JPH06250740A - Digital positioning controller - Google Patents

Digital positioning controller

Info

Publication number
JPH06250740A
JPH06250740A JP3516893A JP3516893A JPH06250740A JP H06250740 A JPH06250740 A JP H06250740A JP 3516893 A JP3516893 A JP 3516893A JP 3516893 A JP3516893 A JP 3516893A JP H06250740 A JPH06250740 A JP H06250740A
Authority
JP
Japan
Prior art keywords
behavior
controlled object
control system
controlled
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3516893A
Other languages
Japanese (ja)
Inventor
Hidehiko Numasato
英彦 沼里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3516893A priority Critical patent/JPH06250740A/en
Publication of JPH06250740A publication Critical patent/JPH06250740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

PURPOSE:To provide stable positioning control at all times by providing a control system which is hardly influenced by disturbance variation. CONSTITUTION:This controller is equipped with a controlled system 9, an observation device which observes the controlled variable and state of the controlled system 9, and a subtracter 2 which calculates the deviation of the controlled variable, observed by the observation device, from a command, and controls the controlled system the deviation signal outputted by the subtracter 2. A digital control system which has an integral element is provided as the controller and the observation device observes the behavior of the controlled system which is converged on the command; and it is decided whether or not the behavior is within a previously set convergence behavior area and the value of the integral element is adjusted independently of integrating operation to converge the behavior of the controlled system into the area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、位置決め等のディジタ
ル制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digital controller for positioning or the like.

【0002】[0002]

【従来の技術】定常外乱が加わる対象を制御する場合
は、積分要素を前置補償器に含んだフィードバック制御
系を適用することが多い。しかし、定常外乱は厳密には
変動することが多く、制御系の応答にオーバシュートを
引き起こしたり、整定時間を長くする等の影響を及ぼ
す。一例として、位置決め制御を例にとる。高速かつ高
精度な位置決めを目的とするX−Yステージ等の移動体
の位置決め制御を行う場合は、一般に、大変位時には移
動体を理想的な剛体(質点系)或いは1次か2次の遅れ
系として設計した速度制御系を適用して目標とする速度
パターンに追従させ、目標値近傍で定常外乱である摩擦
を補償する積分要素を含む位置決め制御系に切り換え
て、位置決めを整定させることが多い。しかし、摩擦が
位置や経年によって変化するため、速度制御系から位置
制御系への切り換え時の移動体速度をばらつかせたり、
位置決め制御系の積分動作に外乱変動の影響を与え、オ
ーバシュート量や整定時間を一定に保つことが困難であ
った。
2. Description of the Related Art When controlling an object to which a steady disturbance is applied, a feedback control system including an integral element in a predistorter is often applied. However, the steady disturbance often fluctuates in a strict sense, and has an influence such as causing an overshoot in the response of the control system or lengthening the settling time. As an example, positioning control is taken as an example. When performing positioning control of a moving body such as an XY stage for the purpose of high-speed and highly accurate positioning, generally, the moving body is ideally rigid (mass system) or has a primary or secondary delay during large displacement. A speed control system designed as a system is applied to follow the target speed pattern, and the positioning is often settled by switching to a positioning control system that includes an integral element that compensates for friction that is a steady disturbance near the target value. . However, friction changes depending on the position and aging, so the speed of the moving body may vary when switching from the speed control system to the position control system,
It was difficult to keep the amount of overshoot and the settling time constant because of the influence of disturbance fluctuations on the integral operation of the positioning control system.

【0003】この問題点を解決する従来の方法として、
例えば、特開昭62−106510号公報がある。この従来例で
は、目標値の近傍で等速移動区間を設けることにより位
置決め制御系への切り換えの安定化,オーバシュート量
の低減を図り、さらに速度パターンにおける減速開始位
置を調整し、この等速移動区間の長さを一定にするよう
な学習機能を付加することにより、摩擦の変化等制御対
象の特性変動による影響を低減している。
As a conventional method for solving this problem,
For example, there is JP-A-62-106510. In this conventional example, a constant velocity movement section is provided near the target value to stabilize the switching to the positioning control system and reduce the amount of overshoot, and further adjust the deceleration start position in the velocity pattern. By adding a learning function that keeps the length of the moving section constant, the influence of characteristic changes of the controlled object such as changes in friction is reduced.

【0004】[0004]

【発明が解決しようとする課題】前述従来例では、目標
速度パターンに等速区間を設けているため、台形パター
ンの場合より位置決め整定時間が長くなる問題があっ
た。また、摩擦等の変動が大きい場合には学習機能が収
束しないことがあり得るし、収束するにしても一定の試
行回数が要求されることや、移動距離,場所等について
細かな学習データを作成するためには、膨大なメモリを
必要とする問題もある。
In the above-mentioned conventional example, since the constant velocity section is provided in the target velocity pattern, there is a problem that the positioning settling time becomes longer than in the case of the trapezoidal pattern. Also, if the fluctuations such as friction are large, the learning function may not converge, and even if it converges, a certain number of trials is required, and detailed learning data for moving distance, place, etc. is created. In order to do so, there is also a problem that a huge memory is required.

【0005】本発明の目的は、外乱変動の影響を受けに
くい制御系を実現することであり、位置決め制御を例に
とると、摩擦等の変動を補償してこの問題を解決し、常
に安定した位置決め制御を実現することにある。
An object of the present invention is to realize a control system that is not easily affected by disturbance fluctuations. Taking positioning control as an example, this problem is solved by compensating for fluctuations in friction and the like, and it is always stable. It is to realize positioning control.

【0006】[0006]

【課題を解決するための手段】上記目的は、制御対象の
制御量及び状態を観測する観測装置と、観測装置によっ
て観測した制御量と目標値との偏差を演算する減算器
と、前記減算器出力の偏差信号に基づき制御対象を制御
する制御装置において、制御装置として、積分要素を有
するディジタル制御系を設け、制御対象が目標値に収束
する挙動を観測装置により観測し、その挙動が予め設定
した収束挙動領域内か否かを判定し、積分動作とは別に
積分要素の値を調整し、制御対象の挙動を予め設定した
収束挙動領域内に拘束することにより達成される。ま
た、本手段を位置決め制御に適用すると、位置決めを行
う移動体と、移動体の位置を計測する位置計測装置と、
位置計測装置の出力と目標位置との偏差を演算する減算
器と、減算器出力の偏差信号に基づき移動体を制御する
制御装置と、制御装置出力である操作量に基づき移動体
を駆動する駆動装置において、制御装置として、積分要
素を有するディジタル制御系を設け、制御対象が目標位
置に収束する挙動が、予め設定した収束挙動領域内か否
か判定し、積分動作とは別に積分要素の値を調整し、移
動体の挙動を収束挙動領域内に拘束することにより達成
される。
The above object is to provide an observing device for observing a controlled variable and a state of a controlled object, a subtractor for calculating a deviation between a controlled variable and a target value observed by the observing device, and the subtractor. In a control device that controls a controlled object based on an output deviation signal, a digital control system having an integral element is provided as a control device, and the behavior of the controlled object converging to a target value is observed by an observation device, and the behavior is preset. It is achieved by determining whether or not it is in the convergent behavior region, adjusting the value of the integral element separately from the integral action, and constraining the behavior of the controlled object within the preset convergent behavior region. When this means is applied to positioning control, a moving body that performs positioning, a position measuring device that measures the position of the moving body,
A subtracter that calculates the deviation between the output of the position measuring device and the target position, a control device that controls the moving body based on the deviation signal of the subtractor output, and a drive that drives the moving body based on the manipulated variable that is the output of the control device. In the device, a digital control system having an integral element is provided as a control device, and it is determined whether or not the behavior of the controlled object converging to the target position is within a preset converging behavior region, and the value of the integral element is set separately from the integral operation. Is adjusted and the behavior of the moving body is restricted within the convergence behavior region.

【0007】[0007]

【作用】上記の手段を用いて制御を行うことにより、従
来技術における問題点を解決し、制御対象に加わる外乱
の変動を補償し、制御対象の収束挙動を常に一定に保つ
ことができる。
By performing the control using the above means, it is possible to solve the problems in the prior art, compensate for the fluctuation of the disturbance applied to the controlled object, and always keep the convergent behavior of the controlled object constant.

【0008】[0008]

【実施例】図1は、移動体の位置決め制御における本発
明の一実施例を示した制御系ブロック図である。図1に
おいて、目標値と、制御量である移動台の位置はそれぞ
れサンプラ1,サンプラ10によって同時にサンプリン
グされ、減算器2により目標値と移動体位置の偏差が演
算される。偏差はディジタル積分器3に入力され、ディ
ジタル積分器3の出力である積分値に積分ゲイン4を乗
算し、加算器5によって偏差と加算する。加算器5の出
力は、ループゲイン6を乗算された後、0次ホールド7
を介して制御対象9に操作量として加える。ここで、制
御対象9は移動体とその駆動装置を含んでおり、摩擦の
影響は加算器8に加わる等価外乱として考える。判定器
11は、制御対象の状態変数である移動体の速度と減算
器2の出力である偏差から、移動体の目標値への収束
が、偏差−速度の位相面上で予め設定された領域内(図
2を用いて後で説明する)で推移しているか否かを判定
する。判定の結果、収束挙動が領域外の場合は、切り換
え器12を端子12b側に切り換え、積分値をρ倍して
更新する。この時、スイッチ14をオフにしておけば積
分動作は完全に停止され、スイッチ14をオンにし、サ
ンプラ1,サンプラ10と同期させて切り換え器12を
端子12a側にした後、12b側に切り換えれば積分動
作を行いながら積分値をρ倍して更新することが出来
る。ここで、図1において、ディジタル積分器は後退差
分方式として実現したが、双1次変換,整合Z変換の手
法を用いて実現してもよい。また、制御対象の状態変数
はオブザーバを用いて推定したり、或いは速度に関して
は位置信号から後退差分等の近似微分手法を用いて求め
ることも考えられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram of a control system showing an embodiment of the present invention in positioning control of a moving body. In FIG. 1, the target value and the position of the moving table, which is the control amount, are simultaneously sampled by the sampler 1 and the sampler 10, respectively, and the subtractor 2 calculates the deviation between the target value and the moving body position. The deviation is input to the digital integrator 3, the integrated value which is the output of the digital integrator 3 is multiplied by the integration gain 4, and the adder 5 adds the deviation and the deviation. The output of the adder 5 is multiplied by the loop gain 6 and then the zero-order hold 7
Is added as an operation amount to the controlled object 9 via. Here, the controlled object 9 includes the moving body and its drive device, and the influence of friction is considered as an equivalent disturbance applied to the adder 8. The determiner 11 is an area in which the convergence of the velocity of the moving body, which is the state variable of the controlled object, and the deviation, which is the output of the subtractor 2, to the target value of the moving body is preset on the phase plane of the deviation-velocity. It is determined whether or not there is a transition (described later with reference to FIG. 2). If the result of determination is that the convergence behavior is outside the region, the switch 12 is switched to the terminal 12b side, and the integral value is multiplied by ρ and updated. At this time, if the switch 14 is turned off, the integration operation is completely stopped, the switch 14 is turned on, and the switch 12 is switched to the terminal 12a side in synchronization with the sampler 1 and the sampler 10, and then switched to the 12b side. For example, the integral value can be updated by multiplying by ρ while performing the integral operation. Here, in FIG. 1, the digital integrator is realized as a backward difference method, but it may be realized by using a method of bilinear conversion or matching Z conversion. It is also conceivable that the state variable to be controlled may be estimated using an observer, or the speed may be obtained from the position signal using an approximate differentiation method such as backward difference.

【0009】図2,図3に制御対象の位相面上の代表的
な挙動を示す。線形な1次遅れ系の収束挙動は、速度と
偏差が固有角周波数倍の比例関係となるため、位相面上
で原点を通る1次直線となる。また、実根を代表根とす
る2次遅れ系の収束挙動も同じようになる。しかし、従
来手法では、系に加わる外乱の変動等により、オーバー
シュートを起こして図3のような挙動を示すことがあ
る。そこで本発明では、図2に示すように、固有角周波
数の最大値ωmax と最小値ωmin を設定し、この両値を
傾きとする直線により挟まれた領域を設定収束挙動領域
として、実際の収束挙動がωmin を傾きとする直線を下
回った場合は、積分値をρ(ρ>1)倍し、実際の収束挙
動がωmax を傾きとする直線を越えた場合は、積分値を
ρ(ρ<1)倍することにより、設定収束挙動領域内に制
御対象の挙動を拘束することを図る。
2 and 3 show typical behaviors on the phase surface to be controlled. The convergence behavior of a linear first-order lag system is a first-order straight line that passes through the origin on the phase plane because the velocity and the deviation have a proportional relationship of the natural angular frequency times. In addition, the convergence behavior of the second-order lag system having the real root as the representative root becomes similar. However, in the conventional method, the behavior as shown in FIG. 3 may occur due to overshoot due to the fluctuation of the disturbance applied to the system. Therefore, in the present invention, as shown in FIG. 2, the maximum value ωmax and the minimum value ωmin of the natural angular frequency are set, and a region sandwiched by straight lines having these two values as slopes is set as a set convergence behavior region and the actual convergence is performed. If the behavior is below a straight line with ω min as the slope, the integral value is multiplied by ρ (ρ> 1). If the actual convergence behavior exceeds the straight line with ω max as the slope, the integral value is ρ (ρ <1 1) By doubling, the behavior of the controlled object is restrained within the set convergence behavior region.

【0010】図4,図5に制御対象の代表的な時間応答
を示す。図4,図5はそれぞれ図2,図3の位相面上の
挙動を時間領域に対応させており、本発明が、外乱変動
等によるオーバーシュートの発生を防ぐことを模式的に
示している。
4 and 5 show typical time responses of the controlled object. FIGS. 4 and 5 correspond the behaviors on the phase planes of FIGS. 2 and 3 to the time domain, and schematically show that the present invention prevents the occurrence of overshoot due to disturbance fluctuations and the like.

【0011】図6は、一定距離を移動して位置決めを行
うときの理想的な目標速度パターンである。図6におい
て、区間60aは最大加速区間、区間60bは最大速度
区間、区間60cは最大減速区間であり、一定距離を最
短時間で移動する。移動距離によっては区間60bが無
い場合もある。この理想的な目標速度パターンと速度制
御系を用いて一定距離を移動した後、目標値近傍の区間
60dで積分要素を含む位置決め制御系に切り換えて位
置決めする場合、摩擦変動等が速度制御系から位置制御
系への切り換え時の速度,位置制御系の積分動作に影響
を及ぼし、オーバーシュートを引き起こすことが多い。
そのため、例えば、特開昭62−106510号公報の従来例で
は、図7に示すように、目標位置近傍で等速移動区間7
0を設け、速度制御系から位置制御系への切り換え時の
移動体速度を一定にすることをねらっている。これによ
り、位置決め制御系への切り換えの安定化,オーバーシ
ュート量の低減を図り、さらに速度パターンにおける減
速開始点71を調整し、等速移動区間70の長さを一定
にするような学習機能を付加することにより、摩擦変動
等制御対象の特性変動による影響を低減している。しか
し、等速移動区間70を設けることにより、図6に示す
速度パターンを用いたときよりも位置決め時間を延ばす
恐れがある。これに対し、本発明を用いれば、区間60
dで用いる位置決め制御系での目標値への収束挙動を、
予め設定した収束挙動領域内に拘束するため、位置決め
制御系への切り換えの安定化,オーバーシュート量の低
減を目的とした等速区間70が不要となり、図6に示す
理想的な速度パターンを用い、位置決め時間短縮を実現
できる。
FIG. 6 shows an ideal target velocity pattern when moving a fixed distance to perform positioning. In FIG. 6, a section 60a is a maximum acceleration section, a section 60b is a maximum speed section, and a section 60c is a maximum deceleration section, which moves a fixed distance in the shortest time. Depending on the moving distance, the section 60b may not exist. After moving a certain distance using this ideal target speed pattern and speed control system, when switching is performed to the positioning control system including the integral element in the section 60d near the target value and positioning is performed, friction fluctuations and the like from the speed control system When switching to the position control system, the speed and the integral operation of the position control system are affected, and overshoot often occurs.
Therefore, for example, in the conventional example of Japanese Patent Laid-Open No. 62-106510, as shown in FIG.
By setting 0, the speed of the moving body at the time of switching from the speed control system to the position control system is made constant. This stabilizes the switching to the positioning control system, reduces the amount of overshoot, further adjusts the deceleration start point 71 in the speed pattern, and provides a learning function for keeping the length of the constant velocity movement section 70 constant. By adding them, the influence of the characteristic variation of the controlled object such as the friction variation is reduced. However, by providing the constant velocity movement section 70, the positioning time may be extended as compared with the case where the velocity pattern shown in FIG. 6 is used. On the other hand, according to the present invention, the section 60
The convergence behavior to the target value in the positioning control system used in d is
Since it is constrained within the preset convergence behavior region, the constant velocity section 70 for stabilizing the switching to the positioning control system and reducing the overshoot amount becomes unnecessary, and the ideal velocity pattern shown in FIG. 6 is used. The positioning time can be shortened.

【0012】[0012]

【発明の効果】本発明によれば、制御対象の挙動が予め
設定した収束領域内に拘束し、摩擦等の外乱の変動によ
る影響を抑えることができるので、常に一定なディジタ
ル位置決め制御装置を提供することができる。
According to the present invention, the behavior of the controlled object can be constrained within a preset convergence region, and the influence of fluctuations of disturbance such as friction can be suppressed, so that a digital positioning control device that is always constant is provided. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による制御系のブロック図。FIG. 1 is a block diagram of a control system according to the present invention.

【図2】本発明による制御対象の位相面上の挙動を示す
特性図。
FIG. 2 is a characteristic diagram showing a behavior of a controlled object on a phase surface according to the present invention.

【図3】従来手法による制御対象の位相面上の挙動を示
す特性図。
FIG. 3 is a characteristic diagram showing a behavior of a controlled object on a phase surface by a conventional method.

【図4】本発明による制御対象の時間応答の特性図。FIG. 4 is a characteristic diagram of a time response of a controlled object according to the present invention.

【図5】従来手法による制御対象の時間応答の特性図。FIG. 5 is a characteristic diagram of a time response of a control target according to a conventional method.

【図6】理想的な目標速度パターンの説明図。FIG. 6 is an explanatory diagram of an ideal target speed pattern.

【図7】従来手法による目標速度パターンの説明図。FIG. 7 is an explanatory diagram of a target speed pattern according to a conventional method.

【符号の説明】[Explanation of symbols]

1…サンプラ、2…減算器、3…ディジタル積分器、4
…積分ゲイン、5…加算器、6…ループゲイン、7…0
次ホールド、8…加算器、9…制御対象、10…サンプ
ラ、11…判定器、12…切り換え器、13…積分値更
新ゲイン、14…スイッチ。
1 ... Sampler, 2 ... Subtractor, 3 ... Digital integrator, 4
... integral gain, 5 ... adder, 6 ... loop gain, 7 ... 0
Next hold, 8 ... Adder, 9 ... Control object, 10 ... Sampler, 11 ... Judgment device, 12 ... Switching device, 13 ... Integral value update gain, 14 ... Switch.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】制御対象と、前記制御対象の制御量及び状
態を観測する観測装置と、前記観測装置によって観測し
た前記制御量と目標値との偏差を演算する減算器と、前
記減算器の出力の偏差信号に基づき前記制御対象を制御
する制御装置において、 前記制御装置として、積分要素を有するディジタル制御
系を設け、 前記制御対象が前記目標値に収束する挙動を前記観測装
置により観測し、前記収束挙動が予め設定した収束挙動
領域内か否かを判定し、積分動作とは別に積分要素の値
を調整し、前記制御対象の収束挙動を前記収束挙動領域
内に拘束することを特徴とするディジタル位置決め制御
装置。
1. A controlled object, an observing device for observing a controlled variable and a state of the controlled object, a subtractor for calculating a deviation between the controlled variable and the target value observed by the observing device, and a subtracter for the subtractor. In a control device for controlling the controlled object based on an output deviation signal, as the control device, a digital control system having an integral element is provided, and the behavior of the controlled object converging to the target value is observed by the observation device, It is determined whether or not the convergence behavior is within a preset convergence behavior region, the value of the integration element is adjusted separately from the integration action, and the convergence behavior of the controlled object is constrained within the convergence behavior region. Digital positioning control device.
JP3516893A 1993-02-24 1993-02-24 Digital positioning controller Pending JPH06250740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3516893A JPH06250740A (en) 1993-02-24 1993-02-24 Digital positioning controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3516893A JPH06250740A (en) 1993-02-24 1993-02-24 Digital positioning controller

Publications (1)

Publication Number Publication Date
JPH06250740A true JPH06250740A (en) 1994-09-09

Family

ID=12434344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3516893A Pending JPH06250740A (en) 1993-02-24 1993-02-24 Digital positioning controller

Country Status (1)

Country Link
JP (1) JPH06250740A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000069581A1 (en) * 1999-05-18 2000-11-23 Kabushiki Kaisha Yaskawa Denki Wire bending machine and bending method
JP2014203365A (en) * 2013-04-08 2014-10-27 オムロン株式会社 Control system and control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000069581A1 (en) * 1999-05-18 2000-11-23 Kabushiki Kaisha Yaskawa Denki Wire bending machine and bending method
JP2014203365A (en) * 2013-04-08 2014-10-27 オムロン株式会社 Control system and control method

Similar Documents

Publication Publication Date Title
EP0311127B1 (en) Control device for servo motor
US7638965B2 (en) Motor control apparatus
KR20020091840A (en) Positioning servocontroller
CA2057237C (en) Sliding mode control system
JP2861277B2 (en) Positioning control device and positioning control method
US20050052149A1 (en) Position controller of feed shaft
JPH06250740A (en) Digital positioning controller
US20080111514A1 (en) Servo Control Apparatus
JP3943061B2 (en) Servo control device
JPH086603A (en) Adjusting method for servo system and its servo controller
JP4452367B2 (en) Position control device
JPH0378806A (en) Multi-function type controller
JP2001356822A (en) Position controller
EP1164448A2 (en) Control apparatus
JP3324482B2 (en) Position control device
JPH07111642B2 (en) Sliding mode control method
JP2681969B2 (en) Coulomb friction compensation method by variable structure system
JP4036520B2 (en) Simple adaptive controller
JP4300384B2 (en) Positioning servo controller
KR100794893B1 (en) Motor control apparatus
JPH10161706A (en) Simply adaptive controller
JPH10247116A (en) Fine positioning device, mechanism therefor and its controller
JPH05181537A (en) Method and device for sliding mode control
JP3200956B2 (en) Motor control device
JPH0876811A (en) Process controller