JP3187592B2 - Spacer for liquid crystal display panel and method of manufacturing the same - Google Patents

Spacer for liquid crystal display panel and method of manufacturing the same

Info

Publication number
JP3187592B2
JP3187592B2 JP04016193A JP4016193A JP3187592B2 JP 3187592 B2 JP3187592 B2 JP 3187592B2 JP 04016193 A JP04016193 A JP 04016193A JP 4016193 A JP4016193 A JP 4016193A JP 3187592 B2 JP3187592 B2 JP 3187592B2
Authority
JP
Japan
Prior art keywords
fine particles
liquid crystal
spacer
display panel
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04016193A
Other languages
Japanese (ja)
Other versions
JPH06250193A (en
Inventor
保宏 酒井
忠弘 米田
三郎 中原
秀樹 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP04016193A priority Critical patent/JP3187592B2/en
Publication of JPH06250193A publication Critical patent/JPH06250193A/en
Application granted granted Critical
Publication of JP3187592B2 publication Critical patent/JP3187592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、粒子径が非常に揃っ
た有機質−シロキサン複合体球状微粒子からなる新規な
液晶表示板用スペーサーおよびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel spacer for liquid crystal display panels comprising organic-siloxane composite spherical fine particles having a very uniform particle diameter and a method for producing the same.

【0002】[0002]

【従来の技術】液晶表示板は、2枚の対向する電極基板
間にスペーサーを介在させ、その隙間に液晶物質を挟み
込んで構成されている。スペーサーは、液晶層の厚みを
均一かつ一定に保つために使用され、液晶層中の面内ス
ペーサーおよび周辺接着シール材中のシール部スペーサ
ーとして使用されるものである。
2. Description of the Related Art A liquid crystal display panel has a structure in which a spacer is interposed between two opposing electrode substrates, and a liquid crystal material is sandwiched between the spacers. The spacer is used to keep the thickness of the liquid crystal layer uniform and constant, and is used as an in-plane spacer in the liquid crystal layer and a seal spacer in the peripheral adhesive sealing material.

【0003】一般に、液晶表示板用スペーサーは非常に
高価であるため、その使用量はできるだけ少量であるこ
とが望ましい。特に、液晶物質と直接接触する面内スペ
ーサーの使用に際しては、液晶表示板の表示性能に悪影
響を及ぼすようなイオンや分子等のスペーサー内部から
液晶中への溶出を最小限にするために、その使用量はで
きる限り少なくしなければならない。
In general, since the spacer for a liquid crystal display panel is very expensive, it is desirable that the amount of the spacer used is as small as possible. In particular, when using in-plane spacers that are in direct contact with the liquid crystal material, the use of such spacers in order to minimize the elution of ions and molecules into the liquid crystal from inside the spacers that adversely affects the display performance of the liquid crystal display panel. The amount used should be as low as possible.

【0004】また、液晶表示板の実用に際して要求され
る表示性能として、一般に、高速応答性、高コントラス
ト性、広視野角性等が挙げられる。これら諸性能の実現
のためには、液晶層の厚み、つまり、2枚の電極基板の
隙間距離を厳密に一定に保持しなければならない。この
ような要望に応じた液晶表示板用スペーサーとしては、
ゾル−ゲル法で製造したシリカ微粒子(特開昭62−2
69933号公報)、前記シリカ微粒子を焼成したもの
(特開平1−234826号公報)、スチレン系単量体
等を懸濁重合させて得られるポリマー微粒子等があり、
いずれも、粒子径分布が非常に揃った球状微粒子であ
る。
The display performance required for practical use of a liquid crystal display panel generally includes high-speed response, high contrast, wide viewing angle, and the like. In order to realize these various performances, the thickness of the liquid crystal layer, that is, the gap distance between the two electrode substrates must be kept strictly constant. As a spacer for a liquid crystal display panel meeting such a demand,
Silica fine particles produced by a sol-gel method (JP-A-62-2
No. 69933), calcined silica fine particles (Japanese Patent Laid-Open No. 1-234826), polymer fine particles obtained by suspension polymerization of a styrene monomer and the like, and the like.
Both are spherical fine particles having a very uniform particle size distribution.

【0005】従来、ゾル−ゲル法で製造されるシリカ微
粒子を液晶表示板用スペーサーに応用するに際し、前記
微粒子の電極基板上への散布性を向上させるために、ま
たは、前記微粒子表面での液晶物質の配向不良の発生を
抑制するために、アルコール類、カップリング剤等で微
粒子の表面処理をする工夫がされていた(特開昭62−
269933号公報)。
Conventionally, in applying silica fine particles produced by a sol-gel method to a spacer for a liquid crystal display panel, in order to improve the dispersibility of the fine particles on an electrode substrate, or to improve the liquid crystal on the surface of the fine particles. In order to suppress the occurrence of misalignment of the substance, there has been devised surface treatment of the fine particles with an alcohol, a coupling agent, etc.
269933).

【0006】[0006]

【発明が解決しようとする課題】しかし、従来技術で
は、次のような問題点があり、微粒子の硬さや機械的復
元性を制御し得る液晶表示板用スペーサーを得ることは
できなかった。 (1)シリカ焼成物微粒子は変形性が乏しく、粒子径分
布が直接的に隙間距離の不均一性に影響し、画像のムラ
が発生しやすい。さらに、この微粒子は、素材として非
常に硬いために、基板上の電極等の蒸着層、配向膜、カ
ラーフィルター等のコート層に物理的損傷を与える問題
がある。また、この微粒子を用いた液晶表示板が、たと
えば、−40℃の低温環境に曝された場合、液晶と微粒
子との熱膨張係数の差が大きいため、液晶層と電極基板
との間に空隙が生じて表示機能が全く作動しないとい
う、いわゆる低温発泡の問題を生じる。
However, the prior art has the following problems, and it has not been possible to obtain a spacer for a liquid crystal display panel capable of controlling the hardness and mechanical resilience of fine particles. (1) The calcined silica fine particles have poor deformability, and the particle size distribution directly affects the nonuniformity of the gap distance, and image unevenness is likely to occur. Further, since these fine particles are very hard as a material, there is a problem that physical damage is caused to a vapor deposited layer such as an electrode on a substrate, an alignment film, and a coat layer such as a color filter. Further, when a liquid crystal display panel using these fine particles is exposed to a low temperature environment of, for example, −40 ° C., there is a large difference in the thermal expansion coefficient between the liquid crystal and the fine particles. This causes a problem of so-called low-temperature foaming in which the display function does not operate at all.

【0007】(2)未焼成のシリカ微粒子は、焼成品と
比べて硬さは改良されるが、機械的復元性に劣るため、
シリカ焼成物微粒子と同様に画像のムラが発生しやす
く、低温発泡の問題がある。 (3)スチレン系ポリマー微粒子は、素材として非常に
柔らかいがゆえに、電極基板隙間距離の微調節が非常に
困難である。たとえば、通常、隙間距離の調節は、2枚
の対向する電極基板間に、シール部スペーサーを分散さ
せた周辺シール材および面内スペーサーを挟持した状態
で、両電極基板の固定のために接着シール材の硬化温度
で両基板をホットプレスする工程において行われる。し
かし、スチレン系ポリマー微粒子は非常に柔らかいため
に、前記工程だけで均一に一定の隙間距離を達成するこ
とは極めて困難であり、再度両基板を室温にまで戻した
後に、コールドプレスにより隙間距離を微調整するとい
う余分な工程が必要となる。
(2) Although unfired silica fine particles have improved hardness as compared with fired products, they have poor mechanical resilience.
As in the case of the silica fired product fine particles, image unevenness is likely to occur and there is a problem of low-temperature foaming. (3) Since styrene-based polymer fine particles are very soft as a material, it is very difficult to finely adjust the electrode substrate gap distance. For example, usually, the gap distance is adjusted by bonding an adhesive seal to fix both electrode substrates in a state where a peripheral seal material in which a seal spacer is dispersed and an in-plane spacer are sandwiched between two opposing electrode substrates. This is performed in the step of hot pressing both substrates at the curing temperature of the material. However, since the styrene-based polymer fine particles are very soft, it is extremely difficult to achieve a uniform gap distance only by the above-described process alone.After returning both substrates to room temperature again, the gap distance is reduced by cold pressing. An extra step of fine adjustment is required.

【0008】さらに、この有機微粒子は非常に柔らかい
ために、隙間距離を均一に一定に保持するためには、微
粒子の散布個数を多くせざるを得ない。そのために、製
造コストの上昇を招くばかりでなく、画像を形成しない
部分の面積が結果として増加し、さらに、イオン、分子
等の不純物がスペーサー内部から液晶層中へ溶出する量
も増加することにより、コントラストの低下、ざらつき
の増加等の諸表示品位を低下させる原因となる。
Further, since the organic fine particles are very soft, in order to keep the gap distance uniform and constant, it is necessary to increase the number of fine particles to be scattered. As a result, not only does the production cost rise, but also the area of the part where no image is formed increases, and furthermore, the amount of impurities such as ions and molecules dissolving out of the spacer into the liquid crystal layer also increases. , Display quality, such as a decrease in contrast and an increase in roughness.

【0009】したがって、この発明は、シリカの焼成物
微粒子とポリマー微粒子の間の硬さを持ち、かつ、均一
に一定の隙間距離を保持するために必要な機械的復元性
を併せ持った液晶表示板用スペーサーおよびその製造方
法を提供することを課題とする。
Therefore, the present invention provides a liquid crystal display panel having a hardness between a silica fine particle and a polymer fine particle, and also having a mechanical restoring property necessary for maintaining a uniform gap distance uniformly. It is an object to provide a spacer for use and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、この発明にかかる液晶表示板用スペーサーは、シラ
ノール基と化学結合可能な有機化合物が微粒子の内部お
よび表面に結合した有機質−シロキサン複合体球状微粒
子であって、前記微粒子中の有機化合物とシロキサンの
組成比が、有機化合物の量を全炭素のモル数、シロキサ
ンをSiのモル数で表して、C:Si=10:90〜5
0:50の範囲であることを特徴とする。
In order to solve the above-mentioned problems, a spacer for a liquid crystal display panel according to the present invention comprises an organic-siloxane composite in which an organic compound capable of chemically bonding to a silanol group is bonded to the inside and the surface of fine particles. Spherical fine particles, wherein the composition ratio of the organic compound to the siloxane in the fine particles is such that the amount of the organic compound is represented by the total number of moles of carbon and the siloxane is represented by the number of moles of Si.
It is characterized by a range of 0:50.

【0011】この発明でいうシラノール基と化学結合可
能な有機化合物とは、下記化1で表されるシロキサンの
最小構成単位中に存在する、下記化2で表されるシラノ
ール基と化学結合の生成が可能な官能基を有する有機化
合物であれば、特に限定はされない。
The organic compound capable of forming a chemical bond with a silanol group as referred to in the present invention means the formation of a chemical bond with the silanol group represented by the following chemical formula 2, which is present in the minimum structural unit of the siloxane represented by the following chemical formula 1. There is no particular limitation as long as it is an organic compound having a functional group capable of

【0012】[0012]

【化1】 Embedded image

【0013】[0013]

【化2】 Embedded image

【0014】この有機化合物として、具体的には、アル
コール性水酸基、エポキシ基、アミノ基、カルボキシル
基、イソシアネート基等を有する有機化合物等、一般
に、シラノール基との反応性が高い官能基を持った有機
化合物が挙げられる。好ましくは、一価アルコール類、
二価以上の多価アルコール類、より好ましくは、炭素数
1から10の上記アルコールが用いられる。中でも、下
記一般式化3で表される多価アルコールが特に好まし
い。
As the organic compound, specifically, an organic compound having an alcoholic hydroxyl group, an epoxy group, an amino group, a carboxyl group, an isocyanate group, or the like, generally has a functional group highly reactive with a silanol group. Organic compounds may be mentioned. Preferably, monohydric alcohols,
Dihydric or higher polyhydric alcohols, more preferably, the above alcohols having 1 to 10 carbon atoms are used. Among them, a polyhydric alcohol represented by the following general formula 3 is particularly preferable.

【0015】[0015]

【化3】 Embedded image

【0016】(式中、Rはメチル基または水素、nは1
〜10の整数を表す。)これらの有機化合物は、単独で
用いても2種以上の混合物として用いてもよい。この発
明の複合体球状微粒子中の有機化合物とシロキサンの組
成比は、有機化合物の量を全炭素のモル数、シロキサン
をSiのモル数で表して、C:Si=10:90〜5
0:50の範囲である必要がある。この割合よりも有機
化合物が少ない場合には、十分な機械的復元性が得られ
ず、必要以上に硬い粒子となる。この割合よりも有機化
合物が多い場合には、必要以上に柔らかい粒子となる。
Wherein R is a methyl group or hydrogen, and n is 1
Represents an integer of 10 to 10. ) These organic compounds may be used alone or as a mixture of two or more. The composition ratio of the organic compound and the siloxane in the composite spherical fine particles of the present invention is represented by the following formula: the amount of the organic compound is represented by the total number of moles of carbon, and the siloxane is represented by the number of moles of Si.
It must be in the range of 0:50. If the amount of the organic compound is less than this ratio, sufficient mechanical resilience cannot be obtained, and the particles become harder than necessary. When the amount of the organic compound is larger than this ratio, the particles are unnecessarily soft.

【0017】複合体球状微粒子の表面状態は、できるだ
け平滑であることが好ましい。特に多孔質粒子の場合に
は、細孔内部に吸着水分等の液晶表示板の表示性能に悪
影響を及ぼすようなイオン、分子等が吸着しやすくなる
ために好ましくない。また、複合体球状微粒子の電極基
板上への散布性を向上させるために、または、複合体球
状微粒子表面での液晶物質の配向不良を抑制するため
に、あるいは他の目的で、カップリング剤等従来公知の
表面改質処理を施してスペーサーとして使用してもよ
い。
The surface state of the composite spherical fine particles is preferably as smooth as possible. In particular, in the case of porous particles, it is not preferable because ions, molecules, and the like, which adversely affect the display performance of the liquid crystal display panel, such as adsorbed moisture, are easily adsorbed inside the pores. Further, in order to improve the dispersibility of the composite spherical fine particles on the electrode substrate, or to suppress poor alignment of the liquid crystal substance on the surface of the composite spherical fine particles, or for other purposes, a coupling agent or the like is used. A conventionally known surface modification treatment may be applied to use as a spacer.

【0018】また、この発明にかかる液晶表示板用スペ
ーサーの製造方法は、加水分解可能なシリコン化合物を
水を含む有機性溶媒中で加水分解縮合して得られる球状
シリカ水和物微粒子を、シラノール基と化学結合可能な
有機化合物の存在下で加熱する。この発明の複合体球状
微粒子を得るための方法は、特に限定はされず、複合体
球状微粒子中の有機化合物とシロキサンの組成比が、有
機化合物の量を全炭素のモル数、シロキサンをSiのモ
ル数で表して、C:Si=10:90〜50:50の範
囲となるような、いかなる方法によって製造してもよ
い。
Further, the method for producing a spacer for a liquid crystal display panel according to the present invention is characterized in that the spherical silica hydrate fine particles obtained by hydrolyzing and condensing a hydrolyzable silicon compound in an organic solvent containing water are treated with silanol. Heating is performed in the presence of an organic compound capable of chemically bonding to a group. The method for obtaining the composite spherical fine particles of the present invention is not particularly limited, and the composition ratio of the organic compound and the siloxane in the composite spherical fine particles is such that the amount of the organic compound is the total number of moles of carbon, and the siloxane is the amount of Si. It may be produced by any method such that C: Si = 10: 90 to 50:50 in terms of moles.

【0019】具体的な製造方法としては、たとえば、加
水分解可能なシリコン化合物を水を含む有機性溶媒中で
加水分解縮合して球状シリカ水和物微粒子スラリーをま
ず合成し、次いで、スラリー状の前記微粒子をシラノー
ル基と化学結合可能な前述の有機化合物の存在下で加熱
処理した後、微粒子を単離する方法を挙げることができ
る。球状シリカ水和物微粒子の合成において、種粒子を
合成系に仕込んでおいてもよい。加熱処理の条件(温
度、時間等)を選定することによって、有機化合物とシ
ロキサンの組成比が上述の範囲で任意に製造し得る。
As a specific production method, for example, a hydrolyzable silicon compound is hydrolyzed and condensed in an organic solvent containing water to first synthesize a spherical silica hydrate fine particle slurry, and then to form a slurry. After subjecting the fine particles to a heat treatment in the presence of the above-mentioned organic compound capable of chemically bonding to a silanol group, a method of isolating the fine particles can be mentioned. In the synthesis of the spherical silica hydrate fine particles, seed particles may be charged in the synthesis system. By selecting the conditions of the heat treatment (temperature, time, etc.), the composition ratio of the organic compound to the siloxane can be arbitrarily set within the above range.

【0020】スペーサーに用いられる微粒子の硬さおよ
び機械的復元性は、下記測定方法により測定することが
できる。島津微小圧縮試験機(株式会社島津製作所製M
CTM−200)により、室温において、試料粒子1個
について直径50μmの円形平板圧子を用いて、粒子の
中心方向へ一定の負荷速度で徐々に荷重をかけ、圧縮変
位が粒子径の20%となるまで粒子を変形させる。その
後すぐに、負荷時と同じ速度で徐々に除荷し、最終的に
荷重が0となるまで除荷を行う。この操作を同一素材の
異なる3個の粒子について行い、次式に従い、20%変
形時の荷重の大きさの平均値を単位直径で規格化した値
をもって、その粒子の硬さとする。そして、除荷後、荷
重を0としたときに、なお粒子に残留する変形の大きさ
(以下、「残留変位」と呼ぶ)の粒子径に対する百分率
の平均値をもって、その粒子の機械的復元性の尺度とし
た。
The hardness and mechanical resilience of the fine particles used for the spacer can be measured by the following measuring methods. Shimadzu Micro Compression Testing Machine (M made by Shimadzu Corporation)
According to CTM-200), at room temperature, a load is gradually applied to a sample particle at a constant load speed in the direction of the center of the particle using a circular flat indenter having a diameter of 50 μm, and the compression displacement becomes 20% of the particle diameter. Deform the particles until. Immediately thereafter, the load is gradually unloaded at the same speed as when the load is applied, and the load is finally removed until the load becomes zero. This operation is performed on three different particles of the same material, and the hardness of the particles is defined as a value obtained by standardizing the average value of the magnitude of the load at the time of 20% deformation by a unit diameter according to the following equation. Then, when the load is set to 0 after unloading, the average value of the percentage of the size of the deformation (hereinafter referred to as “residual displacement”) still remaining in the particles with respect to the particle diameter is represented by the mechanical resilience of the particles. Scale.

【0021】H=F/R H:試料粒子の硬さ(kg/mm) F:圧縮荷重(kg) R:粒子の直径(mm) 従来のスペーサー微粒子の硬さを上記の値で表した場
合、シリカ焼成微粒子は130kg/mm、スチレ
ン系ポリマー微粒子は9.2kg/mmであったが、
この発明によれば、20〜70kg/mmの範囲で任
意に硬さの調整された複合体球状微粒子が得られる。一
方、機械的復元性を上記の値で表した場合、未焼成のの
シリカ微粒子は残留変位が13%であったが、この発明
によれば、0〜10%の範囲で任意の残留変位を有する
微粒子が得られる。
H = F / R2  H: hardness of sample particles (kg / mm2) F: Compressive load (kg) R: Particle diameter (mm) When the hardness of conventional spacer fine particles is represented by the above value,
When firing silicaobject130kg / mm fine particles2, Stille
Polymer fine particles9.2kg / mm2Was
According to the present invention, 20 to 70 kg / mm2In the range of
The composite spherical fine particles whose hardness is adjusted are obtained. one
On the other hand, when the mechanical resilience is represented by the above value,
The silica fine particles had a residual displacement of 13%.
Has an arbitrary residual displacement in the range of 0 to 10%.
Fine particles are obtained.

【0022】硬さおよび機械的復元性の程度は、有機化
合物とシロキサンの組成比を調節することにより達成さ
れる。この発明の複合体球状微粒子の平均粒子径は、目
的とする隙間距離の大きさによって任意に製造すること
ができるが、通常、0.5〜20μmが好ましく、1〜
10μmであることがより好ましい。
The degree of hardness and mechanical resilience can be achieved by adjusting the composition ratio of the organic compound and siloxane. The average particle size of the composite spherical fine particles of the present invention can be arbitrarily produced depending on the size of the target gap distance, and is usually preferably 0.5 to 20 μm,
More preferably, it is 10 μm.

【0023】また、粒子径の均一さとしては、隙間距離
の均一性の面から、粒子径の変動係数が20%以下であ
ることが好ましく、10%以下であることがより好まし
い。粒子径の変動係数は以下の式で定義される。 粒子径の変動係数(%)=(σ/X)×100 σ:粒子径の標準偏差 X:平均粒子径 この発明において、スペーサーとして複合体球状微粒子
を用いた液晶表示板の作製方法としては、複合体球状微
粒子を2枚の電極基板のうち一方の電極基板に湿式法ま
たは乾式法により均一に散布したものに、複合体球状微
粒子をエポキシ樹脂等の接着シール材に分散させた後も
う一方の電極基板の接着シール部分にスクリーン印刷な
どの手段により塗布したものを乗せ、適度の圧力を加
え、100〜150℃の温度で30〜60分間加熱し、
接着シール材を加熱硬化させた後、液晶を注入して、液
晶表示板を得る方法を挙げることができるが、液晶表示
板の作製方法によってこの発明が限定されるものではな
い。
The uniformity of the particle diameter is preferably 20% or less, more preferably 10% or less, from the viewpoint of the uniformity of the gap distance. The variation coefficient of the particle diameter is defined by the following equation. Coefficient of variation of particle diameter (%) = (σ / X) × 100 σ: Standard deviation of particle diameter X: Average particle diameter In the present invention, a method for producing a liquid crystal display panel using composite spherical fine particles as a spacer includes: After dispersing the composite spherical fine particles uniformly on one of the two electrode substrates by a wet method or a dry method, the composite spherical fine particles are dispersed in an adhesive sealing material such as an epoxy resin, and then the other. Put the thing applied by means such as screen printing on the adhesive seal part of the electrode substrate, apply moderate pressure, and heat at a temperature of 100 to 150 ° C. for 30 to 60 minutes,
After the adhesive sealing material is cured by heating, a method of injecting liquid crystal to obtain a liquid crystal display panel can be cited, but the present invention is not limited by the method of manufacturing the liquid crystal display panel.

【0024】[0024]

【作用】この発明の複合体球状微粒子の化学構造は、微
視的には、シラノール基と化学結合可能な有機化合物の
分子と、シロキサンの構造単位であるSiO4 四面体と
から構成され、それらがお互いにランダムな結合角をも
って化学結合した構造を有する非晶質固体である。この
複合体球状微粒子は、微粒子中に結合した有機化合物
が、微粒子の半径方向に均一またはある連続的分布を持
って微粒子の内部および表面に分布するものであり、い
わゆるコアーシェル型球状微粒子のように、コアとなる
材料またはシェルとなる材料の粒子の半径方向の分布が
不連続であるものとは明確に区別される。このように、
この発明の複合体球状微粒子は、有機質と無機質が、微
粒子の半径方向に均一またはある連続的分布を持って微
粒子の内部および表面に分布しているため、機械的復元
性が良い。
The chemical structure of the composite spherical fine particles of the present invention is microscopically composed of molecules of an organic compound capable of chemically bonding to a silanol group and SiO 4 tetrahedron which is a structural unit of siloxane. Are amorphous solids having a structure in which they are chemically bonded to each other with random bonding angles. In the composite spherical fine particles, the organic compound bonded to the fine particles is distributed in the inside and the surface of the fine particles with a uniform or certain continuous distribution in the radial direction of the fine particles. It is clearly distinguished from those in which the radial distribution of the particles of the core material or the shell material is discontinuous. in this way,
The composite spherical fine particles of the present invention have good mechanical resilience because the organic and inorganic substances are distributed inside and on the fine particles with uniform or certain continuous distribution in the radial direction of the fine particles.

【0025】また、この発明の複合体球状微粒子は、有
機質と無機質が混在しているため、硬さが適当になり、
液晶表示板用スペーサーとして用いた場合に、2枚の電
極基板の隙間距離を一定に保つことができ、電極基板表
面を傷つけることもない。さらに、この発明の複合体球
状微粒子は、球状シリカ水和物微粒子の懸濁液中で有機
化合物を反応させて得ているため、粒子径が非常に揃っ
ている。
In addition, the composite spherical fine particles of the present invention have an appropriate hardness because of the mixture of organic matter and inorganic matter.
When used as a spacer for a liquid crystal display panel, the gap distance between two electrode substrates can be kept constant, and the electrode substrate surface is not damaged. Furthermore, since the composite spherical fine particles of the present invention are obtained by reacting an organic compound in a suspension of spherical silica hydrate fine particles, the particle diameters are very uniform.

【0026】[0026]

【実施例】以下に、この発明の実施例を示すが、この発
明は下記実施例に限定されない。 −実施例1− 攪拌機、滴下口および温度計を備えた2lのガラス製反
応器に、メタノール470重量部、25%アンモニア水
360重量部および種粒子として平均粒子径1.2μm
の球状シリカ水和物粒子10重量部を添加して均一に混
合した。この混合液を35±0.5℃に調整して均一に
攪拌しながら、メタノール256重量部にエチルシリケ
ート507重量部を溶解した液を滴下口より5時間かけ
て滴下した。滴下後も1時間均一に攪拌を続け、加水分
解、縮合を行い、球状シリカ水和物微粒子の懸濁体
(A)を得た。
Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments. Example 1 In a 2 liter glass reactor equipped with a stirrer, a dropping port and a thermometer, 470 parts by weight of methanol, 360 parts by weight of 25% aqueous ammonia, and an average particle diameter of 1.2 μm as seed particles were used.
Was added and uniformly mixed. A solution in which 507 parts by weight of ethyl silicate was dissolved in 256 parts by weight of methanol was dropped from the dropping port over 5 hours while the mixture was adjusted to 35 ± 0.5 ° C. and uniformly stirred. After the dropwise addition, the mixture was stirred uniformly for 1 hour to carry out hydrolysis and condensation to obtain a suspension (A) of spherical silica hydrate fine particles.

【0027】攪拌機、滴下口および温度計を備えた2l
のガラス製反応器を別に用意し、そこへメタノール47
4重量部、25%アンモニア水340重量部および種粒
子スラリーとして懸濁体(A)136重量部を滴下して
均一に混合した。この混合液を35±0.5℃に調整し
て均一に攪拌しながら、メタノール186重量部にエチ
ルシリケート320重量部を溶解した液を滴下口より3
時間かけて滴下した。滴下後も1時間均一に攪拌を続
け、加水分解、縮合を行い、球状シリカ水和物微粒子の
懸濁体(B)を得た。
2 l equipped with stirrer, dropper and thermometer
A glass reactor was prepared separately and methanol 47
4 parts by weight, 340 parts by weight of 25% aqueous ammonia and 136 parts by weight of the suspension (A) as a seed particle slurry were dropped and uniformly mixed. While adjusting the mixture to 35 ± 0.5 ° C. and stirring uniformly, a solution prepared by dissolving 320 parts by weight of ethyl silicate in 186 parts by weight of methanol was added through the dropping port.
It was dropped over time. After the dropwise addition, stirring was continued uniformly for 1 hour to carry out hydrolysis and condensation to obtain a suspension (B) of spherical silica hydrate fine particles.

【0028】懸濁体(B)にエチレングリコール320
重量部を添加し、エバポレーターを用いて常圧で濃縮
し、内温が150℃になったところで1時間加熱を続
け、エチレングリコールが粒子表面および内部に結合し
たエチレングリコール−シロキサン複合体球状微粒子の
エチレングリコールのスラリーを得た。このエチレング
リコールスラリーを濾過により固液分離した後、メタノ
ールによる洗浄を3回繰り返し、得られた固形分を真空
乾燥器中で100℃で3時間乾燥して、平均粒子径5.
94μm、変動係数1.9%で、粒子の凝集や粒子径分
布の2極化がないエチレングリコール−シロキサン複合
体球状微粒子の粉体を得た。
Ethylene glycol 320 in suspension (B)
Parts by weight, and concentrated at normal pressure using an evaporator. When the internal temperature reached 150 ° C., heating was continued for 1 hour, and ethylene glycol-siloxane composite spherical fine particles in which ethylene glycol was bonded to the particle surface and inside were added. A slurry of ethylene glycol was obtained. After this ethylene glycol slurry was subjected to solid-liquid separation by filtration, washing with methanol was repeated three times, and the obtained solid was dried in a vacuum dryer at 100 ° C. for 3 hours to obtain an average particle size of 5.
A powder of spherical particles of the ethylene glycol-siloxane composite having a particle size of 94 μm and a variation coefficient of 1.9% without agglomeration or polarization of the particle size distribution was obtained.

【0029】得られた複合体球状微粒子の硬さと機械的
復元性を前述の方法により評価したところ、硬さは64
kg/mm2 、残留変位は7.5%であった。また、元素分
析による複合体球状微粒子中の有機化合物とシロキサン
の組成比は、有機化合物の量を全炭素のモル数、シロキ
サンをSiのモル数で表して、C:Si=31:69で
あった。
When the hardness and mechanical resilience of the obtained composite spherical fine particles were evaluated by the aforementioned method, the hardness was 64.
kg / mm 2 , and the residual displacement was 7.5%. The composition ratio of the organic compound and the siloxane in the composite spherical fine particles by elemental analysis was C: Si = 31: 69, where the amount of the organic compound was represented by the total number of moles of carbon and the siloxane by the number of moles of Si. Was.

【0030】液晶表示板用電極基板に上記の複合体球状
微粒子を挟み、周囲を封止した後、内部に液晶を充填し
たところ、前述の問題点がなく液晶が作動した。 −実施例2− エチレングリコールによる150℃の加熱に代えて、ト
リエチレングリコールによる260℃の加熱とした以外
は実施例1と同様にして、平均粒子径6.06μm、変
動係数1.9%で、粒子の凝集や粒子径分布の2極化の
ないトリエチレングリコール−シロキサン複合体球状微
粒子の粉体を得た。
When the above-mentioned composite spherical fine particles were sandwiched between the electrode substrates for a liquid crystal display panel, the periphery thereof was sealed, and the inside was filled with liquid crystal, the liquid crystal operated without the above-mentioned problems. -Example 2 In the same manner as in Example 1 except that heating at 260 ° C with triethylene glycol was used instead of heating at 150 ° C with ethylene glycol, the average particle diameter was 6.06 µm, and the variation coefficient was 1.9%. Thus, a triethylene glycol-siloxane composite spherical fine particle powder having no particle aggregation or polarization in particle size distribution was obtained.

【0031】得られた複合体球状微粒子の硬さと機械的
復元性を前述の方法により評価したところ、硬さは48
kg/mm2 、残留変位は9.5%であった。また、元素分
析による複合体球状微粒子中の有機化合物とシロキサン
の組成比は、有機化合物の量を全炭素のモル数、シロキ
サンをSiのモル数で表して、C:Si=15:85で
あった。
When the hardness and mechanical resilience of the obtained composite spherical fine particles were evaluated by the aforementioned method, the hardness was 48.
kg / mm 2 , and the residual displacement was 9.5%. The composition ratio of the organic compound and the siloxane in the composite spherical fine particles by elemental analysis was C: Si = 15: 85, where the amount of the organic compound was expressed by the total number of moles of carbon and the siloxane by the number of moles of Si. Was.

【0032】液晶表示板用電極基板に上記の複合体球状
微粒子を挟み、周囲を封止した後、内部に液晶を充填し
たところ、前述の問題点がなく液晶が作動した。 −比較例1− エチレングリコールによる150℃での1時間の加熱に
代えて、エチレングリコールによる120℃での15分
の加熱とした以外は実施例1と同様にして、平均粒子径
5.67μm、変動係数1.9%で、粒子の凝集や粒子
径分布の2極化のないエチレングリコール−シロキサン
複合体球状微粒子の粉体を得た。
The above-mentioned composite spherical fine particles were sandwiched between the electrode substrates for a liquid crystal display panel, the periphery thereof was sealed, and then liquid crystal was filled therein. As a result, the liquid crystal operated without the above-mentioned problems. -Comparative Example 1-An average particle size of 5.67 µm was obtained in the same manner as in Example 1 except that heating at 150 ° C for 1 hour with ethylene glycol was replaced with heating at 120 ° C for 15 minutes with ethylene glycol. A powder of ethylene glycol-siloxane composite spherical fine particles having a coefficient of variation of 1.9% and free from aggregation of particles and polarization of particle size distribution was obtained.

【0033】得られた複合体球状微粒子の硬さと機械的
復元性を前述の方法により評価したところ、硬さは56
kg/mm2 、残留変位は13%であった。また、元素分析
による複合体球状微粒子中の有機化合物とシロキサンの
組成比は、有機化合物の量を全炭素のモル数、シロキサ
ンをSiのモル数で表して、C:Si=7:93であっ
た。
When the hardness and mechanical resilience of the obtained composite spherical fine particles were evaluated by the aforementioned method, the hardness was 56
kg / mm 2 , and the residual displacement was 13%. The composition ratio of the organic compound and the siloxane in the composite spherical fine particles by elemental analysis was as follows: the amount of the organic compound was represented by the total number of moles of carbon, and the siloxane was represented by the number of moles of Si. Was.

【0034】液晶表示板用電極基板に上記の複合体球状
微粒子を挟み、周囲を封止した後、内部に液晶を充填し
たところ、前述の問題点が生じ、液晶表示板用スペーサ
ーとして使用に耐えないものであった。 −比較例2− 実施例1における懸濁体(B)を濾過により固液分離し
た後、メタノールによる洗浄を3回繰り返し、得られた
固形分を真空乾燥器中で100℃で3時間乾燥して、平
均粒子径5.67μm、変動係数1.9%で、粒子の凝
集や粒子径分布の2極化がない球状シリカ微粒子の粉体
を得た。得られた微粒子粉体全量を、投げ込み式超音波
発振器を用いてエチレングリコール320重量部に分散
させた後、エバポレーターを用いて常圧で濃縮し、内温
が150℃になったところで1時間加熱を続け、球状シ
リカ微粒子のエチレングリコールスラリーを得た。
When the above-mentioned composite spherical fine particles are sandwiched between the electrode substrates for a liquid crystal display panel, the periphery thereof is sealed, and the inside is filled with liquid crystal, the above-mentioned problem occurs, and the liquid crystal display panel cannot be used as a spacer. There was nothing. Comparative Example 2 After the suspension (B) in Example 1 was subjected to solid-liquid separation by filtration, washing with methanol was repeated three times, and the obtained solid was dried in a vacuum dryer at 100 ° C. for 3 hours. Thus, spherical silica fine particles having an average particle diameter of 5.67 μm and a variation coefficient of 1.9% and having no aggregation of the particles or polarization of the particle diameter distribution were obtained. The whole amount of the obtained fine particle powder was dispersed in 320 parts by weight of ethylene glycol using a throw-in type ultrasonic oscillator, and then concentrated at normal pressure using an evaporator, and heated at an internal temperature of 150 ° C. for 1 hour. Was continued to obtain an ethylene glycol slurry of spherical silica fine particles.

【0035】このエチレングリコールスラリーを濾過に
より固液分離した後、メタノールによる洗浄を3回繰り
返し、得られた固形分を真空乾燥器中で100℃で3時
間乾燥して、平均粒子径5.67μm、変動係数1.9
%で、粒子の凝集や粒子径分布の2極化がない球状シリ
カ微粒子の粉体を得た。得られた球状シリカ微粒子の硬
さと機械的復元性を前述の方法により評価したところ、
硬さは64kg/mm2 、残留変位は12%であった。ま
た、元素分析による複合体球状微粒子中の有機化合物と
シロキサンの組成比は、有機化合物の量を全炭素のモル
数、シロキサンをSiのモル数で表して、C:Si=
0.04:99.96であった。
After the ethylene glycol slurry was separated into solid and liquid by filtration, washing with methanol was repeated three times, and the obtained solid was dried in a vacuum dryer at 100 ° C. for 3 hours to give an average particle size of 5.67 μm. , Variation coefficient 1.9
%, A powder of spherical silica fine particles free from particle aggregation and polarization of the particle size distribution was obtained. When the hardness and mechanical resilience of the obtained spherical silica fine particles were evaluated by the above-described method,
The hardness was 64 kg / mm 2 and the residual displacement was 12%. Further, the composition ratio of the organic compound and the siloxane in the composite spherical fine particles by elemental analysis is represented by the following formula: the amount of the organic compound is expressed by the total number of moles of carbon, and the siloxane is expressed by the number of moles of Si.
0.04: 99.96.

【0036】液晶表示板用電極基板に上記の複合体球状
微粒子を挟み、周囲を封止した後、内部に液晶を充填し
たところ、前述の問題点が生じ、液晶表示板用スペーサ
ーとして使用に耐えないものであった。
When the above-mentioned composite spherical fine particles are sandwiched between the electrode substrates for a liquid crystal display panel, the periphery thereof is sealed, and then the inside is filled with liquid crystal, the above-described problem occurs, and the liquid crystal display panel can be used as a spacer. There was nothing.

【0037】[0037]

【発明の効果】この発明の液晶表示板用スペーサーとな
る有機質−シロキサン複合体球状微粒子は、粒子径が非
常に揃っており、シリカ焼成物微粒子とポリマー微粒子
の間の硬さ、および、高い機械的復元性を持つ。したが
って、この発明の微粒子を液晶表示板用スペーサーとし
て用いることにより、電極基板表面の傷つけ、低温発泡
の発生、画像ムラの発生、製造コストの上昇、諸表示性
能の低下を招くことがなく、厳密に一定の隙間距離を保
持することができ、画質の優れた高性能の液晶表示板を
作ることができる。
As described above, the organic-siloxane composite spherical fine particles serving as the spacer for the liquid crystal display panel of the present invention have a very uniform particle diameter, and have a high hardness between the silica fine particles and the polymer fine particles. It has resilience. Therefore, by using the fine particles of the present invention as a spacer for a liquid crystal display panel, the surface of the electrode substrate is not damaged, low-temperature bubbling occurs, image unevenness occurs, manufacturing costs increase, and various display performances do not decrease. Thus, a high-performance liquid crystal display panel having excellent image quality can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大石 秀樹 兵庫県姫路市網干区興浜字西沖992番地 の1 株式会社日本触媒 姫路製造所内 (56)参考文献 特開 昭62−269933(JP,A) 特開 平1−234826(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02F 1/1339 500 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hideki Oishi 992, Nishioki, Okihama-shi, Aboshi-ku, Himeji-shi, Hyogo Japan 1 Nippon Shokubai Himeji Works Co., Ltd. Hei 1-234826 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) G02F 1/1339 500

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シラノール基と化学結合可能な有機化合
物が微粒子の内部および表面に結合した有機質−シロキ
サン複合体球状微粒子であって、前記微粒子中の有機化
合物とシロキサンの組成比が、有機化合物の量を全炭素
のモル数、シロキサンをSiのモル数で表して、C:S
i=10:90〜50:50の範囲であることを特徴と
する液晶表示板用スペーサー。
1. An organic-siloxane composite spherical fine particle in which an organic compound capable of chemically bonding to a silanol group is bonded to the inside and the surface of the fine particle, wherein the composition ratio of the organic compound and the siloxane in the fine particle is The amount is represented by the total number of moles of carbon, and the siloxane is expressed by the number of moles of Si.
A spacer for a liquid crystal display panel, wherein i = 10: 90 to 50:50.
【請求項2】 加水分解可能なシリコン化合物を水を含
む有機性溶媒中で加水分解縮合して得られる球状シリカ
水和物微粒子を、シラノール基と化学結合可能な有機化
合物の存在下で加熱する請求項1記載の液晶表示板用ス
ペーサーの製造方法。
2. A spherical silica hydrate fine particle obtained by hydrolyzing and condensing a hydrolyzable silicon compound in an organic solvent containing water is heated in the presence of an organic compound capable of chemically bonding to a silanol group. A method for manufacturing a spacer for a liquid crystal display panel according to claim 1.
JP04016193A 1993-03-01 1993-03-01 Spacer for liquid crystal display panel and method of manufacturing the same Expired - Lifetime JP3187592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04016193A JP3187592B2 (en) 1993-03-01 1993-03-01 Spacer for liquid crystal display panel and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04016193A JP3187592B2 (en) 1993-03-01 1993-03-01 Spacer for liquid crystal display panel and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06250193A JPH06250193A (en) 1994-09-09
JP3187592B2 true JP3187592B2 (en) 2001-07-11

Family

ID=12573041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04016193A Expired - Lifetime JP3187592B2 (en) 1993-03-01 1993-03-01 Spacer for liquid crystal display panel and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3187592B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294230B1 (en) 1997-02-28 2001-09-25 Catalysts & Chemicals Industries Co., Ltd. Spherical laminated particle and liquid crystal display
WO1999040145A1 (en) 1998-02-09 1999-08-12 Catalysts & Chemicals Industries Co., Ltd. Organopolysiloxane fine particles, process for the production thereof and liquid crystal displays

Also Published As

Publication number Publication date
JPH06250193A (en) 1994-09-09

Similar Documents

Publication Publication Date Title
EP1211278B1 (en) Organic - inorganic composite particles and production process thereof
US7901652B2 (en) Method of producing porous silica-based particles
US4987012A (en) Process for preparing mono-dispersed particles
JP2698541B2 (en) Liquid crystal display panel spacer and liquid crystal display panel using the same
JP4883967B2 (en) Method for producing porous silica-based particles and porous silica-based particles obtained from the method
JP3187592B2 (en) Spacer for liquid crystal display panel and method of manufacturing the same
JP3088069B2 (en) Method for producing organic-inorganic composite particles
JP2000212442A (en) Polyorganosiloxane coated elastic fine particle, its manufacture and liquid crystal display
JP3456485B2 (en) Spherical laminated particles and liquid crystal display
JP3697132B2 (en) Organic inorganic composite particles
JP3836925B2 (en) Manufacturing method of spacer for liquid crystal display panel
JPH0782173B2 (en) Method for manufacturing spacer particles for display device
JP3609981B2 (en) LIQUID CRYSTAL DISPLAY ELEMENT SPACER, ITS MANUFACTURING METHOD, AND LIQUID CRYSTAL DISPLAY ELEMENT
JP3157112B2 (en) Liquid crystal display element spacer, method of manufacturing the same, and liquid crystal display element
JP3697133B2 (en) Organic-inorganic composite particles, production method thereof, and use thereof
JP2005314706A (en) Organic inorganic composite particle, its production method and its use
JP4121106B2 (en) Manufacturing method of adhesive spacer for liquid crystal display panel
JP3106071B2 (en) Spacer for liquid crystal display panel, method for manufacturing the same, and liquid crystal display panel
JP4033620B2 (en) Spacer particles and liquid crystal display device using the spacer particles
JPH1149953A (en) Preparation of black polyorganosiloxane particulates
JP2002156639A (en) Adherent spacer for liquid crystal display board and method for manufacturing the same
JP4205193B2 (en) Adhesive spacer for liquid crystal display panel, its manufacturing method and liquid crystal display panel
JP2001192451A (en) Organic-inorganic composite particle, its production process and its use
CN114394768A (en) Modified calcium-boron-lanthanum glass powder, green ceramic tape, LTCC substrate with controllable dielectric constant, packaging material and preparation method thereof
JP2854134B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

EXPY Cancellation because of completion of term