタ用組成物、図2で示せば、右側点線より右側領
域、即ちB定数の高い領域の範疇に入るサーミスタ用組
成物を得ることは困難であるという問題がある。A composition for a thermistor obtained by selecting two or more kinds of transition metal oxides such as manganese, cobalt and nickel has a specific resistance (ρ 25 Ω.
cm) and B constant (K) have a certain relationship, and Mn-Co
Taking the case of the Ni-based composition as an example, the B constant obtained as shown by the white circle in FIG. 2 is in a state that it is roughly determined by the specific resistance, and the composition for thermistor in which the B constant is further improved. As shown in FIG. 2, there is a problem in that it is difficult to obtain a composition for a thermistor that falls into the right side region from the right side dotted line, that is, the region having a high B constant.
【0006】本発明は、かかる問題点を解消し、比抵抗
値がサーミスタとして満足する値を有し、温度特性を従
来の組成物のB定数よりも更に向上させたサーミスタ組
成物を提供することを目的とする。The present invention solves the above problems, and provides a thermistor composition having a specific resistance value satisfying the value of a thermistor and further improving the temperature characteristics as compared with the B constant of the conventional composition. With the goal.
【0007】[0007]
【課題を解決するための手段】本発明者らは前記目的を
達成すべく鋭意検討した結果、従来の代表的なサーミス
タ組成物である(Mn・Co)3O4中のコバルト(C
o)を鉄(Fe)、マグネシウム(Mg)、チタン(T
i)、アルミニウム(Al)、亜鉛(Zn)の何れかの
金属元素に置換し、組成比(金属元素のモル比)が種々
異なる組成物を作成し、比抵抗値を測定すると共に、B
定数についても測定し、夫々の関係を調べ、その結果を
図3に特性線図として示した。調べた結果、前記従来の
組成物(Mn・Co)3O4中のコバルトを亜鉛に置換し
た場合が高い比抵抗値が得られると共にB定数も向上す
ることを知見した。DISCLOSURE OF THE INVENTION As a result of intensive studies to achieve the above object, the present inventors have found that cobalt (C) in (Mn.Co) 3 O 4 which is a typical conventional thermistor composition.
o) is iron (Fe), magnesium (Mg), titanium (T
i), aluminum (Al), or zinc (Zn) is substituted with any metal element to prepare compositions having different composition ratios (molar ratios of metal elements), and the specific resistance value is measured.
The constants were also measured, the respective relationships were investigated, and the results are shown as a characteristic diagram in FIG. As a result of the investigation, it was found that when the cobalt in the conventional composition (Mn.Co) 3 O 4 was replaced with zinc, a high specific resistance value was obtained and the B constant was also improved.
【0008】本発明はかかる知見に基づきなされたもの
であり、サーミスタ組成物は、マンガン、コバルト、亜
鉛の各酸化物からなり、マンガン+コバルト+亜鉛=1
00モル%の組成を有する組成物であって、これらの組
成比がマンガン20〜60モル%、コバルト13.3〜
66.7モル%、亜鉛3.3〜50モル%の範囲内であ
ることを特徴とする。The present invention has been made on the basis of such findings, and the thermistor composition is composed of oxides of manganese, cobalt and zinc, and manganese + cobalt + zinc = 1.
A composition having a composition of 00 mol%, the composition ratio of which is 20 to 60 mol% of manganese and 13.3 to cobalt.
It is characterized in that it is in the range of 66.7 mol% and zinc 3.3 to 50 mol%.
【0009】従来の前記組成物(Mn・Co)3O4中の
コバルトを亜鉛に置換した場合、高い比抵抗値が得られ
ると共にB定数が向上するメカニズムについて現在のと
ころ分かっていることは、ニッケル(Ni)、鉄(F
e)、マグネシウム(Mg)、チタン(Ti)、アルミ
ニウム(Al)はマンガン−コバルトの酸化物スピネル
のBサイトを占有するが(Mgの一部Aサイト占有)、
亜鉛(Zn)は3d電子10ケが満たされているため、
Bサイトd2SP3に入らず、全てAサイトSP3に入る
とされていることによるものと考えられる。しかし正確
なメカニズムの解明については今後更に研究が必要であ
ると考えられる。What is known so far is the mechanism of obtaining a high specific resistance value and improving the B constant when zinc is substituted for cobalt in the conventional composition (Mn.Co) 3 O 4 . Nickel (Ni), Iron (F
e), magnesium (Mg), titanium (Ti), and aluminum (Al) occupy the B site of the manganese-cobalt oxide spinel (a part of the Mg occupies the A site),
Since zinc (Zn) is filled with 10 3d electrons,
It is considered that this is because it is said that all of them enter the A site SP 3 instead of entering the B site d 2 SP 3 . However, further research is needed to clarify the exact mechanism.
【0010】[0010]
【作用】マンガン、コバルト、亜鉛の各酸化物から成る
サーミスタ用組成物のマンガン、コバルト、亜鉛の組成
比を前記範囲内に選択した理由は、該組成比の範囲内で
構成されたサーミスタ用組成物はそのいずれにおいても
比抵抗値とB定数の両者を満足させることが出来るよう
にするためである。換言すると、組成物のマンガン、コ
バルト、亜鉛の組成比が本発明の範囲外になると、これ
らの目標値が達成出来なくなるからである。[Function] The reason why the composition ratio of manganese, cobalt, and zinc of the thermistor composition composed of oxides of manganese, cobalt, and zinc is selected within the above range is that the thermistor composition is configured within the above range. This is because the material can satisfy both the specific resistance value and the B constant in any of them. In other words, if the composition ratio of manganese, cobalt, and zinc of the composition is out of the range of the present invention, these target values cannot be achieved.
【0011】[0011]
【実施例】以下に、本発明のサーミスタ用組成物の具体
的実施例を比較例と共に説明する。EXAMPLES Specific examples of the thermistor composition of the present invention will be described below together with comparative examples.
【0012】実験例 先ず、原料として純度99.9%以上の酸化マンガン
(Mn3O4)、酸化コバルト(Co3O4)、酸化亜鉛
(ZnO)を夫々用意した。次に、各原料を表1に示す
量(組成比は酸化物中の金属元素のモル比とした)とな
るように秤量した。Experimental Example First, manganese oxide (Mn 3 O 4 ), cobalt oxide (Co 3 O 4 ), and zinc oxide (ZnO) each having a purity of 99.9% or more were prepared as raw materials. Next, each raw material was weighed so as to have the amounts shown in Table 1 (the composition ratio was the molar ratio of metal elements in the oxide).
【0013】そして、表1に示すように配合された各原
料をウレタンボールを玉石としたボールミルによって1
5時間湿式混合した。この混合物を磁製ルツボ中で空気
中で温度1000℃で2時間仮焼した後、再度前記ボー
ルミルにより湿式粉砕を施して、粉末混合物を得た。こ
の粉末混合物に有機バインダーとしてポリビニルアルコ
ールを加えて混合造粒し、これを乾式成型プレスを用い
て5t/cm2の圧力でプレス成形し、直径6mm、厚さ1m
mの円板状の成形物を作成した。Then, each raw material blended as shown in Table 1 was prepared by a ball mill using urethane balls as cobblestones.
Wet mixed for 5 hours. The mixture was calcined in a porcelain crucible in air at a temperature of 1000 ° C. for 2 hours, and then wet-milled again by the ball mill to obtain a powder mixture. Polyvinyl alcohol was added as an organic binder to this powder mixture, and the mixture was granulated and press-molded with a dry molding press at a pressure of 5 t / cm 2 to obtain a diameter of 6 mm and a thickness of 1 m.
A disk-shaped molded product of m was prepared.
【0014】作成された成形物をアルミナセッター上で
空気中で成形物の組成に合わせて温度1100℃から1
300℃の範囲で2時間焼成を施してサーミスタ用磁器
を作成した。作成されたサーミスタ用磁器の表裏面に一
定面積のAg−Pd電極ペーストを塗布した後、空気中
で温度850℃で焼き付けして電極を形成し、該電極上
に共晶半田にてリード線付けを行って、マンガン、コバ
ルト、亜鉛の組成比が異なる種々のサーミスタ素子を作
成した。The molded product thus prepared was adjusted to a composition of the molded product in air on an alumina setter at a temperature of 1100 ° C. to 1 ° C.
A porcelain for a thermistor was prepared by firing at 300 ° C. for 2 hours. After applying a certain area of Ag-Pd electrode paste on the front and back surfaces of the prepared thermistor porcelain, it is baked in air at a temperature of 850 ° C. to form an electrode, and a lead wire is attached on the electrode with eutectic solder. Then, various thermistor elements having different composition ratios of manganese, cobalt and zinc were prepared.
【0015】前記方法で作成された各サーミスタ素子の
夫々について測定機(カレントソース224[キースレ
ー社製]およびデジタルマルチメータ195A[キース
レー社製])により温度25℃における抵抗値(R25)
と、温度85℃における抵抗値(R85)を測定し、各測
定値より比抵抗ρ25(Ω・cm)、サーミスタB定数
(K)、抵抗変化率(%)を求めた。得られた比抵抗、
B定数、抵抗変化率を表1に示す。The resistance value (R 25 ) at a temperature of 25 ° C. was measured for each of the thermistor elements produced by the above method by a measuring machine (current source 224 [made by Keithley Co.] and digital multimeter 195A [made by Keithley Co.]).
Then, the resistance value (R 85 ) at a temperature of 85 ° C. was measured, and the specific resistance ρ 25 (Ω · cm), the thermistor B constant (K), and the resistance change rate (%) were obtained from the respective measured values. The specific resistance obtained,
Table 1 shows the B constant and the rate of resistance change.
【0016】[0016]
【表1】 [Table 1]
【0017】尚、表1中で無印(※印がない)が本発明
の組成範囲内の組成物であり、※印をつけたものは組成
が本発明の範囲外の組成物である。In Table 1, no mark (no * mark) is a composition within the composition range of the present invention, and a marked mark is a composition whose composition is outside the range of the present invention.
【0018】サーミスタの比抵抗は温度25℃における
抵抗値(R25)とサーミスタ素子の形状(直径、厚さ)
により求めた。The specific resistance of the thermistor is the resistance value (R 25 ) at a temperature of 25 ° C. and the shape (diameter, thickness) of the thermistor element.
Sought by.
【0019】また、サーミスタの温度特性のB定数は温
度25℃における抵抗値(R25)と温度85℃における
抵抗値(R85)から次式(数1)により求めた。Further, the B constant of the temperature characteristic of the thermistor was obtained from the resistance value (R 25 ) at a temperature of 25 ° C. and the resistance value (R 85 ) at a temperature of 85 ° C. by the following equation (Equation 1).
【0020】[0020]
【数1】 [Equation 1]
【0021】また、抵抗変化率(経過特性)は先ず、温
度25℃で抵抗値(R25A)を測定した試料を温度12
5℃に維持した恒温槽中に1000時間放置した後、該
試料を温度25℃で抵抗値(R25B)を再度測定し、放
置前後の抵抗値から次式(数2)により求めた。The rate of change in resistance (elapsed characteristic) was measured by first measuring the resistance value (R 25 A) at a temperature of 25 ° C.
After being left for 1000 hours in a constant temperature bath maintained at 5 ° C., the resistance value (R 25 B) of the sample was measured again at a temperature of 25 ° C., and the resistance value before and after being left was determined by the following formula (Equation 2).
【0022】[0022]
【数2】 [Equation 2]
【0023】尚、表1における試料番号1の比抵抗値の
結果が測定不能となっているのは、試料の抵抗値が20
0MΩ以上のためであり、従って、試料番号1のB定数
および抵抗変化率は測定を中止した。また、抵抗変化率
の欄で、変化率値が表示されていない(空白)のはB定
数値向上の効果が見られないため、記載しなかった。The result of the specific resistance value of sample No. 1 in Table 1 is unmeasurable because the resistance value of the sample is 20.
This is because 0 MΩ or more, and therefore, the B constant and the resistance change rate of Sample No. 1 were stopped. In addition, in the column of the resistance change rate, the change rate value not displayed (blank) is not described because the effect of improving the B constant value cannot be seen.
【0024】マンガン、コバルト、亜鉛の組成が種々異
なる各組成物の組成比を三元系図で示すと図1のように
なる。尚、図1にプロットした番号は表1の試料番号で
あり、また、図1の三元系図において太線で囲まれた線
上およびこの太線に囲まれる組成範囲内にプロットされ
た試料が本発明の組成範囲内の組成物である。また、本
発明のサーミスタ用組成物のマンガン、コバルト、亜鉛
の組成比の組成範囲を三元系図(図1参照)の組成点位
置で示せば次の通りとなる。FIG. 1 is a ternary diagram showing the composition ratio of each composition having various compositions of manganese, cobalt and zinc. The numbers plotted in FIG. 1 are the sample numbers in Table 1, and the samples plotted on the line surrounded by the bold line in the ternary system diagram of FIG. 1 and within the composition range surrounded by the bold line are the samples of the present invention. It is a composition within the composition range. Further, the composition range of the composition ratio of manganese, cobalt, and zinc of the thermistor composition of the present invention is shown by the composition point position in the ternary system diagram (see FIG. 1) as follows.
【0025】 尚、組成比はモル%である。[0025] The composition ratio is mol%.
【0026】また、前記実験例の各試料の比抵抗とB定
数を図2に試料番号(黒丸印)毎にプロットした。ま
た、図2に従来のマンガン−コバルト−ニッケル系サー
ミスタ用組成物の比抵抗とB定数を参考(白丸印)にプ
ロットした。Further, the specific resistance and B constant of each sample of the above experimental example are plotted in FIG. 2 for each sample number (black circle). In addition, the specific resistance and B constant of the conventional manganese-cobalt-nickel-based thermistor composition are plotted in FIG. 2 for reference (open circles).
【0027】表1、図1および図2から明らかなよう
に、本発明の組成範囲内(表1は無印、図1は太線内、
図2は右側点線よりも右側領域)にあるサーミスタ用組
成物は125℃の高温に長時間晒されても、その抵抗変
化率が±3%以内と高温度に対する信頼性が高く、しか
も従来のマンガン−コバルト−ニッケル系酸化物から成
る組成物と同じ比抵抗値で比較すると本発明の組成物の
B定数(K)値が従来のマンガン−コバルト−ニッケル
系酸化物から成る組成物のB定数値よりも500K以上
向上することが分かる。これに対して、本発明の組成比
の範囲外にある組成、例えば前記表1における試料番号
3,22,33等は特性値が従来のマンガン−コバルト
−ニッケル系酸化物から成る組成物と同等で、B定数値
向上の効果が見られない。また、試料番号20はB定数
値はよいが、比抵抗値が低く、抵抗変化率が大きく実用
に適しない。As is clear from Table 1, FIG. 1 and FIG. 2, within the composition range of the present invention (Table 1 is unmarked, FIG. 1 is in bold line,
The composition for the thermistor in the region on the right side of the dotted line in FIG. 2) has a high rate of change in resistance of ± 3% even when exposed to a high temperature of 125 ° C. for a long time, and has a high reliability against the conventional temperature. Comparing the composition of manganese-cobalt-nickel oxide with the same specific resistance value, the B constant (K) value of the composition of the present invention is the B constant of the composition of conventional manganese-cobalt-nickel oxide. It can be seen that the value is improved by 500K or more than the numerical value. On the other hand, compositions having a composition ratio outside the range of the present invention, for example, Sample Nos. 3, 22 and 33 in Table 1 above, have characteristic values equivalent to those of conventional manganese-cobalt-nickel oxides. Therefore, the effect of improving the B constant value cannot be seen. Further, although the sample No. 20 has a good B constant value, it has a low specific resistance value and a large resistance change rate, and is not suitable for practical use.
【0028】[0028]
【発明の効果】このように本発明によるときは、サーミ
スタとしての比抵抗およびB定数を満足し得、また比抵
抗値が300Ω・cmないし80KΩ・cmの範囲内でB定
数が4060Kないし5050Kと、従来のマンガン−
コバルト−ニッケル系組成物のB定数に比して500K
ないし1000K向上し、また、125℃の耐熱性試験
における抵抗値の経時変化、即ち抵抗変化率が±3%以
下という高温度に対する信頼性に優れたサーミスタ用組
成物を提供することが出来る効果がある。As described above, according to the present invention, the specific resistance and B constant as a thermistor can be satisfied, and the B constant is 4060K to 5050K within the specific resistance value range of 300Ω · cm to 80KΩ · cm. , Conventional manganese-
500K compared to the B constant of cobalt-nickel composition
It is possible to provide a composition for a thermistor which is improved in reliability with respect to a high temperature, that is, a change in resistance with time in a heat resistance test at 125 ° C., that is, a rate of change in resistance of ± 3% or less. is there.
【図1】 本発明のサーミスタ用組成物の組成範囲を示
す三元系図、FIG. 1 is a ternary system diagram showing a composition range of a composition for a thermistor of the present invention,
【図2】 Mn−Co−Zn系組成物およびMn−Co
−Ni系組成物の比抵抗値とB定数との関係を示す特性
値プロット図、FIG. 2 Mn—Co—Zn composition and Mn—Co
A characteristic value plot showing the relationship between the specific resistance value of the Ni-based composition and the B constant,
【図3】 Mn−Co系組成物中のCoを他の金属元素
に置換した場合の比抵抗値とB定数との関係を示す特性
線図。FIG. 3 is a characteristic diagram showing a relationship between a specific resistance value and a B constant when Co in the Mn—Co-based composition is replaced with another metal element.
Claims (1)
らなり、マンガン+コバルト+亜鉛=100モル%の組
成を有する組成物であって、これらの組成比がマンガン
20〜60モル%、コバルト13.3〜66.7モル
%、亜鉛3.3〜50モル%の範囲内であることを特徴
とするサーミスタ組成物。1. A composition comprising oxides of manganese, cobalt, and zinc and having a composition of manganese + cobalt + zinc = 100 mol%, the composition ratio of which is 20 to 60 mol% of manganese and 13 of cobalt. The thermistor composition is characterized by being in the range of 0.3 to 66.7 mol% and zinc in the range of 3.3 to 50 mol%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3848793A JPH06251906A (en) | 1993-02-26 | 1993-02-26 | Composition for thermistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3848793A JPH06251906A (en) | 1993-02-26 | 1993-02-26 | Composition for thermistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06251906A true JPH06251906A (en) | 1994-09-09 |
Family
ID=12526623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3848793A Withdrawn JPH06251906A (en) | 1993-02-26 | 1993-02-26 | Composition for thermistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06251906A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013183109A (en) * | 2012-03-03 | 2013-09-12 | Murata Mfg Co Ltd | Semiconductor porcelain composition for ntc thermistor |
CN114853448A (en) * | 2022-06-08 | 2022-08-05 | 中国振华集团云科电子有限公司 | Preparation method of negative temperature coefficient thermal sensitive ceramic material for low-temperature co-firing |
CN116283231A (en) * | 2023-01-30 | 2023-06-23 | 广东风华高新科技股份有限公司 | NTC thermistor material and preparation method thereof |
-
1993
- 1993-02-26 JP JP3848793A patent/JPH06251906A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013183109A (en) * | 2012-03-03 | 2013-09-12 | Murata Mfg Co Ltd | Semiconductor porcelain composition for ntc thermistor |
CN114853448A (en) * | 2022-06-08 | 2022-08-05 | 中国振华集团云科电子有限公司 | Preparation method of negative temperature coefficient thermal sensitive ceramic material for low-temperature co-firing |
CN116283231A (en) * | 2023-01-30 | 2023-06-23 | 广东风华高新科技股份有限公司 | NTC thermistor material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0207994B1 (en) | Oxide semiconductor for thermistor and a method of producing the same | |
JPH06251906A (en) | Composition for thermistor | |
JP2841395B2 (en) | Method for manufacturing NTC thermistor | |
JP2541344B2 (en) | Electronic parts using barium titanate based semiconductor porcelain | |
US7232527B2 (en) | Sintered body for thermistor devices, thermistor device and temperature sensor | |
JP2572310B2 (en) | Composition for thermistor | |
JP2004193572A (en) | Sintered compact for thermistor, thermistor element, and temperature sensor | |
JP2572312B2 (en) | Composition for thermistor | |
JP2572313B2 (en) | Composition for thermistor | |
JP3202276B2 (en) | Composition for thermistor | |
JPH06231905A (en) | Composition for thermistor | |
JP3202278B2 (en) | Composition for thermistor | |
JP2536679B2 (en) | Positive characteristic thermistor material | |
JP3202275B2 (en) | Composition for thermistor | |
JP4492235B2 (en) | Thermistor composition and thermistor element | |
JPS6054723B2 (en) | High dielectric constant porcelain composition | |
JP3559405B2 (en) | Composition for thermistor | |
JP2990679B2 (en) | Barium titanate-based semiconductor porcelain composition | |
JP2004217500A (en) | Sintered compact for thermistor element and method for producing the same, thermistor element and temperature sensor | |
JPS6055921B2 (en) | High dielectric constant porcelain composition | |
JPH08151258A (en) | Oxide magnetic material | |
JP3202277B2 (en) | Composition for thermistor | |
JP2677041B2 (en) | Semiconductor porcelain with positive temperature coefficient of resistance | |
JP2006032855A (en) | Thermistor composite and thermistor element | |
JPH06204003A (en) | Negative characteristic thermistor material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000509 |