JPH062507A - High-efficiency turbine and manufacture thereof - Google Patents

High-efficiency turbine and manufacture thereof

Info

Publication number
JPH062507A
JPH062507A JP4185792A JP18579292A JPH062507A JP H062507 A JPH062507 A JP H062507A JP 4185792 A JP4185792 A JP 4185792A JP 18579292 A JP18579292 A JP 18579292A JP H062507 A JPH062507 A JP H062507A
Authority
JP
Japan
Prior art keywords
turbine
heat
steam
stage
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4185792A
Other languages
Japanese (ja)
Inventor
Toshiyasu Indo
頭 敏 泰 引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TEKUNIKUSU KK
Original Assignee
TEKUNIKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TEKUNIKUSU KK filed Critical TEKUNIKUSU KK
Priority to JP4185792A priority Critical patent/JPH062507A/en
Publication of JPH062507A publication Critical patent/JPH062507A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To provide a turbine having high efficiency. CONSTITUTION:The inside of a body 1 is kept at a high vacuum degree 2 and provided with a plurality of working stages. Heat energy is received by the heat receiving surface 3 of the body 1 as the first working stage, thereby heating a working fluid 5 introduced to an evaporation section 4 laid inside the body 1. Also, the fluid 5 is adiabatically caused to expand at the inlet of a turbine blade 6, and the latent heat thereof is released to cause the rotation of a turbine rotor 7. In addition, working steam 8 as moist steam is introduced to a condensing section 9, and condensed. Then, the condensed fluid 5 is sent to the evaporation section 4 and circulated. A thin wall having high heat conductivity is provided at the second and succeeding stages in such a way as kept in contact with the condensing section of a preceding stage, and the evaporation section 4' of each stage is formed at the opposite side of the thin wall. The fluid 5' is thus evaporated at the section 4', and the condensing section of the preceding stage is cooled with heat of evaporation, thereby absorbing condensation heat. At the same time, evaporated and saturate working steam is adiabatically expanded at a turbine nozzle hole for the same turbine as at the first stage, and torque is thereby applied to a turbine 6 for circulation at the same cycle. Condensation heat finally left is released outside through a final stage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タービンおよび冷凍機
に関するもので、大きくは各電力会社の火力発電所ある
いは水力発電所等の大電力生産から、小さくはガソリン
あるいは重油発電機等の直流あるいは交流発電機、各種
のエンジン、タービンおよび工業用冷凍機、家庭用冷蔵
庫、あるいは空調用冷房機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine and a refrigerator, which is mainly used for producing large amounts of electric power at a thermal power plant or a hydroelectric power plant of each electric power company. The present invention relates to an AC generator, various engines, turbines and industrial refrigerators, household refrigerators, and air conditioner coolers.

【0002】本発明は、熱源のある場所の近辺に設置し
て、熱源より熱エネルギーを吸熱し、そのエネルギーを
タービンの回転力に変換して電力あるいは軸回転力に変
換するものである。
The present invention is installed near a place having a heat source, absorbs thermal energy from the heat source, converts the energy into a rotational force of a turbine, and converts it into electric power or shaft rotational force.

【0003】本発明の対称とする用途は次の通りであ
る。
The symmetrical uses of the present invention are as follows.

【0004】発電関係 火力、原子力、海洋、河川、地熱、工場廃熱利用その他
各種の発電機。
Power generation-related power generators such as thermal power, nuclear power, oceans, rivers, geothermal heat, factory waste heat utilization and others.

【0005】エンジン関係 自動車、船舶、航空機、その他各種のエンジン。Engine related automobiles, ships, aircraft, and other various engines.

【0006】冷凍、冷蔵関係 冷凍機、冷蔵庫、その他冷凍、冷蔵に関する諸機械・機
器。
Freezing and refrigerating machines Refrigerating machines, refrigerators, and other machines and devices relating to freezing and refrigerating machines.

【0007】冷房・冷却・温度調節関係 自動車、建築物、電子部品、その他諸機械・器具の冷
房、冷却、温度調節用。
Cooling / Cooling / Temperature Control For cooling, cooling and temperature control of automobiles, buildings, electronic parts, and other machines and appliances.

【0008】[0008]

【従来の技術】従来の火力発電所では、発電機効率は1
00%に近く、またボイラ室での効率やタービン効率は
90%近いが、熱サイクル効率やタービン室効率は45
%前後で、発電所送電端熱効率では40%を割ってい
る。この原因は蒸気を使用した場合、タービンに仕事を
した蒸気が復水するために冷却する必要があり、再熱式
タービンあるいは給水の加熱に排熱の利用が図られてい
るが、熱サイクル効率を50%以上に上げることはでき
ない。現状の各種効率は次に示すごとくである。
2. Description of the Related Art In a conventional thermal power plant, the generator efficiency is 1
The efficiency is close to 00%, and the efficiency in the boiler room and the turbine efficiency are close to 90%, but the heat cycle efficiency and the turbine room efficiency are 45%.
%, The thermal efficiency at the transmission end of the power plant is less than 40%. The reason for this is that when steam is used, it is necessary to cool it in order to condense the steam that worked on the turbine, and exhaust heat is used to heat the reheat turbine or feed water. Cannot be raised above 50%. The various efficiencies at present are as follows.

【0009】発電所効率の例 ボイラ室効率 86〜90% タービン効率 84〜90% 熱サイクル効率 43〜48% タービン室効率 37〜45% 発電機効率 98〜99% 発電所発電端熱効率 32〜40% 発電所送電端熱効率 30〜39% また、水力発電所では、水の位置エネルギーを利用し
て、タービン発電機を利用して発電が行われている。そ
の変換効率は90%と言われている。しかし発電目的と
しての設備投資が莫大であり、治山、治水の目的と発電
の目的が相容れない場合もある。
Example of power plant efficiency Boiler chamber efficiency 86 to 90% Turbine efficiency 84 to 90% Heat cycle efficiency 43 to 48% Turbine chamber efficiency 37 to 45% Generator efficiency 98 to 99% Power plant power generation end thermal efficiency 32 to 40 % Power station Thermal efficiency at the transmission end 30-39% At hydropower stations, the potential energy of water is used to generate electricity using a turbine generator. The conversion efficiency is said to be 90%. However, the amount of capital investment for the purpose of power generation is huge, and the purpose of power control and flood control may not be the same as the purpose of power generation.

【0010】太陽熱の電力変換方法としては、ベルティ
エ効率あるいは熱電対を利用した起電力素子の開発が行
われている。しかし変換効率は最大で20%前後となっ
ている。
As a solar heat power conversion method, an electromotive force element utilizing Bertier efficiency or a thermocouple has been developed. However, the maximum conversion efficiency is around 20%.

【0011】ガソリンエンジンあるいは重油エンジンを
利用して軸駆動する方法も同様でエネルギーの変換効率
は決して良いとは言えない。
The same applies to the method of driving the shaft using a gasoline engine or a heavy oil engine, and the energy conversion efficiency cannot be said to be good at all.

【0012】冷凍機、冷蔵庫あるいは空調用冷房機など
は、いずれも冷凍サイクルを利用している。ガス吸収冷
凍機などもあるが、大量の熱を放出しなければならず、
効率が良いとは言えない。
Refrigerators, refrigerators, air conditioner air conditioners, and the like all use a refrigeration cycle. There is also a gas absorption refrigerator, but it must release a large amount of heat,
Not very efficient.

【0013】[0013]

【発明が解決しようとする課題】本発明の優秀性は、地
球上の問題すなわち、エネルギー消費率の低減、二酸化
炭素発生量の低減、および地球環境の改善のための解決
方法である。さらに社会的には、設備の簡素化、コスト
の低減、電力コストの低減、太陽熱利用では、最大エネ
ルギー変換効率の装置で、社会の合理化に大きく貢献す
るものである。
The excellence of the present invention is a solution for global problems, namely, reduction of energy consumption rate, reduction of carbon dioxide generation, and improvement of global environment. Further, in terms of society, in terms of simplifying equipment, reducing costs, reducing electric power costs, and utilizing solar heat, a device with maximum energy conversion efficiency will greatly contribute to the rationalization of society.

【0014】従来の火力発電所では、石油あるいは石炭
などのエネルギーを燃焼してボイラーの水に熱エネルギ
ーを与え、さらに過熱して過熱蒸気とし、その蒸気をタ
ービン発電機に送りタービンを回転させて発電をしてい
る。ボイラの加熱は常圧にて行なわれておりその蒸気温
度は530〜570℃であり、ボイラ室効率は90%と
高いが、熱サイクル効率、タービン室効率は50%以下
であり、発電所送電端効率は40%以下である。また温
度が高いために設備機器の熱損傷が大きい欠点がある。
In a conventional thermal power plant, energy such as oil or coal is burned to give heat energy to the water of the boiler, which is further superheated into superheated steam, which is sent to a turbine generator to rotate a turbine. It is generating electricity. The boiler is heated at normal pressure, the steam temperature is 530 to 570 ° C, and the boiler room efficiency is as high as 90%, but the heat cycle efficiency and turbine room efficiency are 50% or less. The edge efficiency is 40% or less. In addition, there is a drawback that the equipment is greatly damaged due to the high temperature.

【0015】本発明は、投入エネルギーすなわち燃料に
対して熱サイクル効率を従来の火力発電所の43〜48
%を60〜80%とすることである。
In the present invention, the thermal cycle efficiency with respect to the input energy, that is, the fuel, is 43 to 48 of the conventional thermal power plant.
% Is 60 to 80%.

【0016】水力発電所は、水の位置エネルギーを利用
するのでタービン発電機の効率は良いがダムとしての目
的と発電所としての目的は別であり、またその設備費用
が膨大であった。
Since the hydroelectric power plant uses the potential energy of water, the efficiency of the turbine generator is good, but the purpose as a dam and the purpose as a power plant are different, and the equipment cost is enormous.

【0017】本発明は、水力発電所において利用する水
の位置エネルギーを水の持つ比エンタルピーを利用して
発電を行ない位置エネルギーを利用しない発電方法も提
供しようとするものである。
The present invention is also intended to provide a power generation method in which the potential energy of water used in a hydroelectric power plant is generated by utilizing the specific enthalpy of water, and the potential energy is not utilized.

【0018】ガソリンあるいは重油発電機は、緊急用、
現場工事用あるいはレジャー用、キャンプ用、船舶用に
使用されているが、何れもエンジンの回転によって発電
させる方法で、発電効率あるいはランニングコストが高
くつくという欠点がある。
Gasoline or heavy oil generators are for emergency use,
It is used for on-site construction, leisure, camping, and ships, but all of them have the drawback of high power generation efficiency or running cost because they are generated by the rotation of the engine.

【0019】本発明は、小発電機において太陽熱あるい
は燃料の熱エネルギーで発電機を回転し、熱サイクルの
良い電気エネルギーを提供しようとするものである。
The present invention is intended to rotate a generator by thermal energy of solar heat or fuel in a small generator to provide electric energy with a good thermal cycle.

【0020】[0020]

【課題を解決するための手段】上記目的を達成するため
に本発明にあっては、本体内部を高真空とし、複数段の
作動域を設け、第1段の作動として、熱エネルギーを本
体受熱面により受熱し、本体内部に設けた蒸発部に導入
した作動液を加熱して蒸発させ、タービン翼の入口で断
熱膨張させ、潜熱の一部を放出してタービン回転子を回
転させるとともに、湿り蒸気となった作動蒸気を凝縮部
に導いて復液し、復液した作動液を蒸発部に回送して循
環させるようにしたことを特徴とする。
In order to achieve the above object, in the present invention, the inside of the main body is set to a high vacuum, a plurality of stages of operating regions are provided, and heat energy is received by the main body as the first stage of operation. The surface receives heat and heats and evaporates the working fluid introduced into the evaporation section provided inside the main body, adiabatically expands at the inlet of the turbine blade, releases part of the latent heat to rotate the turbine rotor, and wets it. It is characterized in that the working vapor which has become a vapor is guided to the condensing part to be condensed, and the condensed working liquid is sent to the evaporating part for circulation.

【0021】また、第1段の作用に続いて、第2段以降
の各段では、第1段あるいは各段の前の段における凝縮
部に接して熱伝導率の良い薄壁を設け、薄壁の反対側に
第2段あるいは第2段以降の各段の蒸発部を設け、作動
液を蒸発させて蒸発熱により前段の凝縮部を冷却して凝
縮熱を除去するとともに、蒸発した作動飽和蒸気を第1
段と同じタービンに対し、タービン噴口で断熱膨張させ
てタービンに回転力を与え、同一のサイクルで循環させ
るとともに、最終段においては、最終的に残った凝縮熱
を外部に捨てることを特徴とする。
In addition, following the operation of the first stage, in each of the second and subsequent stages, a thin wall having good thermal conductivity is provided in contact with the condensation section in the first stage or the stage before each stage, On the opposite side of the wall, an evaporation unit of the second stage or each stage after the second stage is provided to evaporate the working liquid and cool the condensation unit of the previous stage by the heat of evaporation to remove the heat of condensation, and to evaporate the operating saturation. Steam first
It is characterized in that the same turbine as the stage is adiabatically expanded at the turbine nozzle to give a rotational force to the turbine and circulate in the same cycle, and in the final stage, the heat of condensation that remains finally is discarded to the outside. .

【0022】また、第1段の作動の過程と状態変化の内
容が、凝縮部で復液した作動液が、一般蒸気タービンの
場合のポンプに相当するウイックの毛管力により吸引さ
れ、蒸発部に送り込まれる過程で、状態1の飽和液が毛
管力によって等温吸引を受け、状態2の不飽和液となる
過程と、不飽和液が蒸発部で外部の熱を吸収し、蒸発圧
力に相当する飽和温度にまで温度が上昇する過程で、状
態2の不飽和液が蒸発部で等圧加熱を受け、状態3の飽
和液となるのと、蒸発部の飽和液が、外部の熱を吸収し
て蒸発し、飽和蒸気となる過程で、この状態変化は等温
・等圧で行われるのと、飽和蒸気が流路の断面積を暫減
し、次第に速度を増加してタービン噴口で最小断面積と
なり、蒸気速度が音速に達し、蒸気タービンに入ってタ
ービンローターに仕事をして回転力を与え、湿り蒸気と
なる過程で、この状態変化は断熱変化で、外部に仕事を
するのと、タービンで仕事をした湿り蒸気が、再びその
流路の断面積を暫減し、次第に速度を増加して凝縮部に
達し、凝縮部で冷却されて湿り蒸気のもつ蒸発潜熱を放
出して復液する過程で、この状態変化は凝縮の過程であ
るのと、から成ることを特徴とする。
Further, regarding the contents of the process and state change of the first stage operation, the working fluid condensed in the condensing part is sucked by the capillary force of the wick corresponding to the pump in the case of a general steam turbine, and is transferred to the evaporating part. In the process of being fed, the saturated liquid in the state 1 is isothermally sucked by the capillary force to become the unsaturated liquid in the state 2, and the unsaturated liquid absorbs the external heat in the evaporation part, and is saturated corresponding to the evaporation pressure. In the process of raising the temperature to the temperature, the unsaturated liquid in the state 2 is subjected to isobaric heating in the evaporation part to become the saturated liquid in the state 3, and the saturated liquid in the evaporation part absorbs external heat. In the process of vaporizing and becoming saturated steam, this state change is carried out at an isothermal temperature and pressure, and the saturated steam gradually reduces the cross-sectional area of the flow path and gradually increases the speed to the minimum cross-sectional area at the turbine nozzle. , The steam velocity reaches the speed of sound, enters the steam turbine and enters the turbine rotor. This state change is adiabatic change in the process of giving a rotating force to give wet steam, and the wet steam working in the turbine works outside and the cross-sectional area of the flow path is temporarily changed again. This process is a process in which the state change is the process of condensation in the process of decreasing and gradually increasing the speed to reach the condensing part, being cooled in the condensing part, releasing latent heat of vaporization of the wet vapor and condensing the liquid. It is characterized by

【0023】また、第2段以降の各段および最終段の作
動の過程と状態変化の内容が、凝縮部で復液した作動液
が、一般蒸気タービンの場合のポンプに相当するウイッ
クの毛管力により吸引され、蒸発部に送り込まれる過程
で、状態1の飽和液が毛管力によって等温吸引を受け、
状態2の不飽和液となる過程と、不飽和液が蒸発部に運
ばれ、第1段(または前段)の凝縮部での熱を吸収し、
蒸発圧力に相当する飽和温度まで温度が上昇する過程
で、状態2の不飽和液が蒸発部で等圧加熱を受け、状態
3の飽和液となるのと、蒸発部の飽和液が、第1段(ま
たは前段)の凝縮熱を吸収して蒸発し、飽和蒸気となる
過程で、この状態変化は等温・等圧で行われるのと、飽
和蒸気が流路の断面積を暫減し、次第に速度を増加して
タービン噴口で最小断面積となり、蒸気速度が音速に達
し、蒸気タービンに入ってタービンローターに仕事をし
て回転力を与え、湿り蒸気となる過程で、この状態変化
は断熱変化で、外部に仕事をするのと、タービンで仕事
をした湿り蒸気が、再びその流路の断面積を暫減し、次
第に速度を増加して凝縮部に達し、凝縮部で冷却されて
湿り蒸気のもつ蒸発潜熱を放出して復液する過程で、こ
の状態変化は凝縮の過程であるのと、タービンで仕事を
した湿り蒸気が、再びその流路の断面積を暫減し、次第
に速度を増加して凝縮部に達し、凝縮部で冷却されて湿
り蒸気のもつ蒸発潜熱を放出して復液する過程で、この
状態変化は凝縮の過程であり、なお、最終段において
は、凝縮熱は外部に放出するのと、から成ることを特徴
とする。
Further, the contents of the operation process and state change of each of the second and subsequent stages and the final stage are such that the working fluid condensed in the condensing section corresponds to a pump in the case of a general steam turbine. In the process of being sucked by and being sent to the evaporation part, the saturated liquid in the state 1 is subjected to isothermal suction by the capillary force,
In the process of becoming the unsaturated liquid in the state 2, the unsaturated liquid is carried to the evaporation section and absorbs the heat in the condensation section of the first stage (or the previous stage),
In the process of raising the temperature to the saturation temperature corresponding to the evaporation pressure, the unsaturated liquid in the state 2 is subjected to isobaric heating in the evaporation part to become the saturated liquid in the state 3, and the saturated liquid in the evaporation part is In the process of absorbing the heat of condensation of the stage (or the previous stage) and evaporating to become saturated vapor, this state change is performed at isothermal and isobaric pressure, and the saturated vapor gradually reduces the cross-sectional area of the flow path, and gradually This state change is an adiabatic change in the process of increasing the speed to the minimum cross-sectional area at the turbine injection hole, the steam speed reaching the sonic speed, entering the steam turbine, giving work to the turbine rotor to give rotational force, and becoming wet steam. Then, the wet steam that has worked outside and the steam that has worked at the turbine again gradually reduces the cross-sectional area of its flow path and gradually increases its speed to reach the condensation section, where it is cooled in the condensation section and becomes wet steam. During the process of releasing the latent heat of vaporization that The wet steam that has worked in the turbine reduces the cross-sectional area of its flow path again, gradually increases its speed and reaches the condensation section, is cooled in the condensation section, and is cooled by the condensation latent heat of evaporation of the wet steam. In the process of discharging and condensing the liquid, this state change is a process of condensation, and in the final stage, the heat of condensation is discharged to the outside.

【0024】また、タービン回転子端部に設けた永久磁
石により磁場を形成し、タービンの回転にともなう磁場
の変化により本体内あるいは本体外に設けた発電機に電
流を発生させるか、あるいは外部に永久磁石を適宜設け
た回転体を回転させ、回転エネルギーを直接外部に取り
出すようにした。
Further, a magnetic field is formed by a permanent magnet provided at the end of the turbine rotor, and a current is generated in a generator provided inside or outside the main body due to a change in magnetic field due to rotation of the turbine, or externally. A rotating body provided with a permanent magnet is rotated so that the rotational energy is directly taken out.

【0025】また、本体には受熱・蒸発部、作動蒸気通
路、タービン噴口、タービン回転子、湿り蒸気通路、凝
縮部、凝縮部より蒸発部までの作動液の通路、不活性ガ
スのガス貯槽、および誘導電線を配した発電機部、ある
いは外部に回転体を設けることを特徴とする。
Further, the main body includes a heat receiving / evaporating section, a working steam passage, a turbine nozzle, a turbine rotor, a wet steam passage, a condensing section, a working liquid passage from the condensing section to the evaporating section, a gas storage tank for an inert gas, Also, a generator is provided with an induction wire, or a rotating body is provided outside.

【0026】また、本体の受熱面に遠赤外線吸収塗料を
塗布し、一般の燃焼ガスおよび燃焼室周壁、太陽熱等の
外部からくる輻射熱と対流熱を有効に受熱することを特
徴とする。
Further, it is characterized in that a far-infrared absorbing paint is applied to the heat receiving surface of the main body to effectively receive radiant heat and convective heat such as general combustion gas, the peripheral wall of the combustion chamber, and solar heat from the outside.

【0027】また、本体凝縮部から蒸発部までの作動液
の通路に毛細管力を有するウイックを設けて作動液を凝
縮部から蒸発部に導き、蒸発させるごとくにした。
Further, a wick having a capillary force is provided in the passage of the working fluid from the main body condensing portion to the evaporating portion so that the working fluid is guided from the condensing portion to the evaporating portion and evaporated.

【0028】また、本体の内部は作動液および作動蒸気
以外の、作動液に対する活性ガスを除去して高真空とす
ることを特徴とする。
Further, the inside of the main body is characterized in that a high vacuum is obtained by removing the active gas for the working liquid other than the working liquid and the working vapor.

【0029】また、第1段の各部分に於ける状態変化等
により、各部分の作動液、作動蒸気の圧力、温度、非容
積、エンタルピ、エントロピ、定圧比熱、粘性係数、熱
伝導率、表面張力等の値は、その他の各段の各部分に於
いて、すべて同一であることを特徴とする。
Further, due to the state change in each part of the first stage, the pressure, temperature, non-volume, enthalpy, entropy, constant pressure specific heat, viscosity coefficient, thermal conductivity, surface of each part of the working liquid, working steam It is characterized in that the values of tension and the like are the same in each part of each of the other stages.

【0030】また、各段に設けた不活性ガス収納部の不
活性ガスの容積を変化させることにより凝縮部における
凝縮面積を調整し、作動液の復液量を制御して、単位時
間当たりの蒸発量を調整するとともに、各段、各部分の
状態値を同一とすることを特徴とする。
Further, by changing the volume of the inert gas in the inert gas accommodating portion provided in each stage, the condensing area in the condensing portion is adjusted, the condensing amount of the working liquid is controlled, and the unit time per unit time is controlled. It is characterized in that the evaporation amount is adjusted and the state values of each stage and each part are made the same.

【0031】また、高効率タービンの蒸気温度が作動蒸
気の臨界温度を超えないことを特徴とする。
Further, it is characterized in that the steam temperature of the high efficiency turbine does not exceed the critical temperature of the working steam.

【0032】また、高効率タービンの作動液の温度が凝
固点温度以上の温度で使用することを特徴とする。
Further, it is characterized in that the working fluid of the high efficiency turbine is used at a temperature higher than the freezing point temperature.

【0033】また、最終段における最終的に残った凝縮
熱を外部に捨てるために、ヒートパイプを使用して、凝
縮部の薄壁に接してヒートパイプの蒸発部を設け、ヒー
トパイプの凝縮部を外部に設置して放熱するごとくした
ことを特徴とする。
Further, in order to dissipate the condensation heat finally remaining in the final stage to the outside, a heat pipe is used and an evaporation part of the heat pipe is provided in contact with the thin wall of the condensation part. It is characterized in that it is installed outside and radiates heat.

【0034】また、常温で使用する作動液の原子あるい
は分子のクラスターの数が、10個またはそれ以下であ
ることを特徴とする。
Further, the number of clusters of atoms or molecules of the working fluid used at room temperature is 10 or less.

【0035】また、常温で使用する作動液のPHが弱ア
ルカリ性であることを特徴とする。
Further, it is characterized in that the pH of the working liquid used at room temperature is weakly alkaline.

【0036】また、凝縮部から蒸発部までの作動液の運
搬に使用するウイックが、作動液として水等を常温近辺
で使用する場合、高分子ポリマーの吸水性樹脂を使用す
ることを特徴とする。
Further, when the wick used for transporting the working fluid from the condensing section to the evaporating section uses water or the like as the working fluid at around room temperature, it is characterized by using a water-absorbent resin of a high molecular weight polymer. .

【0037】[0037]

【作用】本発明は、自動車、船舶、航空機用エンジンと
しても可能で、公害の少ない、効率の高いエンジンを提
供しようとするものである。
The present invention is intended to provide a highly efficient engine which can be used as an engine for automobiles, ships and aircrafts, and has little pollution.

【0038】冷凍機、冷蔵庫ではコンプレッサーを動か
して冷媒蒸気を圧縮し、冷却して冷媒液とし、次に冷媒
液を蒸発させてその蒸発熱で冷却している。
In a refrigerator or a refrigerator, a compressor is operated to compress a refrigerant vapor, cool it to a refrigerant liquid, then evaporate the refrigerant liquid and cool it by its heat of evaporation.

【0039】本発明を冷却に使用する場合は、冷却すべ
き対象物の温度域により作動液を定め、冷却すべき対称
物の熱エネルギーを、第1段における作動液を蒸発させ
て蒸発熱として吸収し、蒸発した飽和蒸気を断熱膨張さ
せてタービンを回転させ、運動エネルギーを放出して湿
り蒸気となった蒸気を凝縮部で凝縮させるが、凝縮部で
放出する熱エネルギーを次の段での蒸発熱として使用
し、順次サイクルを循環させるので、外部に放出される
エネルギーはタービン仕事と最終段での残留凝縮熱の外
部放出のみとなる。
When the present invention is used for cooling, the working fluid is determined according to the temperature range of the object to be cooled, and the heat energy of the symmetrical object to be cooled is used as evaporation heat by evaporating the working fluid in the first stage. The saturated vapor that has been absorbed and evaporated is adiabatically expanded to rotate the turbine, releasing kinetic energy and condensing the vapor that has become wet vapor in the condensing section, but the thermal energy released in the condensing section is Since it is used as heat of vaporization and is cycled sequentially, the energy released to the outside is only the work of the turbine and the external release of the residual heat of condensation at the final stage.

【0040】本発明は、本来の発電所としての目的を純
粋に発電のみとし、低価格な設備費、燃料費とランニン
グコストにより発電しようとするものである。
The present invention is intended to purely generate power only as an original power plant, and to generate power with low cost equipment cost, fuel cost and running cost.

【0041】本発明の高効率タービンサイクルは、受熱
部に熱を加えて、蒸発部のウイックにある作動液を蒸発
させて作動飽和蒸気とし、作動飽和蒸気をタービン噴口
で断熱膨張させてタービン発電機の回転子のタービン翼
に投入し、その潜熱の一部を運動エネルギーとしてター
ビンを回転させて発電すると共に、タービンで仕事をし
て湿り蒸気となった作動蒸気を凝縮部で凝縮させて復液
し、復液はウイックを使用して毛細管作用により蒸発部
に運搬するサイクルである。凝縮部では復液させるとき
に放出する潜熱を次の段の蒸発熱として使用し、次の段
のサイクルを循環させる方式で、複数段のサイクルによ
り連続的にタービンに回転力を与える高効率タービンで
ある。なお最終段においては、最終的に残存する潜熱は
外部に放熱されるが、その放熱エネルギーは、段数によ
り異なり、段数を10段とすると約20%程度であり、
発電目的に使用する場合は5〜10段程度が適当であ
る。
In the high efficiency turbine cycle of the present invention, heat is applied to the heat receiving part to evaporate the working liquid in the wick of the evaporating part into working saturated steam, and the working saturated steam is adiabatically expanded at the turbine nozzle to generate turbine power. It is injected into the turbine blades of the rotor of the machine and a part of the latent heat is used as kinetic energy to rotate the turbine to generate electricity.At the same time, the working steam that has worked as turbine to become wet steam is condensed in the condensing part and recovered. The liquefaction and recondensation is a cycle in which a wick is used to carry the wick to the evaporation section by a capillary action. A high-efficiency turbine that uses the latent heat released when the liquid is condensed in the condensing section as the heat of vaporization of the next stage, and circulates the cycle of the next stage, continuously applying a rotational force to the turbine by the cycle of multiple stages. Is. In the final stage, the latent heat that finally remains is radiated to the outside, but the radiant energy differs depending on the number of stages, and when the number of stages is 10, it is about 20%,
When used for the purpose of power generation, about 5 to 10 stages is suitable.

【0042】一般にタービン発電所では復液した作動液
をポンプでボイラに送り、その途中で排熱利用が行なわ
れているが、本発明では作動液は毛細管作用のあるウイ
ックを使用して凝縮部より蒸発部に復液を運んでいる。
Generally, in a turbine power plant, the reconstituted working fluid is sent to a boiler by a pump, and waste heat is used in the process. However, in the present invention, the working fluid uses a wick having a capillary action to condense. Condensate is carried to the evaporation section.

【0043】本発明による作動温度は、作動液の種類に
より異なるが、各使用作動液の凝固点以上の温度である
とともに作動蒸気の臨界温度以下である。例えば水を使
用する場合は、0℃以上で373.15℃以下で使用す
る。即ち一般の蒸気タービンでは570℃という過熱蒸
気が使用されているが、本発明では各温度の飽和蒸気以
下で作動させる。
The operating temperature according to the present invention varies depending on the type of hydraulic fluid, but it is higher than the freezing point of each working fluid and lower than the critical temperature of the working steam. For example, when water is used, it is used at 0 ° C or higher and 373.15 ° C or lower. That is, in a general steam turbine, superheated steam of 570 ° C. is used, but in the present invention, it is operated below saturated steam at each temperature.

【0044】本発明の作動状態の制御には、不活性ガス
を使用する。不活性ガスは各段の凝縮部面積を増減する
のに使用し、蒸発量の調整および発電能力の制御に使用
する。
An inert gas is used to control the operating state of the present invention. The inert gas is used to increase / decrease the condensation area of each stage, and is used to adjust the evaporation amount and control the power generation capacity.

【0045】本発明で使用する作動液は、表面張力を小
さくするとともに、浸透圧を大きくしなければならない
が、そのために作動液の原子あるいは分子のクラスター
の数が10個またはそれ以下に、また水を使用する場合
は、水のPHが弱アルカリ性になるようにして作動液の
表面張力を小さくし、浸透圧が大きくなるようにしてい
る。
The hydraulic fluid used in the present invention must have a low surface tension and a high osmotic pressure. Therefore, the hydraulic fluid has 10 or less atomic or molecular clusters, and When water is used, the pH of the water is made weakly alkaline to reduce the surface tension of the hydraulic fluid and increase the osmotic pressure.

【0046】[0046]

【実施例】以下に本発明を図示の実施例に基づいて説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to illustrated embodiments.

【0047】図1は本発明の一実施例に係る高効率エン
ジンの原理を模式的に示したもので、本体1内部を高真
空2とし、複数段の作動域を設け、第1段の作動とし
て、熱エネルギーを本体受熱面3により受熱し、本体1
内部に設けた蒸発部4に導入した作動液5を加熱して蒸
発させ、タービン翼6の入口で断熱膨張させ、潜熱の一
部を放出してタービン回転子7を回転させるとともに、
湿り蒸気となった作動蒸気8を凝縮部9に導いて復液
し、復液した作動液を蒸発部4に回送して循環させるよ
うにしたことを特徴とする。
FIG. 1 schematically shows the principle of a high-efficiency engine according to an embodiment of the present invention. The inside of the main body 1 is set to a high vacuum 2 and a plurality of operating regions are provided to operate the first stage. As the heat energy is received by the heat receiving surface 3 of the main body,
The working fluid 5 introduced into the evaporating section 4 provided inside is heated and vaporized, adiabatically expanded at the inlet of the turbine blade 6, and a part of latent heat is discharged to rotate the turbine rotor 7, and
It is characterized in that the working steam 8 that has become wet steam is guided to the condensing section 9 to be reconstituted, and the reconstituted working liquid is sent to the evaporation section 4 for circulation.

【0048】また、第1段の作用に続いて、第2段以降
の各段では、第1段あるいは各段の前の段における凝縮
部9に接して熱伝導率の良い薄壁を設け、薄壁の反対側
に第2段あるいは第2段以降の各段の蒸発部4を設け、
作動液5を蒸発させて蒸発熱により前段の凝縮部9を冷
却して凝縮熱を除去するとともに、蒸発した作動飽和蒸
気8を第1段と同じタービン6に対し、タービン噴口で
断熱膨張させてタービン6に回転力を与え、同一のサイ
クルで循環させるとともに、最終段においては、最終的
に残った凝縮熱を外部に捨てる。
Further, following the operation of the first stage, in each of the second and subsequent stages, a thin wall having good thermal conductivity is provided in contact with the condenser section 9 in the first stage or the stage before each stage. On the opposite side of the thin wall, the evaporation section 4 of the second stage or each stage after the second stage is provided,
The working liquid 5 is evaporated and the condensation heat of the former stage is cooled by the heat of evaporation to remove the condensation heat, and the evaporated working saturated steam 8 is adiabatically expanded to the same turbine 6 as the first stage at the turbine injection port. A rotational force is applied to the turbine 6 to circulate it in the same cycle, and in the final stage, the heat of condensation that finally remains is discarded to the outside.

【0049】また、第1段の作動の過程と状態変化の内
容は、表1に示すように、凝縮部9で復液した作動液5
が、一般蒸気タービンの場合のポンプに相当するウイッ
ク10の毛管力により吸引され、蒸発部4に送り込まれ
る過程で、状態1の飽和液が毛管力によって等温吸引を
受け、状態2の不飽和液となる過程と、不飽和液が蒸発
部4で外部の熱を吸収し、蒸発圧力に相当する飽和温度
にまで温度が上昇する過程で、状態2の不飽和液が蒸発
部で等圧加熱を受け、状態3の飽和液となるのと、蒸発
部4の飽和液が、外部の熱を吸収して蒸発し、飽和蒸気
となる過程で、この状態変化は等温・等圧で行われるの
と、飽和蒸気が流路の断面積を暫減し、次第に速度を増
加してタービン噴口で最小断面積となり、蒸気速度が音
速に達し、蒸気タービン6に入ってタービンローター7
に仕事をして回転力を与え、湿り蒸気となる過程で、こ
の状態変化は断熱変化で、外部に仕事をするのと、ター
ビン6で仕事をした湿り蒸気が、再びその流路の断面積
を暫減し、次第に速度を増加して凝縮部9に達し、凝縮
部9で冷却されて湿り蒸気のもつ蒸発潜熱を放出して復
液する過程で、この状態変化は凝縮の過程であるのと、
から成る。
Further, as shown in Table 1, the operation process of the first stage and the contents of the state change are as follows.
Is sucked by the capillary force of the wick 10, which corresponds to a pump in the case of a general steam turbine, and is sent to the evaporation unit 4, the saturated liquid in the state 1 is isothermally sucked by the capillary force, and the unsaturated liquid in the state 2 is sucked. And the process in which the unsaturated liquid absorbs external heat in the evaporator 4 and the temperature rises to the saturation temperature corresponding to the evaporation pressure, the unsaturated liquid in the state 2 isobaric heated in the evaporator. When the saturated liquid in the state 3 is received and the saturated liquid in the evaporation unit 4 absorbs external heat and evaporates to become saturated vapor, this state change is carried out at an isothermal and isobaric pressure. , The saturated steam gradually reduces the cross-sectional area of the flow path, and gradually increases the speed to the minimum cross-sectional area at the turbine injection port, the steam speed reaches the sonic speed, enters the steam turbine 6, and enters the turbine rotor 7
This state change is an adiabatic change in the process of working to give a rotational force to become wet steam, and the wet steam working at the turbine 6 again acts as an adiabatic change, and the cross-sectional area of the flow path again Is gradually decreased, the speed is gradually increased to reach the condenser section 9, and the latent heat of vaporization of the moist vapor is released by cooling in the condenser section 9 to condense and the state change is the condensation step. When,
Consists of.

【0050】[0050]

【表1】 また、第2段以降の各段および最終段の作動の過程と状
態変化の内容は、表2及び表3に示すように、凝縮部
9’で復液した作動液5’が、一般蒸気タービンの場合
のポンプに相当するウイック10’の毛管力により吸引
され、蒸発部4’に送り込まれる過程で、状態1の飽和
液が毛管力によって等温吸引を受け、状態2の不飽和液
となる過程と、不飽和液が蒸発部4’に運ばれ、第1段
(または前段)の凝縮部9での熱を吸収し、蒸発圧力に
相当する飽和温度まで温度が上昇する過程で、状態2の
不飽和液が蒸発部4’で等圧加熱を受け、状態3の飽和
液となるのと、蒸発部4’の飽和液が、第1段(または
前段)の凝縮熱を吸収して蒸発し、飽和蒸気となる過程
で、この状態変化は等温・等圧で行われるのと、飽和蒸
気が流路の断面積を暫減し、次第に速度を増加してター
ビン噴口で最小断面積となり、蒸気速度が音速に達し、
蒸気タービン6に入ってタービンローター7に仕事をし
て回転力を与え、湿り蒸気となる過程で、この状態変化
は断熱変化で、外部に仕事をするのと、タービン6で仕
事をした湿り蒸気が、再びその流路の断面積を暫減し、
次第に速度を増加して凝縮部9’に達し、凝縮部9’で
冷却されて湿り蒸気のもつ蒸発潜熱を放出して復液する
過程で、この状態変化は凝縮の過程であるのと、タービ
ン6で仕事をした湿り蒸気が、再びその流路の断面積を
暫減し、次第に速度を増加して凝縮部9’に達し、凝縮
部9’で冷却されて湿り蒸気のもつ蒸発潜熱を放出して
復液する過程で、この状態変化は凝縮の過程であり、な
お、最終段においては、凝縮熱は外部に放出するのと、
から成る。
[Table 1] Further, as shown in Tables 2 and 3, the operation process and the state change of each stage after the second stage and the final stage are as follows. In the process of being sucked by the capillary force of the wick 10 'corresponding to the pump in the case of and being sent to the evaporation unit 4', the saturated liquid of the state 1 is isothermally sucked by the capillary force to become the unsaturated liquid of the state 2. Then, the unsaturated liquid is conveyed to the evaporation unit 4 ′, absorbs heat in the first-stage (or previous stage) condensation unit 9, and rises in temperature to the saturation temperature corresponding to the evaporation pressure. When the unsaturated liquid is subjected to isobaric heating in the evaporating unit 4 ′ and becomes the saturated liquid in the state 3, the saturated liquid in the evaporating unit 4 ′ absorbs the heat of condensation of the first stage (or the previous stage) and evaporates. In the process of becoming saturated steam, this state change is carried out isothermally and at an equal pressure, and the saturated steam reduces the cross-sectional area of the flow path temporarily. First, the velocity is increased to the minimum cross-sectional area at the turbine nozzle, the steam velocity reaches the sonic velocity,
In the process of entering the steam turbine 6 to work on the turbine rotor 7 to give a rotational force and become wet steam, this state change is an adiabatic change, and the wet steam that worked outside and the steam that worked at the turbine 6 However, the cross-sectional area of the flow path was reduced again,
In the process of gradually increasing the speed to reach the condensing part 9 ', cooling in the condensing part 9', releasing latent heat of vaporization of the moist vapor and condensing, this state change is the process of condensing The wet steam that worked in 6 again reduces the cross-sectional area of its flow path again and gradually increases its speed to reach the condensing section 9 ', and is cooled in the condensing section 9'and the evaporation latent heat of the wet steam is released. In the process of condensing the liquid, this state change is the process of condensation, and in the final stage, the heat of condensation is released to the outside.
Consists of.

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【表3】 また、タービン回転子端部に設けた永久磁石により磁場
を形成し、タービンの回転にともなう磁場の変化により
本体内あるいは本体外に設けた発電機に電流を発生させ
るか、あるいは外部に永久磁石を適宜設けた回転体を回
転させ、回転エネルギーを直接外部に取り出すようにし
ても良い。
[Table 3] Further, a magnetic field is formed by a permanent magnet provided at the end of the turbine rotor, and a current is generated in a generator provided inside or outside the main body due to a change in the magnetic field due to rotation of the turbine, or a permanent magnet is provided outside. It is also possible to rotate an appropriately provided rotating body and take out rotational energy directly to the outside.

【0053】また、本体には受熱・蒸発部、作動蒸気通
路、タービン噴口、タービン回転子、湿り蒸気通路、凝
縮部、凝縮部より蒸発部までの作動液の通路、不活性ガ
スのガス貯槽、および誘導電線を配した発電機部、ある
いは外部に回転体を設けるようにしても良い。
Further, the main body includes a heat receiving / evaporating section, a working steam passage, a turbine nozzle, a turbine rotor, a wet steam passage, a condensing section, a working liquid passage from the condensing section to the evaporating section, a gas storage tank for an inert gas, Also, a rotating body may be provided outside the generator unit in which the induction wire is arranged or outside.

【0054】また、本体の受熱面に遠赤外線吸収塗料を
塗布し、一般の燃焼ガスおよび燃焼室周壁、太陽熱等の
外部からくる輻射熱と対流熱を有効に受熱するようにす
るのが好ましい。
Further, it is preferable to apply far-infrared absorbing paint to the heat receiving surface of the main body so as to effectively receive radiant heat and convective heat such as general combustion gas, peripheral wall of combustion chamber, and solar heat from the outside.

【0055】また、本体凝縮部から蒸発部までの作動液
の通路に毛細管力を有するウイックを設けて作動液を凝
縮部から蒸発部に導き、蒸発させるようにするのが望ま
しい。
Further, it is preferable that a wick having a capillary force is provided in the passage of the working liquid from the main body condensing unit to the evaporating unit so that the working liquid is guided from the condensing unit to the evaporating unit and evaporated.

【0056】また、本体の内部は作動液および作動蒸気
以外の、作動液に対する活性ガスを除去して高真空とし
ても良い。
Further, the inside of the main body may be made a high vacuum by removing the active gas for the working liquid other than the working liquid and the working vapor.

【0057】また、第1段の各部分に於ける状態変化等
により、各部分の作動液、作動蒸気の圧力、温度、非容
積、エンタルピ、エントロピ、定圧比熱、粘性係数、熱
伝導率、表面張力等の値は、その他の各段の各部分に於
いて、すべて同一であるようにするのが望ましい。
Further, due to the state change in each part of the first stage, the pressure, temperature, non-volume, enthalpy, entropy, constant pressure specific heat, viscosity coefficient, thermal conductivity, surface It is desirable that the values of tension and the like be the same in each part of each of the other stages.

【0058】また、各段に設けた不活性ガス収納部の不
活性ガスの容積を変化させることにより凝縮部における
凝縮面積を調整し、作動液の復液量を制御して、単位時
間当たりの蒸発量を調整するとともに、各段、各部分の
状態値を同一とするのが好ましい。
Further, by changing the volume of the inert gas in the inert gas accommodating portion provided in each stage, the condensing area in the condensing portion is adjusted, the condensing amount of the working liquid is controlled, and the unit time per unit time is controlled. It is preferable to adjust the evaporation amount and make the state value of each stage and each part the same.

【0059】また、高効率タービンの蒸気温度が作動蒸
気の臨界温度を超えないようにするのが良い。
Further, it is preferable that the steam temperature of the high efficiency turbine does not exceed the critical temperature of the working steam.

【0060】また、高効率タービンの作動液の温度が凝
固点温度以上の温度で使用するのが望ましい。
Further, it is desirable that the working fluid of the high efficiency turbine is used at a temperature above the freezing point temperature.

【0061】また、最終段における最終的に残った凝縮
熱を外部に捨てるために、ヒートパイプを使用して、凝
縮部の薄壁に接してヒートパイプの蒸発部を設け、ヒー
トパイプの凝縮部を外部に設置して放熱するごとくして
も良い。
Further, in order to dissipate the condensation heat finally remaining in the final stage to the outside, a heat pipe is used and an evaporation part of the heat pipe is provided in contact with the thin wall of the condensation part. May be installed outside to radiate heat.

【0062】また、凝縮部から蒸発部までの作動液の運
搬に使用するウイックが、作動液として水等を常温近辺
で使用する場合、高分子ポリマーの吸水性樹脂を使用す
るのが良い。
When the wick used for transporting the working fluid from the condensing section to the evaporating section uses water or the like as the working fluid at around room temperature, it is preferable to use a water-absorbent resin of a high molecular weight polymer.

【0063】上記構成の本発明に係る実施例は、自動
車、船舶、航空機用エンジンとしても可能で、公害の少
ない、効率の高いエンジンを提供しようとするものであ
る。
The embodiment of the present invention having the above-described structure is intended to provide a highly efficient engine which can be used as an engine for automobiles, ships and aircrafts, and has little pollution.

【0064】そして、冷凍機、冷蔵庫ではコンプレッサ
ーを動かして冷媒蒸気を圧縮し、冷却して冷媒液とし、
次に冷媒液を蒸発させてその蒸発熱で冷却している。
In the refrigerator and the refrigerator, the compressor is operated to compress the refrigerant vapor and then cooled to obtain the refrigerant liquid.
Next, the refrigerant liquid is evaporated and cooled by the heat of evaporation.

【0065】本実施例を冷却に使用する場合は、冷却す
べき対象物の温度域により作動液を定め、冷却すべき対
称物の熱エネルギーを、第1段における作動液を蒸発さ
せて蒸発熱として吸収し、蒸発した飽和蒸気を断熱膨張
させてタービンを回転させ、運動エネルギーを放出して
湿り蒸気となった蒸気を凝縮部で凝縮させるが、凝縮部
で放出する熱エネルギーを次の段での蒸発熱として使用
し、順次サイクルを循環させるので、外部に放出される
エネルギーはタービン仕事と最終段での残留凝縮熱の外
部放出のみとなる。
When the present embodiment is used for cooling, the working fluid is determined according to the temperature range of the object to be cooled, and the thermal energy of the symmetrical object to be cooled is used to evaporate the working fluid in the first stage to evaporate heat. Is absorbed and vaporized saturated vapor is adiabatically expanded to rotate the turbine, kinetic energy is released and the vapor that becomes wet vapor is condensed in the condensing section, but the thermal energy released in the condensing section is Since it is used as the heat of vaporization of the gas and circulates through the cycle sequentially, the energy released to the outside is only the work of the turbine and the external release of the heat of condensation remaining in the final stage.

【0066】本実施例は、本来の発電所としての目的を
純粋に発電のみとし、低価格な設備費、燃料費とランニ
ングコストにより発電しようとするものである。
In the present embodiment, the original purpose of the power plant is purely power generation, and power generation is carried out at low cost equipment cost, fuel cost and running cost.

【0067】本実施例の高効率タービンサイクルは、受
熱部に熱を加えて、蒸発部のウイックにある作動液を蒸
発させて作動飽和蒸気とし、作動飽和蒸気をタービン噴
口で断熱膨張させてタービン発電機の回転子のタービン
翼に投入し、その潜熱の一部を運動エネルギーとしてタ
ービンを回転させて発電すると共に、タービンで仕事を
して湿り蒸気となった作動蒸気を凝縮部で凝縮させて復
液し、復液はウイックを使用して毛細管作用により蒸発
部に運搬するサイクルである。凝縮部では復液させると
きに放出する潜熱を次の段の蒸発熱として使用し、次の
段のサイクルを循環させる方式で、複数段のサイクルに
より連続的にタービンに回転力を与える高効率タービン
である。なお最終段においては、最終的に残存する潜熱
は外部に放熱されるが、その放熱エネルギーは、段数に
より異なり、段数を10段とすると約20%程度であ
り、発電目的に使用する場合は5〜10段程度が適当で
ある。
In the high-efficiency turbine cycle of this embodiment, heat is applied to the heat receiving portion to evaporate the working liquid in the wick of the evaporating portion into working saturated steam, and the working saturated steam is adiabatically expanded at the turbine injection port to produce the turbine. It is put into the turbine blades of the rotor of the generator, and a part of the latent heat is used as kinetic energy to rotate the turbine to generate electricity, and at the same time, the working steam that has become wet steam by working in the turbine is condensed in the condensation section. Condensation is a cycle in which wicking is used to carry the wick to the evaporation section by capillary action. A high-efficiency turbine that uses the latent heat released when the liquid is condensed in the condensing section as the heat of vaporization of the next stage, and circulates the cycle of the next stage, continuously applying a rotational force to the turbine by the cycle of multiple stages. Is. In the final stage, the latent heat that finally remains is radiated to the outside, but the radiant energy differs depending on the number of stages, and when the number of stages is 10, it is about 20%. About 10 to 10 is suitable.

【0068】一般にタービン発電所では復水した水をポ
ンプでボイラに送り、その途中で排熱利用が行なわれて
いるが、本発明では作動液は毛細管作用のあるウイック
を使用して凝縮部より蒸発部に復水を運んでいる。
Generally, in a turbine power plant, condensed water is sent to a boiler by a pump, and waste heat is used in the process. In the present invention, however, the working fluid is supplied from a condenser using a wick having a capillary action. Condensate is being carried to the evaporation section.

【0069】本実施例による作動温度は、作動液の種類
により異なるが、各使用作動液の凝固点以上の温度であ
るとともに作動蒸気の臨界温度以下である。例えば水を
使用する場合は、0℃以上で373.15℃以下で使用
する。即ち一般の蒸気タービンでは570℃という過熱
蒸気が使用されているが、本実施例では各温度の飽和蒸
気以下で作動させる。
The working temperature according to the present embodiment differs depending on the type of the working fluid, but is a temperature above the freezing point of each working fluid and below the critical temperature of working steam. For example, when water is used, it is used at 0 ° C or higher and 373.15 ° C or lower. That is, in a general steam turbine, superheated steam of 570 ° C. is used, but in the present embodiment, it is operated below saturated steam at each temperature.

【0070】本実施例の作動状態の制御には、不活性ガ
スを使用する。不活性ガスは各段の凝縮部面積を増減す
るのに使用し、蒸発量の調整および発電能力の制御に使
用する。
An inert gas is used to control the operating state of this embodiment. The inert gas is used to increase / decrease the condensation area of each stage, and is used to adjust the evaporation amount and control the power generation capacity.

【0071】本実施例で使用する作動液は、表面張力を
小さくするとともに、浸透圧を大きくしなければならな
いが、そのために作動液の原子あるいは分子のクラスタ
ーの数が10個またはそれ以下に、また水を使用する場
合は、水のPHが弱アルカリ性になるようにして作動液
の表面張力を小さくし、浸透圧が大きくなるようにして
いる。
The working fluid used in this example must have a low surface tension and a high osmotic pressure. For this reason, the number of clusters of atoms or molecules in the working fluid must be 10 or less. When water is used, the pH of the water is made weakly alkaline to reduce the surface tension of the working fluid and increase the osmotic pressure.

【0072】本実施例の高効率タービンのサイクルは、
従来なかったサイクルで、真空に於ける気体運動論と、
ヒートパイプの理論、およびタービン理論よりなってい
る。
The cycle of the high efficiency turbine of this embodiment is
Gas kinetics in vacuum with a cycle that has never been seen before,
It consists of heat pipe theory and turbine theory.

【0073】本実施例の高効率タービンは、熱の循環お
よび断熱膨張による仕事は、高真空中で行なわれている
ため、種々の利点があり、その結果、熱効率、タービン
効率の良いサイクルとなっている。
The high-efficiency turbine of this embodiment has various advantages because the work of heat circulation and adiabatic expansion is performed in a high vacuum, and as a result, a cycle with good thermal efficiency and turbine efficiency is obtained. ing.

【0074】本実施例の高効率タービンに使用する熱源
は、火力、海流・河川の水流熱、原子力、ボイラ熱、太
陽熱、廃熱の何れでもよい。
The heat source used in the high-efficiency turbine of this embodiment may be any of thermal power, water flow heat of ocean current / river, nuclear power, boiler heat, solar heat, and waste heat.

【0075】本実施例の高効率タービンのタービン回転
による出力は、電力による出力、軸回転による出力何れ
でもよい。
The output of turbine rotation of the high efficiency turbine of this embodiment may be output of electric power or output of shaft rotation.

【0076】本実施例の各段での過程と状態変化につい
ては、先に示した表1,表2,表3[過程と状態変化の
内容]を参照されたい。各状態変化による温度変化は微
小であるが、ヒートパイプと同様に微小な温度変化によ
って状態変化が成立する。また凝縮部から蒸発部にウイ
ックによって復水が運ばれるときに毛細管現象によって
吸引される場合と、蒸発部で発生した蒸気が蒸気通路を
通ってタービン噴口まで達する場合の温度変化は非常に
微小なので計算には入れなかった。
For the process and state change in each stage of this embodiment, refer to Table 1, Table 2 and Table 3 [contents of process and state change] shown above. Although the temperature change due to each state change is minute, the state change is established by a minute temperature change like the heat pipe. In addition, the temperature change is very small when the condensate is transported from the condensation section to the evaporation section by the wick by capillary action and when the steam generated in the evaporation section reaches the turbine nozzle through the steam passage. I didn't count it.

【0077】本発明の一実施例として、作動液に水を使
用し、20℃および50℃における各状態値およびその
効率について試算した。表4,表5,表6,表7,表8
に20℃におけるものを、表9,表10,表11,表1
2,表13に50℃における第1段から第10段までの
作動液および作動蒸気の状態値と各効率等の各種の試算
を示す。
As an example of the present invention, water was used as the working fluid, and the state values at 20 ° C. and 50 ° C. and the efficiency thereof were calculated for trial. Table 4, Table 5, Table 6, Table 7, Table 8
Those at 20 ° C are shown in Table 9, Table 10, Table 11, and Table 1.
2, Table 13 shows various trial calculations such as the state values of the working fluid and the working vapor from the first stage to the tenth stage at 50 ° C. and the respective efficiencies.

【0078】[0078]

【表4】 [Table 4]

【0079】[0079]

【表5】 [Table 5]

【0080】[0080]

【表6】 [Table 6]

【0081】[0081]

【表7】 [Table 7]

【0082】[0082]

【表8】 [Table 8]

【0083】[0083]

【表9】 [Table 9]

【0084】[0084]

【表10】 [Table 10]

【0085】[0085]

【表11】 [Table 11]

【0086】[0086]

【表12】 [Table 12]

【0087】[0087]

【表13】 [Table 13]

【0088】[0088]

【発明の効果】本発明の高効率タービンのサイクルは、
従来なかったサイクルで、真空に於ける気体運動論と、
ヒートパイプの理論、およびタービン理論よりなってい
る。
The cycle of the high efficiency turbine of the present invention is
Gas kinetics in vacuum with a cycle that has never been seen before,
It consists of heat pipe theory and turbine theory.

【0089】本発明の高効率タービンは、熱の循環およ
び断熱膨張による仕事は、高真空中で行なわれるため、
種々の利点があり、その結果、熱効率、タービン効率の
良いサイクルとなっている。
In the high-efficiency turbine of the present invention, the work of heat circulation and adiabatic expansion is performed in a high vacuum.
There are various advantages, resulting in a cycle with good thermal and turbine efficiency.

【0090】本発明の高効率タービンに使用する熱源
は、火力、海流・河川の水流熱、原子力、ボイラ熱、太
陽熱、廃熱の何れでもよい。
The heat source used in the high-efficiency turbine of the present invention may be any of thermal power, water flow heat of ocean current / river, nuclear power, boiler heat, solar heat, and waste heat.

【0091】本実施例の高効率タービンのタービン回転
による出力は、電力による出力、軸回転による出力何れ
でもよい。
The output by turbine rotation of the high efficiency turbine of this embodiment may be either output by electric power or output by shaft rotation.

【0092】本発明の各段での過程と状態変化について
は、第1表,2,3に[過程と状態変化の内容]を参照
されたい。各状態変化による温度変化は微小であるが、
ヒートパイプと同様に微小な温度変化によって状態変化
が成立する。また凝縮部から蒸発部にウイックによって
復水が運ばれるときに毛細管現象によって吸引される場
合と、蒸発部で発生した蒸気が蒸気通路を通ってタービ
ン噴口まで達する場合の温度変化は非常に微小なので計
算には入れなかった。
For the process and state change in each stage of the present invention, refer to [Contents of process and state change] in Tables 1, 2 and 3. Although the temperature change due to each state change is very small,
As with the heat pipe, the state change is established by a minute temperature change. Also, the temperature change is very small when the condensate is transported from the condenser to the evaporator by the wick when it is sucked by the capillary phenomenon and when the steam generated in the evaporator reaches the turbine nozzle through the steam passage. I didn't count it.

【0093】本発明の1例として、作動液に水を使用
し、20℃および50℃における各状態値およびその効
率について試算した。表1乃至表10に20℃および5
0℃における第1段から第10段までの作動液および作
動蒸気の状態値と各効率等の各種の試算を示す。
As an example of the present invention, water was used as the hydraulic fluid, and the state values at 20 ° C. and 50 ° C. and the efficiency thereof were calculated. Tables 1 to 10 show 20 ° C and 5
Various trial calculations such as the state values of the working liquid and the working steam and the respective efficiencies from the first stage to the tenth stage at 0 ° C are shown.

【0094】本発明の利点は、下記の通りである。The advantages of the present invention are as follows.

【0095】1.投入する熱エネルギーの量と受熱部の
受熱量により温度が定まるが、一般的に従来のタービン
と比較して温度が低く、高温にする必要が無いので高温
材料の使用や高温腐食に対する対策は不用である。
1. The temperature is determined by the amount of thermal energy input and the amount of heat received by the heat receiving part, but generally the temperature is lower than conventional turbines, and there is no need to raise the temperature, so no use of high temperature materials or countermeasures against high temperature corrosion are necessary. Is.

【0096】2.ウイックの毛細管現象を利用するの
で、一般のタービン発電機のような給水ポンプは必要と
しない。
2. Since the wick's capillarity is used, a water supply pump like a general turbine generator is not required.

【0097】3.各段の系は独立していて、各段毎に微
調整が可能であるが、タービン噴口からタービン出口ま
では各段の間には仕切が無く各段の間で蒸気の出入が可
能である。しかし、作動当初においては蒸気の出入があ
るが、各段が連続作動し始めると各段の同一部分では同
一温度、圧力その他の状態値となり、蒸気の出入は無く
なる。
3. The system of each stage is independent and fine adjustment is possible for each stage, but there is no partition between each stage from the turbine injection port to the turbine outlet, and steam can flow in and out between each stage. . However, although steam enters and exits at the beginning of operation, when each stage begins to operate continuously, the same temperature, pressure, and other state values are obtained in the same portion of each stage, and steam does not enter and exit.

【0098】4.各段では、作動液の時間当たり流れる
質量が異なり、段数の増加にともない各段の質量が減少
するが、それにともなってタービンに与える運動エネル
ギーは段数が増加するに従い減少する。しかしタービン
には各段の運動エネルギーが同時に与えられ、タービン
の出力は各段の総合計の出力となる。
4. In each stage, the mass of the hydraulic fluid flowing over time is different, and the mass of each stage decreases as the number of stages increases, but the kinetic energy given to the turbine decreases accordingly as the number of stages increases. However, the kinetic energy of each stage is simultaneously given to the turbine, and the output of the turbine becomes the output of the total of each stage.

【0099】5.第1段の各部分に於ける状態変化およ
び流路の増減により各部分の作動液、作動蒸気の圧力、
温度、非容積、エンタルピ、エントロピ、定圧比熱等の
値は、その他の各段の各部に於ける値とすべて同一であ
る。
5. By changing the state of each part of the first stage and increasing or decreasing the flow path, the pressure of the working fluid and working steam in each part,
The values of temperature, non-volume, enthalpy, entropy, specific heat of constant pressure, etc. are all the same as the values in each part of other stages.

【0100】6.不活性ガスの封入により各段の凝縮部
の面積を制御することができ、全体の制御が可能であ
る。
6. By enclosing the inert gas, the area of the condenser of each stage can be controlled, and the entire control is possible.

【0101】7.真空中で稼働するので、空気に含まれ
る酸素その他腐食性ガスが存在しないので、機器の腐食
が発生しない。
7. Since it operates in a vacuum, oxygen and other corrosive gases contained in the air do not exist, so no equipment corrosion occurs.

【0102】8.真空中でタービンが稼働するので各種
の抵抗が少なく、効率が高い。
8. Since the turbine operates in a vacuum, various resistances are low and efficiency is high.

【0103】9.常温域で稼働させる場合は、使用する
材料は常温域の材料が使用でき、タービン材質も常温域
で強度のある合成樹脂成形品等で十分である。
9. When operating in the normal temperature range, the materials used may be those in the normal temperature range, and the turbine material may be a synthetic resin molded product or the like having strength in the normal temperature range.

【0104】10.常温域で稼働させる場合は、使用す
るウイックは毛細管力の大きいものが使用できる。
10. When operating in the normal temperature range, a wick having a large capillary force can be used.

【0105】11.空調などに使用する場合は、室内空
気温度あるいは室内壁面温度等と連係して、作動の断続
が可能である。
11. When used for air conditioning, the operation can be interrupted in cooperation with the indoor air temperature or the indoor wall surface temperature.

【0106】12.作動液の選択により、−273℃近
辺から+2500℃まで理論的には可能である。
12. It is theoretically possible from around -273 ° C to + 2500 ° C by selecting the working fluid.

【0107】13.宇宙のような真空中でも作動させる
ことができる。
13. It can be operated even in a vacuum like space.

【0108】14.試算例では、作動の目的、使用温
度、作動液の種類、出力、各部の寸法等の諸源を入れる
ことにより、自動的に各部の設計諸源の決定が可能であ
る。
14. In the trial calculation example, it is possible to automatically determine various design sources of each part by including various sources such as the purpose of operation, operating temperature, type of hydraulic fluid, output, and size of each part.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る高効率タービンの原理
を説明する図である。
FIG. 1 is a diagram illustrating the principle of a high efficiency turbine according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 本体 2 高真空 3 受熱面 4 蒸発部 5 作動液 6 タービン 7 タービン回転子 8 作動蒸気 9 凝縮部 10 ウイック 1 Main body 2 High vacuum 3 Heat receiving surface 4 Evaporating part 5 Working fluid 6 Turbine 7 Turbine rotor 8 Working steam 9 Condensing part 10 Wick

Claims (34)

【特許請求の範囲】[Claims] 【請求項1】 本体内部を高真空とし、複数段の作動域
を設け、第1段の作動として、熱エネルギーを本体受熱
面により受熱し、本体内部に設けた蒸発部に導入した作
動液を加熱して蒸発させ、タービン翼の入口で断熱膨張
させ、潜熱の一部を放出してタービン回転子を回転させ
るとともに、湿り蒸気となった作動蒸気を凝縮部に導い
て復液し、復液した作動液を蒸発部に回送して循環させ
るようにしたことを特徴とする高効率タービン。
1. A high-vacuum inside of the main body is provided with a plurality of stages of operating regions, and as the first stage of operation, heat energy is received by the heat-receiving surface of the main body, and the working liquid introduced into the evaporation section provided inside the main body is It heats and evaporates, adiabatically expands at the inlet of the turbine blade, releases part of the latent heat and rotates the turbine rotor, and also guides the working steam that became wet steam to the condensing section to condense and condense it. A high-efficiency turbine characterized in that the working fluid is sent to an evaporator and circulated.
【請求項2】 第1段の作用に続いて、第2段以降の各
段では、第1段あるいは各段の前の段における凝縮部に
接して熱伝導率の良い薄壁を設け、薄壁の反対側に第2
段あるいは第2段以降の各段の蒸発部を設け、作動液を
蒸発させて蒸発熱により前段の凝縮部を冷却して凝縮熱
を除去するとともに、蒸発した作動飽和蒸気を第1段と
同じタービンに対し、タービン噴口で断熱膨張させてタ
ービンに回転力を与え、同一のサイクルで循環させると
ともに、最終段においては、最終的に残った凝縮熱を外
部に捨てることを特徴とする請求項1記載の高効率ター
ビン。
2. Subsequent to the action of the first stage, in each of the second and subsequent stages, a thin wall having a good thermal conductivity is provided in contact with the condensing part in the first stage or the stage before each stage, Second on the other side of the wall
Evaporators of each stage or the second and subsequent stages are provided, and the working liquid is evaporated to cool the condensation part of the previous stage by the heat of evaporation to remove the heat of condensation, and the evaporated working saturated vapor is the same as the first stage. 2. The turbine is adiabatically expanded at a turbine injection port to give a rotational force to the turbine to circulate in the same cycle, and in the final stage, the finally remaining condensation heat is discarded to the outside. The described high efficiency turbine.
【請求項3】 第1段の作動の過程と状態変化の内容
が、 凝縮部で復液した作動液が、一般蒸気タービンの場合の
ポンプに相当するウイックの毛管力により吸引され、蒸
発部に送り込まれる過程で、状態1の飽和液が毛管力に
よって等温吸引を受け、状態2の不飽和液となる過程
と、 不飽和液が蒸発部で外部の熱を吸収し、蒸発圧力に相当
する飽和温度にまで温度が上昇する過程で、状態2の不
飽和液が蒸発部で等圧加熱を受け、状態3の飽和液とな
るのと、 蒸発部の飽和液が、外部の熱を吸収して蒸発し、飽和蒸
気となる過程で、この状態変化は等温・等圧で行われる
のと、 飽和蒸気が流路の断面積を暫減し、次第に速度を増加し
てタービン噴口で最小断面積となり、蒸気速度が音速に
達し、蒸気タービンに入ってタービンローターに仕事を
して回転力を与え、湿り蒸気となる過程で、この状態変
化は断熱変化で、外部に仕事をするのと、 タービンで仕事をした湿り蒸気が、再びその流路の断面
積を暫減し、次第に速度を増加して凝縮部に達し、凝縮
部で冷却されて湿り蒸気のもつ蒸発潜熱を放出して復液
する過程で、この状態変化は凝縮の過程であるのと、 から成ることを特徴とする請求項1記載の高効率タービ
ン。
3. The process of the first stage operation and the contents of the state change are such that the working fluid reconstituted in the condensing part is sucked by the capillary force of the wick corresponding to the pump in the case of a general steam turbine, and is transferred to the evaporating part. In the process of being fed, the saturated liquid in the state 1 is isothermally sucked by the capillary force to become the unsaturated liquid in the state 2, and the unsaturated liquid absorbs the external heat in the evaporation part, and the saturated pressure corresponding to the evaporation pressure is reached. In the process of raising the temperature to the temperature, the unsaturated liquid in the state 2 is subjected to isobaric heating in the evaporation part to become the saturated liquid in the state 3, and the saturated liquid in the evaporation part absorbs external heat. In the process of vaporizing and becoming saturated steam, this state change is carried out at an isothermal and isobaric pressure, and the saturated steam gradually reduces the cross-sectional area of the flow path and gradually increases the speed to the minimum cross-sectional area at the turbine nozzle. , The steam speed reaches the speed of sound, enters the steam turbine, and becomes a turbine rotor. This state change is adiabatic change in the process of turning into a wet steam by turning it, and the wet steam that worked in the turbine is reduced adiabatically and the cross-sectional area of its flow path is temporarily reduced again. In the process of gradually increasing the speed to reach the condensing part, being cooled in the condensing part and releasing the latent heat of vaporization of the moist vapor and condensing, this state change is the process of condensing. The high efficiency turbine according to claim 1, wherein
【請求項4】 第2段以降の各段および最終段の作動の
過程と状態変化の内容が、 凝縮部で復液した作動液が、一般蒸気タービンの場合の
ポンプに相当するウイックの毛管力により吸引され、蒸
発部に送り込まれる過程で、状態1の飽和液が毛管力に
よって等温吸引を受け、状態2の不飽和液となる過程
と、 不飽和液が蒸発部に運ばれ、第1段(または前段)の凝
縮部での熱を吸収し、蒸発圧力に相当する飽和温度まで
温度が上昇する過程で、状態2の不飽和液が蒸発部で等
圧加熱を受け、状態3の飽和液となるのと、 蒸発部の飽和液が、第1段(または前段)の凝縮熱を吸
収して蒸発し、飽和蒸気となる過程で、この状態変化は
等温・等圧で行われるのと、 飽和蒸気が流路の断面積を暫減し、次第に速度を増加し
てタービン噴口で最小断面積となり、蒸気速度が音速に
達し、蒸気タービンに入ってタービンローターに仕事を
して回転力を与え、湿り蒸気となる過程で、この状態変
化は断熱変化で、外部に仕事をするのと、 タービンで仕事をした湿り蒸気が、再びその流路の断面
積を暫減し、次第に速度を増加して凝縮部に達し、凝縮
部で冷却されて湿り蒸気のもつ蒸発潜熱を放出して復液
する過程で、この状態変化は凝縮の過程であるのと、 タービンで仕事をした湿り蒸気が、再びその流路の断面
積を暫減し、次第に速度を増加して凝縮部に達し、凝縮
部で冷却されて湿り蒸気のもつ蒸発潜熱を放出して復液
する過程で、この状態変化は凝縮の過程であり、なお、
最終段においては、凝縮熱は外部に放出するのと、 から成ることを特徴とする請求項1記載の高効率タービ
ン。
4. The process of operation and the state change of each of the second and subsequent stages and the final stage are such that the working fluid condensed in the condensing section corresponds to a pump in the case of a general steam turbine. The saturated liquid in the state 1 is isothermally sucked by the capillary force in the process of being sucked by and is sent to the evaporating unit to become the unsaturated liquid in the state 2, and the unsaturated liquid is conveyed to the evaporating unit, (Or the previous stage) In the process of absorbing the heat in the condensing part and raising the temperature to the saturation temperature corresponding to the evaporation pressure, the unsaturated liquid in state 2 is subjected to isobaric heating in the evaporation part, and the saturated liquid in state 3 is heated. When the saturated liquid in the evaporation section absorbs the condensation heat of the first stage (or the previous stage) and evaporates to become saturated vapor, this state change is carried out at an isothermal and isobaric pressure. Saturated steam temporarily reduces the cross-sectional area of the flow path, gradually increases the speed, and minimizes disconnection at the turbine nozzle. When the steam velocity reaches the sonic speed, enters the steam turbine, gives work to the turbine rotor to give a rotational force, and becomes wet steam, this state change is adiabatic change and works outside. The wet steam that has worked in the turbine reduces the cross-sectional area of its flow path again, gradually increases its speed to reach the condensation section, and is cooled in the condensation section to release the latent heat of vaporization of the wet steam and reconstitute. In this process, the state change is the process of condensation, and the moist steam that worked in the turbine once again reduced the cross-sectional area of its flow path gradually and gradually increased its speed to reach the condensation part. This state change is the process of condensation in the process of releasing the latent heat of vaporization of the moist steam by being cooled by
The high efficiency turbine according to claim 1, wherein in the final stage, the heat of condensation is released to the outside.
【請求項5】 タービン回転子端部に設けた永久磁石に
より磁場を形成し、タービンの回転にともなう磁場の変
化により本体内あるいは本体外に設けた発電機に電流を
発生させるか、あるいは外部に永久磁石を適宜設けた回
転体を回転させ、回転エネルギーを直接外部に取り出す
ようにした請求項1記載の高効率タービン。
5. A magnetic field is formed by a permanent magnet provided at the end of the turbine rotor, and a current is generated in a generator provided inside or outside the main body by a change in the magnetic field due to rotation of the turbine, or externally. The high-efficiency turbine according to claim 1, wherein a rotating body provided with a permanent magnet is rotated to take out rotational energy directly to the outside.
【請求項6】 本体には受熱・蒸発部、作動蒸気通路、
タービン噴口、タービン回転子、湿り蒸気通路、凝縮
部、凝縮部より蒸発部までの作動液の通路、不活性ガス
のガス貯槽、および誘導電線を配した発電機部、あるい
は外部に回転体を設けることを特徴とする請求項1記載
の高効率タービン。
6. A heat receiving / evaporating section, a working steam passage,
Turbine injection port, turbine rotor, wet steam passage, condenser, passage for working fluid from condenser to evaporator, gas storage tank for inert gas, generator section with induction wire, or external rotor The high-efficiency turbine according to claim 1, wherein:
【請求項7】 本体の受熱面に遠赤外線吸収塗料を塗布
し、一般の燃焼ガスおよび燃焼室周壁、太陽熱等の外部
からくる輻射熱と対流熱を有効に受熱することを特徴と
する請求項1記載の高効率タービン。
7. A far-infrared absorbing paint is applied to the heat-receiving surface of the main body to effectively receive radiant heat and convective heat from the outside such as general combustion gas, the peripheral wall of the combustion chamber, and solar heat. The described high efficiency turbine.
【請求項8】 本体凝縮部から蒸発部までの作動液の通
路に毛細管力を有するウイックを設けて作動液を凝縮部
から蒸発部に導き、蒸発させるごとくにした請求項1記
載の高効率タービン。
8. The high-efficiency turbine according to claim 1, wherein a wick having a capillary force is provided in a passage for the working fluid from the main body condensing section to the evaporating section to guide the working fluid from the condensing section to the evaporating section for evaporation. .
【請求項9】 本体の内部は作動液および作動蒸気以外
の、作動液に対する活性ガスを除去して高真空とするこ
とを特徴とする請求項1記載の高効率タービン。
9. The high efficiency turbine according to claim 1, wherein the inside of the main body is made into a high vacuum by removing active gases other than the working liquid and the working steam with respect to the working liquid.
【請求項10】 第1段の各部分に於ける状態変化等に
より、各部分の作動液、作動蒸気の圧力、温度、非容
積、エンタルピ、エントロピ、定圧比熱、粘性係数、熱
伝導率、表面張力等の値は、その他の各段の各部分に於
いて、すべて同一であることを特徴とする請求項1記載
の高効率タービン。
10. The pressure, temperature, non-volume, enthalpy, entropy, constant pressure specific heat, viscous coefficient, thermal conductivity, surface of each portion of the working liquid, working vapor, etc. due to the state change in each portion of the first stage. The high-efficiency turbine according to claim 1, wherein the values of tension and the like are the same in each part of the other stages.
【請求項11】 各段に設けた不活性ガス収納部の不活
性ガスの容積を変化させることにより凝縮部における凝
縮面積を調整し、作動液の復液量を制御して、単位時間
当たりの蒸発量を調整するとともに、各段、各部分の状
態値を同一とすることを特徴とする請求項1記載の高効
率タービン。
11. The condensation area in the condensation section is adjusted by changing the volume of the inert gas in the inert gas storage section provided in each stage, and the condensate amount of the working fluid is controlled so that the per unit time is adjusted. The high efficiency turbine according to claim 1, wherein the evaporation amount is adjusted and the state values of each stage and each part are made the same.
【請求項12】 高効率タービンの蒸気温度が作動蒸気
の臨界温度を超えないことを特徴とする請求項1記載の
高効率タービン。
12. The high efficiency turbine according to claim 1, wherein the steam temperature of the high efficiency turbine does not exceed the critical temperature of the working steam.
【請求項13】 高効率タービンの作動液の温度が凝固
点温度以上の温度で使用することを特徴とする請求項1
記載の高効率タービン。
13. The high-efficiency turbine is used at a temperature of the working fluid at a temperature equal to or higher than the freezing point temperature.
The described high efficiency turbine.
【請求項14】 最終段における最終的に残った凝縮熱
を外部に捨てるために、ヒートパイプを使用して、凝縮
部の薄壁に接してヒートパイプの蒸発部を設け、ヒート
パイプの凝縮部を外部に設置して放熱するごとくしたこ
とを特徴とする請求項1記載の高効率タービン。
14. A heat pipe is used in order to dissipate the heat of condensation remaining in the final stage to the outside, and an evaporation part of the heat pipe is provided in contact with the thin wall of the condensation part. The high-efficiency turbine according to claim 1, wherein the heat-dissipating unit is installed outside to radiate heat.
【請求項15】 常温で使用する作動液の原子あるいは
分子のクラスターの数が、10個またはそれ以下である
ことを特徴とする請求項1記載の高効率タービン。
15. The high efficiency turbine according to claim 1, wherein the number of clusters of atoms or molecules of the working fluid used at room temperature is 10 or less.
【請求項16】 常温で使用する作動液のPHが弱アル
カリ性であることを特徴とする請求項1記載の高効率タ
ービン。
16. The high efficiency turbine according to claim 1, wherein the pH of the hydraulic fluid used at room temperature is weakly alkaline.
【請求項17】 凝縮部から蒸発部までの作動液の運搬
に使用するウイックが、作動液として水等を常温近辺で
使用する場合、高分子ポリマーの吸水性樹脂を使用する
ことを特徴とする請求項1記載の高効率タービン。
17. A wick used for transporting a working fluid from a condensing part to an evaporating part, when water or the like is used as a working fluid at around room temperature, a water-absorbing resin of a high molecular polymer is used. The high efficiency turbine according to claim 1.
【請求項18】 本体内部を高真空とし、複数段の作動
域を設け、第1段の作動として、熱エネルギーを本体受
熱面により受熱し、本体内部に設けた蒸発部に導入した
作動液を加熱して蒸発させ、タービン翼の入口で断熱膨
張させ、潜熱の一部を放出してタービン回転子を回転さ
せるとともに、湿り蒸気となった作動蒸気を凝縮部に導
いて復液し、復液した作動液を蒸発部に回送して循環さ
せるようにして製造することを特徴とする高効率タービ
ンの製造方法。
18. The inside of the main body is made to have a high vacuum, and a plurality of stages of operating regions are provided. As the first stage of operation, the heat energy is received by the heat receiving surface of the main body, and the working liquid introduced into the evaporation portion provided inside the main body is supplied. It heats and evaporates, adiabatically expands at the inlet of the turbine blade, releases part of the latent heat and rotates the turbine rotor, and also guides the working steam that became wet steam to the condensing section to condense and condense it. A method for manufacturing a high-efficiency turbine, characterized in that the working fluid is sent to an evaporator and circulated.
【請求項19】 第1段の作用に続いて、第2段以降の
各段では、第1段あるいは各段の前の段における凝縮部
に接して熱伝導率の良い薄壁を設け、薄壁の反対側に第
2段あるいは第2段以降の各段の蒸発部を設け、作動液
を蒸発させて蒸発熱により前段の凝縮部を冷却して凝縮
熱を除去するとともに、蒸発した作動飽和蒸気を第1段
と同じタービンに対し、タービン噴口で断熱膨張させて
タービンに回転力を与え、同一のサイクルで循環させる
とともに、最終段においては、最終的に残った凝縮熱を
外部に捨てるようにして製造することを特徴とする請求
項1記載の高効率タービンの製造方法。
19. Following the operation of the first stage, in each of the second and subsequent stages, a thin wall having good thermal conductivity is provided in contact with the condensing part in the first stage or the stage before each stage, On the opposite side of the wall, an evaporation unit of the second stage or each stage after the second stage is provided to evaporate the working liquid and cool the condensation unit of the previous stage by the heat of evaporation to remove the heat of condensation, and to evaporate the operating saturation. The steam is adiabatically expanded to the same turbine as in the first stage at the turbine injection port to give a rotational force to the turbine and circulate in the same cycle, and at the final stage, the final remaining heat of condensation is discarded to the outside. The method for manufacturing a high-efficiency turbine according to claim 1, wherein the manufacturing method is as follows.
【請求項20】 第1段の作動の過程と状態変化の内容
が、 凝縮部で復液した作動液が、一般蒸気タービンの場合の
ポンプに相当するウイックの毛管力により吸引され、蒸
発部に送り込まれる過程で、状態1の飽和液が毛管力に
よって等温吸引を受け、状態2の不飽和液となる過程
と、 不飽和液が蒸発部で外部の熱を吸収し、蒸発圧力に相当
する飽和温度にまで温度が上昇する過程で、状態2の不
飽和液が蒸発部で等圧加熱を受け、状態3の飽和液とな
るのと、 蒸発部の飽和液が、外部の熱を吸収して蒸発し、飽和蒸
気となる過程で、この状態変化は等温・等圧で行われる
のと、 飽和蒸気が流路の断面積を暫減し、次第に速度を増加し
てタービン噴口で最小断面積となり、蒸気速度が音速に
達し、蒸気タービンに入ってタービンローターに仕事を
して回転力を与え、湿り蒸気となる過程で、この状態変
化は断熱変化で、外部に仕事をするのと、 タービンで仕事をした湿り蒸気が、再びその流路の断面
積を暫減し、次第に速度を増加して凝縮部に達し、凝縮
部で冷却されて湿り蒸気のもつ蒸発潜熱を放出して復液
する過程で、この状態変化は凝縮の過程であるのと、 から成るようにして製造することを特徴とする請求項1
8記載の高効率タービンの製造方法。
20. The process of the first stage operation and the contents of the state change are such that the working fluid condensed in the condensing part is sucked by the capillary force of the wick corresponding to the pump in the case of a general steam turbine, and is transferred to the evaporating part. In the process of being fed, the saturated liquid in the state 1 is isothermally sucked by the capillary force to become the unsaturated liquid in the state 2, and the unsaturated liquid absorbs the external heat in the evaporation part, and the saturated pressure corresponding to the evaporation pressure is reached. In the process of raising the temperature to the temperature, the unsaturated liquid in the state 2 is subjected to isobaric heating in the evaporation part to become the saturated liquid in the state 3, and the saturated liquid in the evaporation part absorbs external heat. In the process of vaporizing and becoming saturated steam, this state change is carried out at an isothermal and isobaric pressure, and the saturated steam gradually reduces the cross-sectional area of the flow path and gradually increases the speed to the minimum cross-sectional area at the turbine nozzle. , The steam velocity reaches the speed of sound, enters the steam turbine and enters the turbine rotor. This state change is adiabatic change in the process of turning into a wet steam by doing things, and the wet steam working in the turbine again works for a while in the cross-sectional area of its flow path. The state change is the process of condensation, which is the process of decreasing the temperature, gradually increasing the speed, reaching the condensing part, being cooled in the condensing part and releasing the latent heat of vaporization of the moist vapor and condensing the liquid. The manufacturing method according to claim 1,
8. The method for manufacturing a high efficiency turbine according to item 8.
【請求項21】 第2段以降の各段および最終段の作動
の過程と状態変化の内容が、 凝縮部で復液した作動液が、一般蒸気タービンの場合の
ポンプに相当するウイックの毛管力により吸引され、蒸
発部に送り込まれる過程で、状態1の飽和液が毛管力に
よって等温吸引を受け、状態2の不飽和液となる過程
と、 不飽和液が蒸発部に運ばれ、第1段(または前段)の凝
縮部での熱を吸収し、蒸発圧力に相当する飽和温度まで
温度が上昇する過程で、状態2の不飽和液が蒸発部で等
圧加熱を受け、状態3の飽和液となるのと、 蒸発部の飽和液が、第1段(または前段)の凝縮熱を吸
収して蒸発し、飽和蒸気となる過程で、この状態変化は
等温・等圧で行われるのと、 飽和蒸気が流路の断面積を暫減し、次第に速度を増加し
てタービン噴口で最小断面積となり、蒸気速度が音速に
達し、蒸気タービンに入ってタービンローターに仕事を
して回転力を与え、湿り蒸気となる過程で、この状態変
化は断熱変化で、外部に仕事をするのと、 タービンで仕事をした湿り蒸気が、再びその流路の断面
積を暫減し、次第に速度を増加して凝縮部に達し、凝縮
部で冷却されて湿り蒸気のもつ蒸発潜熱を放出して復液
する過程で、この状態変化は凝縮の過程であるのと、 タービンで仕事をした湿り蒸気が、再びその流路の断面
積を暫減し、次第に速度を増加して凝縮部に達し、凝縮
部で冷却されて湿り蒸気のもつ蒸発潜熱を放出して復液
する過程で、この状態変化は凝縮の過程であり、なお、
最終段においては、凝縮熱は外部に放出するのと、 から成るようにして製造することを特徴とする請求項1
8記載の高効率タービンの製造方法。
21. The process of operation and the state change of each of the second and subsequent stages and the final stage are such that the working fluid condensed in the condensing section corresponds to a pump in the case of a general steam turbine. The saturated liquid in the state 1 is isothermally sucked by the capillary force in the process of being sucked by and is sent to the evaporating unit to become the unsaturated liquid in the state 2, and the unsaturated liquid is conveyed to the evaporating unit, (Or the previous stage) In the process of absorbing the heat in the condensing part and raising the temperature to the saturation temperature corresponding to the evaporation pressure, the unsaturated liquid in state 2 is subjected to isobaric heating in the evaporation part, and the saturated liquid in state 3 is heated. When the saturated liquid in the evaporation section absorbs the condensation heat of the first stage (or the previous stage) and evaporates to become saturated vapor, this state change is carried out at an isothermal and isobaric pressure. Saturated steam reduces the cross-sectional area of the flow path temporarily, gradually increasing the speed to the minimum at the turbine nozzle In the process of becoming an area, the steam velocity reaches the speed of sound, entering the steam turbine, giving work to the turbine rotor and giving a rotational force, and becoming wet steam, this state change is adiabatic change, and work outside The wet steam that has worked in the turbine reduces the cross-sectional area of its flow path again, gradually increases its speed to reach the condensation section, and is cooled in the condensation section to release the latent heat of vaporization of the wet steam and reconstitute. In this process, the state change is the process of condensation, and the moist steam that worked in the turbine once again reduced the cross-sectional area of its flow path gradually and gradually increased its speed to reach the condensation part. This state change is the process of condensation in the process of releasing the latent heat of vaporization of the moist steam by being cooled by
In the final stage, the heat of condensation is released to the outside, and the production is performed by:
8. The method for manufacturing a high efficiency turbine according to item 8.
【請求項22】 タービン回転子端部に設けた永久磁石
により磁場を形成し、タービンの回転にともなう磁場の
変化により本体内あるいは本体外に設けた発電機に電流
を発生させるか、あるいは外部に永久磁石を適宜設けた
回転体を回転させ、回転エネルギーを直接外部に取り出
すようにして製造することを特徴とする請求項18記載
の高効率タービンの製造方法。
22. A magnetic field is formed by a permanent magnet provided at the end of the turbine rotor, and a current is generated in a generator provided inside or outside the main body by a change in the magnetic field due to the rotation of the turbine, or externally. The manufacturing method for a high-efficiency turbine according to claim 18, characterized in that the rotating body provided with a permanent magnet is rotated to take out rotational energy directly to the outside.
【請求項23】 本体には受熱・蒸発部、作動蒸気通
路、タービン噴口、タービン回転子、湿り蒸気通路、凝
縮部、凝縮部より蒸発部までの作動液の通路、不活性ガ
スのガス貯槽、および誘導電線を配した発電機部、ある
いは外部に回転体を設けるようにして製造することを特
徴とする請求項18記載の高効率タービンの製造方法。
23. The main body includes a heat receiving / evaporating section, a working steam passage, a turbine nozzle, a turbine rotor, a wet steam passage, a condensing section, a working liquid passage from the condensing section to the evaporating section, a gas storage tank for an inert gas, The method for manufacturing a high-efficiency turbine according to claim 18, characterized in that the manufacturing is carried out by providing a rotating body on the power generator part having the induction wire arranged or on the outside.
【請求項24】 本体の受熱面に遠赤外線吸収塗料を塗
布し、一般の燃焼ガスおよび燃焼室周壁、太陽熱等の外
部からくる輻射熱と対流熱を有効に受熱するようにして
製造することを特徴とする請求項18記載の高効率ター
ビンの製造方法。
24. A far infrared ray absorbing paint is applied to the heat receiving surface of the main body so that the radiant heat and the convective heat from the outside such as general combustion gas, the peripheral wall of the combustion chamber and solar heat are effectively received. The method for manufacturing a high efficiency turbine according to claim 18.
【請求項25】 本体凝縮部から蒸発部までの作動液の
通路に毛細管力を有するウイックを設けて作動液を凝縮
部から蒸発部に導き、蒸発させるごとく製造した請求項
18記載の高効率タービンの製造方法。
25. The high efficiency turbine according to claim 18, wherein a wick having a capillary force is provided in a passage for the working fluid from the main body condensing section to the evaporating section to guide the working fluid from the condensing section to the evaporating section and evaporate it. Manufacturing method.
【請求項26】 本体の内部は作動液および作動蒸気以
外の、作動液に対する活性ガスを除去して高真空とする
ようにして製造することを特徴とする請求項18記載の
高効率タービンの製造方法。
26. The manufacturing of a high efficiency turbine according to claim 18, wherein the inside of the main body is manufactured by removing active gases for the working liquid other than the working liquid and the working steam into a high vacuum. Method.
【請求項27】 第1段の各部分に於ける状態変化等に
より、各部分の作動液、作動蒸気の圧力、温度、非容
積、エンタルピ、エントロピ、定圧比熱、粘性係数、熱
伝導率、表面張力等の値は、その他の各段の各部分に於
いて、すべて同一であるようにして製造することを特徴
とする請求項18記載の高効率タービンの製造方法。
27. The pressure, temperature, non-volume, enthalpy, entropy, constant pressure specific heat, viscosity coefficient, thermal conductivity, surface of the working fluid and working steam in each part are changed by the state change in each part of the first stage. 19. The method of manufacturing a high efficiency turbine according to claim 18, wherein the values of the tension and the like are the same in each of the other stages.
【請求項28】 各段に設けた不活性ガス収納部の不活
性ガスの容積を変化させることにより凝縮部における凝
縮面積を調整し、作動液の復液量を制御して、単位時間
当たりの蒸発量を調整するとともに、各段、各部分の状
態値を同一とするようにして製造することを特徴とする
請求項18記載の高効率タービンの製造方法。
28. The condensing area in the condensing part is adjusted by changing the volume of the inert gas in the inert gas accommodating part provided in each stage, the condensing amount of the working liquid is controlled, and the unit time per unit time is controlled. The method for manufacturing a high-efficiency turbine according to claim 18, wherein the evaporation amount is adjusted, and the manufacturing process is performed so that the state value of each stage and each portion is the same.
【請求項29】 高効率タービンの蒸気温度が作動蒸気
の臨界温度を超えないようにして製造することを特徴と
する請求項18記載の高効率タービンの製造方法。
29. The method of manufacturing a high efficiency turbine according to claim 18, wherein the high efficiency turbine is manufactured so that the steam temperature does not exceed the critical temperature of the working steam.
【請求項30】 高効率タービンの作動液の温度が凝固
点温度以上の温度で使用するようにして製造することを
特徴とする請求項18記載の高効率タービンの製造方
法。
30. The method for producing a high efficiency turbine according to claim 18, wherein the high efficiency turbine is produced by using the working fluid at a temperature equal to or higher than the freezing point temperature.
【請求項31】 最終段における最終的に残った凝縮熱
を外部に捨てるために、ヒートパイプを使用して、凝縮
部の薄壁に接してヒートパイプの蒸発部を設け、ヒート
パイプの凝縮部を外部に設置して放熱するごとく製造し
たことを特徴とする請求項18記載の高効率タービンの
製造方法。
31. A heat pipe is used in order to dissipate the heat of condensation finally remaining in the final stage to the outside, and an evaporation part of the heat pipe is provided in contact with the thin wall of the condensation part. The method for manufacturing a high-efficiency turbine according to claim 18, characterized in that it is manufactured so as to be installed outside and radiate heat.
【請求項32】 常温で使用する作動液の原子あるいは
分子のクラスターの数が、10個またはそれ以下である
ようにして製造することを特徴とする請求項18記載の
高効率タービンの製造方法。
32. The method for manufacturing a high efficiency turbine according to claim 18, wherein the working fluid used at normal temperature is manufactured so that the number of atomic or molecular clusters is 10 or less.
【請求項33】 常温で使用する作動液のPHが弱アル
カリ性であるようにして製造することを特徴とする請求
項18記載の高効率タービンの製造方法。
33. The method of manufacturing a high efficiency turbine according to claim 18, wherein the working fluid used at room temperature has a pH that is weakly alkaline.
【請求項34】 凝縮部から蒸発部までの作動液の運搬
に使用するウイックが、作動液として水等を常温近辺で
使用する場合、高分子ポリマーの吸水性樹脂を使用する
ようにして製造することを特徴とする請求項18記載の
高効率タービンの製造方法。
34. When the wick used for transporting the working fluid from the condensing part to the evaporating part uses water or the like as a working fluid at around room temperature, it is manufactured by using a water-absorbing resin of a high molecular polymer. The method for manufacturing a high efficiency turbine according to claim 18, wherein:
JP4185792A 1992-06-19 1992-06-19 High-efficiency turbine and manufacture thereof Withdrawn JPH062507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4185792A JPH062507A (en) 1992-06-19 1992-06-19 High-efficiency turbine and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4185792A JPH062507A (en) 1992-06-19 1992-06-19 High-efficiency turbine and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH062507A true JPH062507A (en) 1994-01-11

Family

ID=16176979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4185792A Withdrawn JPH062507A (en) 1992-06-19 1992-06-19 High-efficiency turbine and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH062507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150251A (en) * 2007-12-19 2009-07-09 Toyota Central R&D Labs Inc Rankine cycle device using capillary force

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150251A (en) * 2007-12-19 2009-07-09 Toyota Central R&D Labs Inc Rankine cycle device using capillary force

Similar Documents

Publication Publication Date Title
US4118934A (en) Process and apparatus for transforming heat at a relatively low temperature into power or energy
US9528394B2 (en) Power generating apparatus and method of operating power generating apparatus
US20100154406A1 (en) Cooling tower apparatus and method with waste heat utilization
Schweigler et al. Flexible heat pump or chiller with hybrid water/LiBr absorption/compression cycle
US9964314B2 (en) Trigeneration energy supply system
JP4659601B2 (en) Energy supply system, energy supply method, and energy supply system remodeling method
US20200263927A1 (en) Method and apparatus for net zero-water power plant cooling and heat recovery
CN110068170B (en) Oil field waste heat utilization system based on absorption refrigeration
CN107882603A (en) Construct low-temperature receiver energy-recuperation system, heat engine system and energy reclaiming method
Sun Evaluation of a combined ejector–vapour‐compression refrigeration system
CN113775494A (en) Ocean thermoelectric generation cold seawater cascade utilization system
CN116641769A (en) Energy storage utilization system based on carbon dioxide working medium
Yapıcı et al. Experimental investigation on ejector cooling system performance at low generator temperatures and a preliminary study on solar energy
US6006538A (en) Air conditioner energy system
Baniasad Askari et al. Investigation of an ejector-cascaded vapor compression–absorption refrigeration cycle powered by linear Fresnel and organic Rankine cycle
JP2014005776A (en) Air conditioning power generation system
US20120279213A1 (en) Cooling tower apparatus and method with waste heat utilization
JPH062507A (en) High-efficiency turbine and manufacture thereof
KR0147912B1 (en) Power saving refrigerating apparatus using gas motor
CN213510756U (en) Small steam turbine driven soil source heat pump and cogeneration unit coupling system
Gjerasimovski et al. Thermal characteristics of combined compressor-ejector refrigeration/heat pump systems for HVAC&R
JP3520927B2 (en) Power generator
JPH09125913A (en) Total heat efficiency turbine
Al-Dabbas The Availability of Hybrid Nano Adsorption-Multi Stage Ejector Cooling Cycle with a Different Type of Steam Generator.
JP2001141286A (en) Heat recovery generating system and method of its operation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831