JPH06250193A - Spacer for liquid crystal display plate and its production - Google Patents

Spacer for liquid crystal display plate and its production

Info

Publication number
JPH06250193A
JPH06250193A JP4016193A JP4016193A JPH06250193A JP H06250193 A JPH06250193 A JP H06250193A JP 4016193 A JP4016193 A JP 4016193A JP 4016193 A JP4016193 A JP 4016193A JP H06250193 A JPH06250193 A JP H06250193A
Authority
JP
Japan
Prior art keywords
fine particles
liquid crystal
spacer
crystal display
siloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4016193A
Other languages
Japanese (ja)
Other versions
JP3187592B2 (en
Inventor
Yasuhiro Sakai
保宏 酒井
Tadahiro Yoneda
忠弘 米田
Saburo Nakahara
三郎 中原
Hideki Oishi
秀樹 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP04016193A priority Critical patent/JP3187592B2/en
Publication of JPH06250193A publication Critical patent/JPH06250193A/en
Application granted granted Critical
Publication of JP3187592B2 publication Critical patent/JP3187592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the spacer for a liquid crystal display plate having the hardness between the particulates of the calcined matter of silica and the particulates of a polymer and having the mechanical restitutive property necessary for holding a uniform and specified spacing distance in combination and the process for production of such spacer. CONSTITUTION:This spacer for the liquid crystal display plate is the org. material-siloxane composite spherical particulate consisting of an org. compd. which is chemically bondable with a silanol group and is bonded within and on the particulate. The compsn. ratio of the org. compd. and siloxane in the particulate is in a C:Si=10:90 to 50:50 range when the amt. of the org. compd. is expressed by the molar number of total carbon and the amt. of the siloxane by the molar number of Si. and the process for production of such spacer is mentioned above.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、粒子径が非常に揃っ
た有機質−シロキサン複合体球状微粒子からなる新規な
液晶表示板用スペーサーおよびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel spacer for a liquid crystal display panel, which is composed of organic-siloxane composite spherical fine particles having a very uniform particle diameter, and a method for producing the same.

【0002】[0002]

【従来の技術】液晶表示板は、2枚の対向する電極基板
間にスペーサーを介在させ、その隙間に液晶物質を挟み
込んで構成されている。スペーサーは、液晶層の厚みを
均一かつ一定に保つために使用され、液晶層中の面内ス
ペーサーおよび周辺接着シール材中のシール部スペーサ
ーとして使用されるものである。
2. Description of the Related Art A liquid crystal display panel is constructed by interposing a spacer between two opposing electrode substrates and sandwiching a liquid crystal substance in the gap. The spacer is used to keep the thickness of the liquid crystal layer uniform and constant, and is used as an in-plane spacer in the liquid crystal layer and a seal portion spacer in the peripheral adhesive sealing material.

【0003】一般に、液晶表示板用スペーサーは非常に
高価であるため、その使用量はできるだけ少量であるこ
とが望ましい。特に、液晶物質と直接接触する面内スペ
ーサーの使用に際しては、液晶表示板の表示性能に悪影
響を及ぼすようなイオンや分子等のスペーサー内部から
液晶中への溶出を最小限にするために、その使用量はで
きる限り少なくしなければならない。
Generally, spacers for liquid crystal display panels are very expensive, so it is desirable that the spacers be used in a minimum amount. In particular, when using an in-plane spacer that is in direct contact with the liquid crystal substance, in order to minimize elution of ions and molecules from the interior of the spacer into the liquid crystal that adversely affects the display performance of the liquid crystal display plate, The amount used should be as low as possible.

【0004】また、液晶表示板の実用に際して要求され
る表示性能として、一般に、高速応答性、高コントラス
ト性、広視野角性等が挙げられる。これら諸性能の実現
のためには、液晶層の厚み、つまり、2枚の電極基板の
隙間距離を厳密に一定に保持しなければならない。この
ような要望に応じた液晶表示板用スペーサーとしては、
ゾル−ゲル法で製造したシリカ微粒子(特開昭62−2
69933号公報)、前記シリカ微粒子を焼成したもの
(特開平1−234826号公報)、スチレン系単量体
等を懸濁重合させて得られるポリマー微粒子等があり、
いずれも、粒子径分布が非常に揃った球状微粒子であ
る。
In addition, the display performance required for practical use of the liquid crystal display plate generally includes high-speed response, high contrast and wide viewing angle. In order to realize these various performances, the thickness of the liquid crystal layer, that is, the gap distance between the two electrode substrates must be kept strictly constant. As a spacer for a liquid crystal display board in response to such a request,
Silica fine particles produced by the sol-gel method (JP-A-62-2
69933), those obtained by firing the silica fine particles (Japanese Patent Laid-Open No. 1-234826), polymer fine particles obtained by suspension polymerization of styrene-based monomers, and the like.
All of them are spherical fine particles having a very uniform particle size distribution.

【0005】従来、ゾル−ゲル法で製造されるシリカ微
粒子を液晶表示板用スペーサーに応用するに際し、前記
微粒子の電極基板上への散布性を向上させるために、ま
たは、前記微粒子表面での液晶物質の配向不良の発生を
抑制するために、アルコール類、カップリング剤等で微
粒子の表面処理をする工夫がされていた(特開昭62−
269933号公報)。
Conventionally, when silica fine particles produced by the sol-gel method are applied to a spacer for a liquid crystal display panel, in order to improve the dispersibility of the fine particles on an electrode substrate, or on the surface of the fine particles. In order to suppress the occurrence of poor orientation of the substance, the surface treatment of the fine particles has been devised with alcohols, coupling agents, etc. (Japanese Patent Laid-Open No. 62-62-62).
269933).

【0006】[0006]

【発明が解決しようとする課題】しかし、従来技術で
は、次のような問題点があり、微粒子の硬さや機械的復
元性を制御し得る液晶表示板用スペーサーを得ることは
できなかった。 (1)シリカ焼成物微粒子は変形性が乏しく、粒子径分
布が直接的に隙間距離の不均一性に影響し、画像のムラ
が発生しやすい。さらに、この微粒子は、素材として非
常に硬いために、基板上の電極等の蒸着層、配向膜、カ
ラーフィルター等のコート層に物理的損傷を与える問題
がある。また、この微粒子を用いた液晶表示板が、たと
えば、−40℃の低温環境に曝された場合、液晶と微粒
子との熱膨張係数の差が大きいため、液晶層と電極基板
との間に空隙が生じて表示機能が全く作動しないとい
う、いわゆる低温発泡の問題を生じる。
However, in the prior art, the following problems were encountered, and it was not possible to obtain a spacer for a liquid crystal display panel capable of controlling the hardness and mechanical restoration of fine particles. (1) The fine particles of calcined silica are poor in deformability, the particle size distribution directly affects the nonuniformity of the gap distance, and image unevenness is likely to occur. Further, since these fine particles are very hard as a material, there is a problem that they give physical damage to vapor deposition layers such as electrodes on substrates, alignment films, and coat layers such as color filters. Further, when a liquid crystal display panel using the fine particles is exposed to a low temperature environment of, for example, −40 ° C., a large difference in thermal expansion coefficient between the liquid crystal and the fine particles causes a gap between the liquid crystal layer and the electrode substrate. Occurs, and the display function does not work at all, causing a problem of so-called low temperature foaming.

【0007】(2)未焼成のシリカ微粒子は、焼成品と
比べて硬さは改良されるが、機械的復元性に劣るため、
シリカ焼成物微粒子と同様に画像のムラが発生しやす
く、低温発泡の問題がある。 (3)スチレン系ポリマー微粒子は、素材として非常に
柔らかいがゆえに、電極基板隙間距離の微調節が非常に
困難である。たとえば、通常、隙間距離の調節は、2枚
の対向する電極基板間に、シール部スペーサーを分散さ
せた周辺シール材および面内スペーサーを挟持した状態
で、両電極基板の固定のために接着シール材の硬化温度
で両基板をホットプレスする工程において行われる。し
かし、スチレン系ポリマー微粒子は非常に柔らかいため
に、前記工程だけで均一に一定の隙間距離を達成するこ
とは極めて困難であり、再度両基板を室温にまで戻した
後に、コールドプレスにより隙間距離を微調製するとい
う余分な工程が必要となる。
(2) The unfired silica fine particles have improved hardness as compared with the fired product, but are inferior in mechanical restoration property.
Similar to fine particles of calcined silica, image unevenness easily occurs and there is a problem of low temperature foaming. (3) Since the styrene-based polymer fine particles are very soft as a material, it is very difficult to finely adjust the gap distance between the electrode substrates. For example, usually, the gap distance is adjusted by sandwiching the peripheral sealing material in which the seal part spacers are dispersed and the in-plane spacer between two opposing electrode substrates, and then adhesive seals for fixing both electrode substrates. This is performed in the process of hot pressing both substrates at the curing temperature of the material. However, since the styrene-based polymer particles are very soft, it is extremely difficult to achieve a uniform gap distance only in the above step.After returning both substrates to room temperature again, the gap distance is cold-pressed. An extra step of fine adjustment is required.

【0008】さらに、この有機微粒子は非常に柔らかい
ために、隙間距離を均一に一定に保持するためには、微
粒子の散布個数を多くせざるを得ない。そのために、製
造コストの上昇を招くばかりでなく、画像を形成しない
部分の面積が結果として増加し、さらに、イオン、分子
等の不純物がスペーサー内部から液晶層中へ溶出する量
も増加することにより、コントラストの低下、ざらつき
の増加等の諸表示品位を低下させる原因となる。
Further, since the organic fine particles are very soft, in order to keep the gap distance uniformly, it is necessary to increase the number of dispersed fine particles. As a result, not only does the manufacturing cost increase, but the area of the part that does not form an image increases as a result, and the amount of impurities such as ions and molecules eluted from the interior of the spacer into the liquid crystal layer also increases. It causes deterioration of various display qualities such as deterioration of contrast and increase of roughness.

【0009】したがって、この発明は、シリカの焼成物
微粒子とポリマー微粒子の間の硬さを持ち、かつ、均一
に一定の隙間距離を保持するために必要な機械的復元性
を併せ持った液晶表示板用スペーサーおよびその製造方
法を提供することを課題とする。
Therefore, according to the present invention, a liquid crystal display panel having a hardness between the fine particles of the calcined product of silica and the fine particles of the polymer and also having the mechanical restoring property necessary for maintaining a uniform gap distance. An object of the present invention is to provide a spacer and a method for manufacturing the spacer.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、この発明にかかる液晶表示板用スペーサーは、シラ
ノール基と化学結合可能な有機化合物が微粒子の内部お
よび表面に結合した有機質−シロキサン複合体球状微粒
子であって、前記微粒子中の有機化合物とシロキサンの
組成比が、有機化合物の量を全炭素のモル数、シロキサ
ンをSiのモル数で表して、C:Si=10:90〜5
0:50の範囲であることを特徴とする。
In order to solve the above-mentioned problems, a spacer for a liquid crystal display panel according to the present invention is an organic-siloxane complex in which an organic compound capable of chemically bonding with a silanol group is bonded inside and on the surface of fine particles. Spherical fine particles, wherein the composition ratio of the organic compound and the siloxane in the fine particles is such that the amount of the organic compound is represented by the number of moles of total carbon and the siloxane is represented by the number of moles of Si, and C: Si = 10: 90-5.
It is characterized in that the range is 0:50.

【0011】この発明でいうシラノール基と化学結合可
能な有機化合物とは、下記化1で表されるシロキサンの
最小構成単位中に存在する、下記化2で表されるシラノ
ール基と化学結合の生成が可能な官能基を有する有機化
合物であれば、特に限定はされない。
The organic compound which can be chemically bonded to the silanol group in the present invention means the formation of a chemical bond with the silanol group represented by the following chemical formula 2 present in the minimum constitutional unit of siloxane represented by the following chemical formula 1. There is no particular limitation as long as it is an organic compound having a functional group capable of

【0012】[0012]

【化1】 [Chemical 1]

【0013】[0013]

【化2】 [Chemical 2]

【0014】この有機化合物として、具体的には、アル
コール性水酸基、エポキシ基、アミノ基、カルボキシル
基、イソシアネート基等を有する有機化合物等、一般
に、シラノール基との反応性が高い官能基を持った有機
化合物が挙げられる。好ましくは、一価アルコール類、
二価以上の多価アルコール類、より好ましくは、炭素数
1から10の上記アルコールが用いられる。中でも、下
記一般式化3で表される多価アルコールが特に好まし
い。
As the organic compound, specifically, an organic compound having an alcoholic hydroxyl group, an epoxy group, an amino group, a carboxyl group, an isocyanate group, or the like, generally has a functional group highly reactive with a silanol group. Organic compounds are mentioned. Preferably, monohydric alcohols,
A polyhydric alcohol having a valence of 2 or more is used, and more preferably, the above alcohol having 1 to 10 carbon atoms is used. Among them, the polyhydric alcohol represented by the following general formula 3 is particularly preferable.

【0015】[0015]

【化3】 [Chemical 3]

【0016】(式中、Rはメチル基または水素、nは1
〜10の整数を表す。)これらの有機化合物は、単独で
用いても2種以上の混合物として用いてもよい。この発
明の複合体球状微粒子中の有機化合物とシロキサンの組
成比は、有機化合物の量を全炭素のモル数、シロキサン
をSiのモル数で表して、C:Si=10:90〜5
0:50の範囲である必要がある。この割合よりも有機
化合物が少ない場合には、十分な機械的復元性が得られ
ず、必要以上に硬い粒子となる。この割合よりも有機化
合物が多い場合には、必要以上に柔らかい粒子となる。
(In the formula, R is a methyl group or hydrogen, and n is 1
Represents an integer of -10. ) These organic compounds may be used alone or as a mixture of two or more kinds. The composition ratio of the organic compound and the siloxane in the composite spherical fine particles of the present invention is C: Si = 10: 90-5, where the amount of the organic compound is the total number of moles of carbon and the siloxane is the number of moles of Si.
It should be in the range of 0:50. When the amount of the organic compound is less than this ratio, sufficient mechanical restorability cannot be obtained and the particles become harder than necessary. When the amount of the organic compound is larger than this ratio, the particles become softer than necessary.

【0017】複合体球状微粒子の表面状態は、できるだ
け平滑であることが好ましい。特に多孔質粒子の場合に
は、細孔内部に吸着水分等の液晶表示板の表示性能に悪
影響を及ぼすようなイオン、分子等が吸着しやすくなる
ために好ましくない。また、複合体球状微粒子の電極基
板上への散布性を向上させるために、または、複合体球
状微粒子表面での液晶物質の配向不良を抑制するため
に、あるいは他の目的で、カップリング剤等従来公知の
表面改質処理を施してスペーサーとして使用してもよ
い。
The surface state of the composite spherical fine particles is preferably as smooth as possible. Particularly, in the case of porous particles, it is not preferable because ions, molecules and the like which have a bad influence on the display performance of the liquid crystal display plate, such as adsorbed water, are easily adsorbed inside the pores. Further, in order to improve the dispersibility of the composite spherical fine particles on the electrode substrate, or to suppress the alignment failure of the liquid crystal substance on the surface of the composite spherical fine particles, or for other purposes, a coupling agent or the like. It may be used as a spacer after subjected to a conventionally known surface modification treatment.

【0018】また、この発明にかかる液晶表示板用スペ
ーサーの製造方法は、加水分解可能なシリコン化合物を
水を含む有機性溶媒中で加水分解縮合して得られる球状
シリカ水和物微粒子を、シラノール基と化学結合可能な
有機化合物の存在下で加熱する。この発明の複合体球状
微粒子を得るための方法は、特に限定はされず、複合体
球状微粒子中の有機化合物とシロキサンの組成比が、有
機化合物の量を全炭素のモル数、シロキサンをSiのモ
ル数で表して、C:Si=10:90〜50:50の範
囲となるような、いかなる方法によって製造してもよ
い。
Further, the method for producing a spacer for a liquid crystal display panel according to the present invention is characterized in that spherical silica hydrate fine particles obtained by hydrolyzing and condensing a hydrolyzable silicon compound in an organic solvent containing water are treated with silanol. Heat in the presence of an organic compound capable of chemically bonding to the group. The method for obtaining the composite spherical fine particles of the present invention is not particularly limited, and the composition ratio of the organic compound and siloxane in the composite spherical fine particles is such that the amount of the organic compound is the total number of moles of carbon and the siloxane is Si. It may be produced by any method such that C: Si is in the range of 10:90 to 50:50 in terms of the number of moles.

【0019】具体的な製造方法としては、たとえば、加
水分解可能なシリコン化合物を水を含む有機性溶媒中で
加水分解縮合して球状シリカ水和物微粒子スラリーをま
ず合成し、次いで、スラリー状の前記微粒子をシラノー
ル基と化学結合可能な前述の有機化合物の存在下で加熱
処理した後、微粒子を単離する方法を挙げることができ
る。球状シリカ水和物微粒子の合成において、種粒子を
合成系に仕込んでおいてもよい。加熱処理の条件(温
度、時間等)を選定することによって、有機化合物とシ
ロキサンの組成比が上述の範囲で任意に製造し得る。
As a specific production method, for example, a hydrolyzable silicon compound is hydrolyzed and condensed in an organic solvent containing water to first synthesize a spherical silica hydrate fine particle slurry, and then a slurry-like slurry is prepared. A method of isolating the fine particles after heat-treating the fine particles in the presence of the above-mentioned organic compound capable of chemically bonding with a silanol group can be mentioned. In the synthesis of spherical silica hydrate fine particles, seed particles may be charged in the synthesis system. By selecting the heat treatment conditions (temperature, time, etc.), the composition ratio of the organic compound and siloxane can be arbitrarily produced within the above range.

【0020】スペーサーに用いられる微粒子の硬さおよ
び機械的復元性は、下記測定方法により測定することが
できる。島津微小圧縮試験機(株式会社島津製作所製M
CTM−200)により、室温において、試料粒子1個
について直径50μmの円形平板圧子を用いて、粒子の
中心方向へ一定の負荷速度で徐々に荷重をかけ、圧縮変
位が粒子径の20%となるまで粒子を変形させる。その
後すぐに、負荷時と同じ速度で徐々に除荷し、最終的に
荷重が0となるまで除荷を行う。この操作を同一素材の
異なる3個の粒子について行い、次式に従い、20%変
形時の荷重の大きさの平均値を単位直径で規格化した値
をもって、その粒子の硬さとする。そして、除荷後、荷
重を0としたときに、なお粒子に残留する変形の大きさ
(以下、「残留変位」と呼ぶ)の粒子径に対する百分率
の平均値をもって、その粒子の機械的復元性の尺度とし
た。
The hardness and mechanical recoverability of the fine particles used for the spacer can be measured by the following measuring methods. Shimadzu micro compression tester (M manufactured by Shimadzu Corporation
CTM-200), at room temperature, using a circular flat plate indenter having a diameter of 50 μm for one sample particle, a load is gradually applied toward the center of the particle at a constant load speed, and the compression displacement becomes 20% of the particle diameter. Deform the particles up to. Immediately thereafter, the load is gradually removed at the same speed as when the load is applied, and the load is finally removed until the load becomes zero. This operation is performed for three different particles of the same material, and the hardness of the particles is defined as the value obtained by normalizing the average value of the load magnitude at 20% deformation by the unit diameter according to the following equation. Then, after the unloading, when the load is set to 0, the mechanical resilience of the particles is determined by the average value of the percentage of the size of the deformation remaining in the particles (hereinafter referred to as “residual displacement”) with respect to the particle diameter. Was used as a scale.

【0021】H=F/R2 H:試料粒子の硬さ(kg/mm2 ) F:圧縮荷重(kg) R:粒子の直径(mm) 従来のスペーサー微粒子の硬さを上記の値で表した場
合、シリカ焼成微粒子は130kg/mm2 、スチレン系ポ
リマー微粒子は92kg/mm2 であったが、この発明によ
れば、20〜70kg/mm2 の範囲で任意に硬さの調製さ
れた複合体球状微粒子が得られる。一方、機械的復元性
を上記の値で表した場合、未焼成のシリカ微粒子は残留
変位が13%であったが、この発明によれば、0〜10
%の範囲で任意の残留変位を有する微粒子が得られる。
H = F / R 2 H: hardness of sample particles (kg / mm 2 ) F: compression load (kg) R: diameter of particles (mm) Hardness of conventional spacer fine particles is represented by the above value In this case, the calcined silica fine particles were 130 kg / mm 2 and the styrene-based polymer fine particles were 92 kg / mm 2 , but according to the present invention, a composite having a hardness arbitrarily adjusted in the range of 20 to 70 kg / mm 2 was used. Spherical fine particles are obtained. On the other hand, when the mechanical recoverability is represented by the above value, the unsintered silica fine particles had a residual displacement of 13%.
Fine particles having any residual displacement in the range of% are obtained.

【0022】硬さおよび機械的復元性の程度は、有機化
合物とシロキサンの組成比を調節することにより達成さ
れる。この発明の複合体球状微粒子の平均粒子径は、目
的とする隙間距離の大きさによって任意に製造すること
ができるが、通常、0.5〜20μmが好ましく、1〜
10μmであることがより好ましい。
The degree of hardness and mechanical resilience is achieved by adjusting the composition ratio of the organic compound and the siloxane. The average particle size of the composite spherical fine particles of the present invention can be arbitrarily produced depending on the size of the target gap distance, but is usually preferably 0.5 to 20 μm,
More preferably, it is 10 μm.

【0023】また、粒子径の均一さとしては、隙間距離
の均一性の面から、粒子径の変動係数が20%以下であ
ることが好ましく、10%以下であることがより好まし
い。粒子径の変動係数は以下の式で定義される。 粒子径の変動係数(%)=(σ/X)×100 σ:粒子径の標準偏差 X:平均粒子径 この発明において、スペーサーとして複合体球状微粒子
を用いた液晶表示板の作製方法としては、複合体球状微
粒子を2枚の電極基板のうち一方の電極基板に湿式法ま
たは乾式法により均一に散布したものに、複合体球状微
粒子をエポキシ樹脂等の接着シール材に分散させた後も
う一方の電極基板の接着シール部分にスクリーン印刷な
どの手段により塗布したものを乗せ、適度の圧力を加
え、100〜150℃の温度で30〜60分間加熱し、
接着シール材を加熱硬化させた後、液晶を注入して、液
晶表示板を得る方法を挙げることができるが、液晶表示
板の作製方法によってこの発明が限定されるものではな
い。
As for the uniformity of the particle diameter, the coefficient of variation of the particle diameter is preferably 20% or less, more preferably 10% or less, from the viewpoint of the uniformity of the gap distance. The coefficient of variation of particle size is defined by the following formula. Coefficient of variation of particle diameter (%) = (σ / X) × 100 σ: standard deviation of particle diameter X: average particle diameter In the present invention, a method for producing a liquid crystal display panel using composite spherical fine particles as a spacer includes: The composite spherical fine particles are uniformly dispersed on one of the two electrode substrates by a wet method or a dry method, and then the composite spherical fine particles are dispersed in an adhesive sealing material such as an epoxy resin and then the other electrode substrate is dispersed. Place the one coated by means such as screen printing on the adhesive seal part of the electrode substrate, apply an appropriate pressure, and heat at a temperature of 100 to 150 ° C. for 30 to 60 minutes,
A method of obtaining a liquid crystal display plate by injecting liquid crystal after the adhesive sealing material is cured by heating can be mentioned, but the present invention is not limited by the method of manufacturing the liquid crystal display plate.

【0024】[0024]

【作用】この発明の複合体球状微粒子の化学構造は、微
視的には、シラノール基と化学結合可能な有機化合物の
分子と、シロキサンの構造単位であるSiO4 四面体と
から構成され、それらがお互いにランダムな結合角をも
って化学結合した構造を有する非晶質固体である。この
複合体球状微粒子は、微粒子中に結合した有機化合物
が、微粒子の半径方向に均一またはある連続的分布を持
って微粒子の内部および表面に分布するものであり、い
わゆるコアーシェル型球状微粒子のように、コアとなる
材料またはシェルとなる材料の粒子の半径方向の分布が
不連続であるものとは明確に区別される。このように、
この発明の複合体球状微粒子は、有機質と無機質が、微
粒子の半径方向に均一またはある連続的分布を持って微
粒子の内部および表面に分布しているため、機械的復元
性が良い。
Microscopically, the chemical structure of the composite spherical fine particles of the present invention is composed of a molecule of an organic compound capable of chemically bonding with a silanol group and a SiO 4 tetrahedron which is a structural unit of siloxane. Are amorphous solids having a structure in which they are chemically bonded to each other at random bond angles. This composite spherical fine particle is one in which the organic compound bound in the fine particle is distributed inside and on the surface of the fine particle with a uniform or a certain continuous distribution in the radial direction of the fine particle. , The core material or the shell material is clearly distinguished from the discontinuous radial distribution of particles. in this way,
The composite spherical fine particles according to the present invention have good mechanical restitution since the organic substance and the inorganic substance are distributed in the fine particles in the radial direction of the fine particles in a uniform or continuous distribution.

【0025】また、この発明の複合体球状微粒子は、有
機質と無機質が混在しているため、硬さが適当になり、
液晶表示板用スペーサーとして用いた場合に、2枚の電
極基板の隙間距離を一定に保つことができ、電極基板表
面を傷つけることもない。さらに、この発明の複合体球
状微粒子は、球状シリカ水和物微粒子の懸濁液中で有機
化合物を反応させて得ているため、粒子径が非常に揃っ
ている。
Further, since the composite spherical fine particles of the present invention are a mixture of an organic substance and an inorganic substance, the hardness becomes appropriate,
When used as a spacer for a liquid crystal display panel, the gap distance between the two electrode substrates can be kept constant, and the surface of the electrode substrates is not damaged. Furthermore, since the composite spherical fine particles of the present invention are obtained by reacting an organic compound in a suspension of spherical silica hydrate fine particles, the particle diameters are very uniform.

【0026】[0026]

【実施例】以下に、この発明の実施例を示すが、この発
明は下記実施例に限定されない。 −実施例1− 攪拌機、滴下口および温度計を備えた2lのガラス製反
応器に、メタノール470重量部、25%アンモニア水
360重量部および種粒子として平均粒子径1.2μm
の球状シリカ水和物粒子10重量部を添加して均一に混
合した。この混合液を35±0.5℃に調整して均一に
攪拌しながら、メタノール256重量部にエチルシリケ
ート507重量部を溶解した液を滴下口より5時間かけ
て滴下した。滴下後も1時間均一に攪拌を続け、加水分
解、縮合を行い、球状シリカ水和物微粒子の懸濁体
(A)を得た。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited to the following examples. -Example 1-In a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer, 470 parts by weight of methanol, 360 parts by weight of 25% ammonia water and an average particle diameter of 1.2 μm as seed particles.
10 parts by weight of the spherical hydrated silica particles were added and uniformly mixed. The liquid mixture prepared by dissolving 507 parts by weight of ethyl silicate in 256 parts by weight of methanol was added dropwise over 5 hours while adjusting the mixed liquid at 35 ± 0.5 ° C. and stirring uniformly. After the dropping, stirring was continued for 1 hour to carry out hydrolysis and condensation to obtain a suspension (A) of spherical silica hydrate fine particles.

【0027】攪拌機、滴下口および温度計を備えた2l
のガラス製反応器を別に用意し、そこへメタノール47
4重量部、25%アンモニア水340重量部および種粒
子スラリーとして懸濁体(A)136重量部を滴下して
均一に混合した。この混合液を35±0.5℃に調整し
て均一に攪拌しながら、メタノール186重量部にエチ
ルシリケート320重量部を溶解した液を滴下口より3
時間かけて滴下した。滴下後も1時間均一に攪拌を続
け、加水分解、縮合を行い、球状シリカ水和物微粒子の
懸濁体(B)を得た。
2 l equipped with stirrer, drip port and thermometer
Prepare a separate glass reactor and add methanol 47 to it.
4 parts by weight, 340 parts by weight of 25% aqueous ammonia and 136 parts by weight of the suspension (A) as a seed particle slurry were added dropwise and uniformly mixed. This mixed solution was adjusted to 35 ± 0.5 ° C. and stirred uniformly, and a solution prepared by dissolving 320 parts by weight of ethyl silicate in 186 parts by weight of methanol was added through a dropping port.
It dripped over time. After the dropwise addition, stirring was continued for 1 hour to carry out hydrolysis and condensation to obtain a suspension (B) of fine spherical silica hydrate particles.

【0028】懸濁体(B)にエチレングリコール320
重量部を添加し、エバポレーターを用いて常圧で濃縮
し、内温が150℃になったところで1時間加熱を続
け、エチレングリコールが粒子表面および内部に結合し
たエチレングリコール−シロキサン複合体球状微粒子の
エチレングリコールのスラリーを得た。このエチレング
リコールスラリーを濾過により固液分離した後、メタノ
ールによる洗浄を3回繰り返し、得られた固形分を真空
乾燥器中で100℃で3時間乾燥して、平均粒子径5.
94μm、変動係数1.9%で、粒子の凝集や粒子径分
布の2極化がないエチレングリコール−シロキサン複合
体球状微粒子の粉体を得た。
Ethylene glycol 320 was added to the suspension (B).
Part by weight was added, and the mixture was concentrated at normal pressure using an evaporator, and when the internal temperature reached 150 ° C, heating was continued for 1 hour to obtain ethylene glycol-siloxane composite spherical fine particles in which ethylene glycol was bonded to the surface and inside of the particles. A slurry of ethylene glycol was obtained. After solid-liquid separation of this ethylene glycol slurry by filtration, washing with methanol was repeated 3 times, and the obtained solid content was dried in a vacuum dryer at 100 ° C. for 3 hours to give an average particle size of 5.
A powder of spherical particles of ethylene glycol-siloxane composite having a particle size of 94 μm and a coefficient of variation of 1.9% and free from agglomeration of particles and bipolarization of particle size distribution was obtained.

【0029】得られた複合体球状微粒子の硬さと機械的
復元性を前述の方法により評価したところ、硬さは64
kg/mm2 、残留変位は7.5%であった。また、元素分
析による複合体球状微粒子中の有機化合物とシロキサン
の組成比は、有機化合物の量を全炭素のモル数、シロキ
サンをSiのモル数で表して、C:Si=31:69で
あった。
When the hardness and mechanical recoverability of the obtained composite spherical fine particles were evaluated by the above-mentioned method, the hardness was 64.
The residual displacement was kg / mm 2 and 7.5%. Further, the composition ratio of the organic compound and the siloxane in the composite spherical fine particles by elemental analysis is C: Si = 31: 69, where the amount of the organic compound is the total number of moles of carbon and the siloxane is the number of moles of Si. It was

【0030】液晶表示板用電極基板に上記の複合体球状
微粒子を挟み、周囲を封止した後、内部に液晶を充填し
たところ、前述の問題点がなく液晶が作動した。 −実施例2− エチレングリコールによる150℃の加熱に代えて、ト
リエチレングリコールによる260℃の加熱とした以外
は実施例1と同様にして、平均粒子径6.06μm、変
動係数1.9%で、粒子の凝集や粒子径分布の2極化の
ないトリエチレングリコール−シロキサン複合体球状微
粒子の粉体を得た。
When the above-mentioned composite spherical fine particles were sandwiched between the electrode substrates for a liquid crystal display plate and the periphery was sealed, and the inside was filled with liquid crystal, the liquid crystal worked without the above-mentioned problems. -Example 2-In the same manner as in Example 1 except that heating at 260 ° C with triethylene glycol was used instead of heating at 150 ° C with ethylene glycol, the average particle diameter was 6.06 µm and the coefficient of variation was 1.9%. A powder of triethylene glycol-siloxane composite spherical fine particles without aggregation of particles or polarization of particle size distribution was obtained.

【0031】得られた複合体球状微粒子の硬さと機械的
復元性を前述の方法により評価したところ、硬さは48
kg/mm2 、残留変位は9.5%であった。また、元素分
析による複合体球状微粒子中の有機化合物とシロキサン
の組成比は、有機化合物の量を全炭素のモル数、シロキ
サンをSiのモル数で表して、C:Si=15:85で
あった。
When the hardness and mechanical recoverability of the obtained composite spherical fine particles were evaluated by the above-mentioned methods, the hardness was 48.
The residual displacement was kg / mm 2 and 9.5%. Further, the composition ratio of the organic compound and the siloxane in the composite spherical fine particles by elemental analysis is C: Si = 15: 85, where the amount of the organic compound is the total number of moles of carbon and the siloxane is the number of moles of Si. It was

【0032】液晶表示板用電極基板に上記の複合体球状
微粒子を挟み、周囲を封止した後、内部に液晶を充填し
たところ、前述の問題点がなく液晶が作動した。 −比較例1− エチレングリコールによる150℃での1時間の加熱に
代えて、エチレングリコールによる120℃での15分
の加熱とした以外は実施例1と同様にして、平均粒子径
5.67μm、変動係数1.9%で、粒子の凝集や粒子
径分布の2極化のないエチレングリコール−シロキサン
複合体球状微粒子の粉体を得た。
When the above-mentioned composite spherical fine particles were sandwiched between the electrode substrates for a liquid crystal display panel and the periphery was sealed, and the inside was filled with liquid crystal, the liquid crystal worked without the above-mentioned problems. -Comparative Example 1-Average particle size 5.67 [mu] m in the same manner as in Example 1 except that heating with ethylene glycol at 150 [deg.] C. for 1 hour was replaced with heating with ethylene glycol at 120 [deg.] C. for 15 minutes. With a coefficient of variation of 1.9%, a powder of spherical particles of ethylene glycol-siloxane composite having no aggregation of particles and no polarization of particle size distribution was obtained.

【0033】得られた複合体球状微粒子の硬さと機械的
復元性を前述の方法により評価したところ、硬さは56
kg/mm2 、残留変位は13%であった。また、元素分析
による複合体球状微粒子中の有機化合物とシロキサンの
組成比は、有機化合物の量を全炭素のモル数、シロキサ
ンをSiのモル数で表して、C:Si=7:93であっ
た。
When the hardness and mechanical recoverability of the obtained composite spherical fine particles were evaluated by the above-mentioned methods, the hardness was 56.
kg / mm 2 , residual displacement was 13%. Further, the composition ratio of the organic compound and the siloxane in the composite spherical fine particles by elemental analysis is C: Si = 7: 93, where the amount of the organic compound is the number of moles of total carbon and the siloxane is the number of moles of Si. It was

【0034】液晶表示板用電極基板に上記の複合体球状
微粒子を挟み、周囲を封止した後、内部に液晶を充填し
たところ、前述の問題点が生じ、液晶表示板用スペーサ
ーとして使用に耐えないものであった。 −比較例2− 実施例1における懸濁体(B)を濾過により固液分離し
た後、メタノールによる洗浄を3回繰り返し、得られた
固形分を真空乾燥器中で100℃で3時間乾燥して、平
均粒子径5.67μm、変動係数1.9%で、粒子の凝
集や粒子径分布の2極化がない球状シリカ微粒子の粉体
を得た。得られた微粒子粉体全量を、投げ込み式超音波
発振器を用いてエチレングリコール320重量部に分散
させた後、エバポレーターを用いて常圧で濃縮し、内温
が150℃になったところで1時間加熱を続け、球状シ
リカ微粒子のエチレングリコールスラリーを得た。
When the above-mentioned composite spherical fine particles were sandwiched between electrode substrates for a liquid crystal display plate and the periphery was sealed and liquid crystal was filled inside, the above-mentioned problems occurred, and the spacers for a liquid crystal display plate could not be used. It was not there. -Comparative Example 2-After the suspension (B) in Example 1 is subjected to solid-liquid separation by filtration, washing with methanol is repeated 3 times, and the obtained solid content is dried in a vacuum dryer at 100 ° C for 3 hours. Thus, a powder of spherical silica fine particles having an average particle diameter of 5.67 μm and a coefficient of variation of 1.9%, which is free from agglomeration of particles and polarization of the particle diameter distribution, was obtained. The total amount of the obtained fine particle powder was dispersed in 320 parts by weight of ethylene glycol using a throw-in type ultrasonic oscillator, and then concentrated at atmospheric pressure using an evaporator, and heated for 1 hour when the internal temperature reached 150 ° C. Then, an ethylene glycol slurry of spherical silica fine particles was obtained.

【0035】このエチレングリコールスラリーを濾過に
より固液分離した後、メタノールによる洗浄を3回繰り
返し、得られた固形分を真空乾燥器中で100℃で3時
間乾燥して、平均粒子径5.67μm、変動係数1.9
%で、粒子の凝集や粒子径分布の2極化がない球状シリ
カ微粒子の粉体を得た。得られた球状シリカ微粒子の硬
さと機械的復元性を前述の方法により評価したところ、
硬さは64kg/mm2 、残留変位は12%であった。ま
た、元素分析による複合体球状微粒子中の有機化合物と
シロキサンの組成比は、有機化合物の量を全炭素のモル
数、シロキサンをSiのモル数で表して、C:Si=
0.04:99.96であった。
After solid-liquid separation of this ethylene glycol slurry by filtration, washing with methanol was repeated 3 times, and the obtained solid content was dried in a vacuum dryer at 100 ° C. for 3 hours to give an average particle diameter of 5.67 μm. , Coefficient of variation 1.9
%, Spherical silica fine particle powder free from aggregation of particles and bipolarization of particle size distribution was obtained. When the hardness and mechanical restitution of the obtained spherical silica fine particles were evaluated by the above method,
The hardness was 64 kg / mm 2 , and the residual displacement was 12%. In addition, the composition ratio of the organic compound and the siloxane in the composite spherical fine particles by elemental analysis is represented by C: Si =, where the amount of the organic compound is represented by the number of moles of total carbon and the siloxane is represented by the number of moles of Si.
It was 0.04: 99.96.

【0036】液晶表示板用電極基板に上記の複合体球状
微粒子を挟み、周囲を封止した後、内部に液晶を充填し
たところ、前述の問題点が生じ、液晶表示板用スペーサ
ーとして使用に耐えないものであった。
When the above-mentioned composite spherical fine particles were sandwiched between electrode substrates for a liquid crystal display plate, the periphery was sealed, and liquid crystal was filled inside, the above-mentioned problems occurred, and the spacers for a liquid crystal display plate could not be used. It was not there.

【0037】[0037]

【発明の効果】この発明の液晶表示板用スペーサーとな
る有機質−シロキサン複合体球状微粒子は、粒子径が非
常に揃っており、シリカ焼成物微粒子とポリマー微粒子
の間の硬さ、および、高い機械的復元性を持つ。したが
って、この発明の微粒子を液晶表示板用スペーサーとし
て用いることにより、電極基板表面の傷つけ、低温発泡
の発生、画像ムラの発生、製造コストの上昇、諸表示性
能の低下を招くことがなく、厳密に一定の隙間距離を保
持することができ、画質の優れた高性能の液晶表示板を
作ることができる。
INDUSTRIAL APPLICABILITY The organic-siloxane composite spherical fine particles used as the spacer for a liquid crystal display of the present invention have very uniform particle diameters, and the hardness between the silica calcined product fine particles and the polymer fine particles and high mechanical strength are high. It has a characteristic restoration property. Therefore, by using the fine particles of the present invention as a spacer for a liquid crystal display plate, the electrode substrate surface is not scratched, low-temperature foaming occurs, image unevenness occurs, the manufacturing cost increases, and the display performance does not deteriorate. Since a constant gap distance can be maintained, a high-performance liquid crystal display panel with excellent image quality can be manufactured.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月26日[Submission date] July 26, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】(2)未焼成のシリカ微粒子は、焼成品と
比べて硬さは改良されるが、機械的復元性に劣るため、
シリカ焼成物微粒子と同様に画像のムラが発生しやす
く、低温発泡の問題がある。 (3)スチレン系ポリマー微粒子は、素材として非常に
柔らかいがゆえに、電極基板隙間距離の微調節が非常に
困難である。たとえば、通常、隙間距離の調節は、2枚
の対向する電極基板間に、シール部スペーサーを分散さ
せた周辺シール材および面内スペーサーを挟持した状態
で、両電極基板の固定のために接着シール材の硬化温度
で両基板をホットプレスする工程において行われる。し
かし、スチレン系ポリマー微粒子は非常に柔らかいため
に、前記工程だけで均一に一定の隙間距離を達成するこ
とは極めて困難であり、再度両基板を室温にまで戻した
後に、コールドプレスにより隙間距離を微調整するとい
う余分な工程が必要となる。
(2) The unfired silica fine particles have improved hardness as compared with the fired product, but are inferior in mechanical restoration property.
Similar to fine particles of calcined silica, image unevenness easily occurs and there is a problem of low temperature foaming. (3) Since the styrene-based polymer fine particles are very soft as a raw material, it is very difficult to finely adjust the gap distance between the electrode substrates. For example, usually, the gap distance is adjusted by sandwiching the peripheral sealing material in which the seal part spacers are dispersed and the in-plane spacer between two opposing electrode substrates, and then adhesive seals for fixing both electrode substrates. This is performed in the process of hot pressing both substrates at the curing temperature of the material. However, since the styrene-based polymer particles are extremely soft, it is extremely difficult to achieve a uniform gap distance only in the above step. An extra step of fine adjustment is required.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】H=F/R H:試料粒子の硬さ(kg/mm) F:圧縮荷重(kg) R:粒子の直径(mm) 従来のスペーサー微粒子の硬さを上記の値で表した場
合、シリカ焼成微粒子は130kg/mm、スチレ
ン系ポリマー微粒子は9.2kg/mmであったが、
この発明によれば、20〜70kg/mmの範囲で任
意に硬さの調整された複合体球状微粒子が得られる。一
方、機械的復元性を上記の値で表した場合、未焼成のの
シリカ微粒子は残留変位が13%であったが、この発明
によれば、0〜10%の範囲で任意の残留変位を有する
微粒子が得られる。
H = F / R 2 H: hardness of sample particles (kg / mm 2 ) F: compressive load (kg) R: diameter of particles (mm) Hardness of conventional spacer fine particles is represented by the above value. If you, silica calcined product particles is 130 kg / mm 2, styrenic polymer fine particles was the 9.2 kg / mm 2,
According to the present invention, the composite spherical fine particles whose hardness is arbitrarily adjusted in the range of 20 to 70 kg / mm 2 can be obtained. On the other hand, when the mechanical resilience is expressed by the above value, the residual displacement of unburned silica fine particles was 13%, but according to the present invention, any residual displacement is within the range of 0 to 10%. Fine particles having are obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大石 秀樹 兵庫県姫路市網干区興浜字西沖992番地の 1 株式会社日本触媒姫路製造所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideki Oishi 1 992, Nishioki, Nishihama, Kamahama-ku, Himeji-shi, Hyogo Prefecture Nihon Shokubai Himeji Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シラノール基と化学結合可能な有機化合
物が微粒子の内部および表面に結合した有機質−シロキ
サン複合体球状微粒子であって、前記微粒子中の有機化
合物とシロキサンの組成比が、有機化合物の量を全炭素
のモル数、シロキサンをSiのモル数で表して、C:S
i=10:90〜50:50の範囲であることを特徴と
する液晶表示板用スペーサー。
1. An organic-siloxane composite spherical fine particle in which an organic compound capable of chemically bonding with a silanol group is bonded to the inside and the surface of the fine particle, wherein the composition ratio of the organic compound and siloxane in the fine particle is that of the organic compound. Amount is expressed by the number of moles of total carbon and siloxane is expressed by the number of moles of Si, and C: S
A spacer for a liquid crystal display panel, wherein i = 10: 90 to 50:50.
【請求項2】 加水分解可能なシリコン化合物を水を含
む有機性溶媒中で加水分解縮合して得られる球状シリカ
水和物微粒子を、シラノール基と化学結合可能な有機化
合物の存在下で加熱する請求項1記載の液晶表示板用ス
ペーサーの製造方法。
2. Spherical silica hydrate fine particles obtained by hydrolytically condensing a hydrolyzable silicon compound in an organic solvent containing water are heated in the presence of an organic compound capable of chemically bonding with a silanol group. The method for manufacturing a spacer for a liquid crystal display panel according to claim 1.
JP04016193A 1993-03-01 1993-03-01 Spacer for liquid crystal display panel and method of manufacturing the same Expired - Lifetime JP3187592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04016193A JP3187592B2 (en) 1993-03-01 1993-03-01 Spacer for liquid crystal display panel and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04016193A JP3187592B2 (en) 1993-03-01 1993-03-01 Spacer for liquid crystal display panel and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06250193A true JPH06250193A (en) 1994-09-09
JP3187592B2 JP3187592B2 (en) 2001-07-11

Family

ID=12573041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04016193A Expired - Lifetime JP3187592B2 (en) 1993-03-01 1993-03-01 Spacer for liquid crystal display panel and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3187592B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038037A1 (en) * 1997-02-28 1998-09-03 Catalysts & Chemicals Industries Co., Ltd. Spherical layered particle and liquid crystal display
US6359667B1 (en) 1998-02-09 2002-03-19 Catalysts & Chemicals Industries Co., Ltd. Organopolysiloxane fine particles, process for the production thereof and liquid crystal displays

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998038037A1 (en) * 1997-02-28 1998-09-03 Catalysts & Chemicals Industries Co., Ltd. Spherical layered particle and liquid crystal display
US6294230B1 (en) 1997-02-28 2001-09-25 Catalysts & Chemicals Industries Co., Ltd. Spherical laminated particle and liquid crystal display
US6359667B1 (en) 1998-02-09 2002-03-19 Catalysts & Chemicals Industries Co., Ltd. Organopolysiloxane fine particles, process for the production thereof and liquid crystal displays

Also Published As

Publication number Publication date
JP3187592B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
KR100215532B1 (en) Crosslinked resin-coated fine silica particles and process for producing the same
US6083314A (en) Coating liquid for forming porous silica coating, coated substrate and short fiber silica
JP2698541B2 (en) Liquid crystal display panel spacer and liquid crystal display panel using the same
CN112876063A (en) Glass crystallization method, glass plate and isolating powder mixed solution
US5943156A (en) Polarizing plate and method of manufacturing polarizing plate
EP0503098A1 (en) Liquid crystal display device
JPH06250193A (en) Spacer for liquid crystal display plate and its production
JP3088069B2 (en) Method for producing organic-inorganic composite particles
JP3524008B2 (en) Method for producing elastic particles coated with polyorganosiloxane and liquid crystal display
JP3836925B2 (en) Manufacturing method of spacer for liquid crystal display panel
JP3456485B2 (en) Spherical laminated particles and liquid crystal display
JP2000230053A (en) Organic inorganic composite particle and its preparation and use
JP3106071B2 (en) Spacer for liquid crystal display panel, method for manufacturing the same, and liquid crystal display panel
CN115124242B (en) Bendable light and thin toughened glass
JP4121106B2 (en) Manufacturing method of adhesive spacer for liquid crystal display panel
JP2002284515A (en) Spherical inorganic oxide particle
JP2005314706A (en) Organic inorganic composite particle, its production method and its use
JP3609981B2 (en) LIQUID CRYSTAL DISPLAY ELEMENT SPACER, ITS MANUFACTURING METHOD, AND LIQUID CRYSTAL DISPLAY ELEMENT
JPH03167739A (en) Antistatic film
JP3697133B2 (en) Organic-inorganic composite particles, production method thereof, and use thereof
JP3157112B2 (en) Liquid crystal display element spacer, method of manufacturing the same, and liquid crystal display element
JP2002156639A (en) Adherent spacer for liquid crystal display board and method for manufacturing the same
CN114394768A (en) Modified calcium-boron-lanthanum glass powder, green ceramic tape, LTCC substrate with controllable dielectric constant, packaging material and preparation method thereof
JP2854134B2 (en) Liquid crystal display
JP2001188236A (en) Liquid crystal spacer and method of producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100511

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100511

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110511

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

EXPY Cancellation because of completion of term