JPH06250125A - Device for forming linear polarization orthogonally intersecting two-frequency - Google Patents

Device for forming linear polarization orthogonally intersecting two-frequency

Info

Publication number
JPH06250125A
JPH06250125A JP7847693A JP7847693A JPH06250125A JP H06250125 A JPH06250125 A JP H06250125A JP 7847693 A JP7847693 A JP 7847693A JP 7847693 A JP7847693 A JP 7847693A JP H06250125 A JPH06250125 A JP H06250125A
Authority
JP
Japan
Prior art keywords
light
frequency
polarization
polarized light
linear polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7847693A
Other languages
Japanese (ja)
Inventor
Shiyuuko Yokoyama
修子 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7847693A priority Critical patent/JPH06250125A/en
Publication of JPH06250125A publication Critical patent/JPH06250125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To provide an optical device converting a two-frequency laser beam being elliptic polarization approximately intersecting orthogonally to linear polarization perfectly intersecting orthogonally and eliminating cross-talk in a heterodyne interference device. CONSTITUTION:The two-frequency laser beam is separated to two optical paths, and the one side polarization is converted to the linear polarization by using phase shifters 2, 6 in respective optical paths, and thereafter, the beams without cross-talk are taken out by polarizers 4, 10 in a direction perpendicular to the linear polarization to be synthesized by a polarization beam splitter 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はクロストークに基づく非
線形の小さい光ヘテロダイン干渉計の光源として要求さ
れる直交性の良い2周波レーザ光をつくり出す装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a two-frequency laser beam having a good orthogonality required as a light source for an optical heterodyne interferometer having a small nonlinearity based on crosstalk.

【0002】[0002]

【従来の技術】2周波レーザにはゼーマンレーザ、光学
音響変調素子を用いた合成2周波レーザ、さらに縦モー
ドを利用した2周波レーザ等があり、いずれも周波数の
異なる光の偏光は直交していると見做されているがこの
直交性は完全ではない。そのためこれら2周波レーザを
光源としてヘテロダイン干渉計を構成し干渉測長を行っ
た場合、ヘテロダイン信号の位相と測定される長さの間
に非線形性が生じ測長誤差の一因となっている。つま
り、直交性が完全であると2周波レーザ光を異方性がな
い検知器で検出したとき光ビートは観測されないが、直
交性が完全でないと光ビートが現れる。これがクロスト
ークであり、このクロストークのため前記の非線形性が
生じる。
2. Description of the Related Art Two-frequency lasers include a Zeeman laser, a synthetic two-frequency laser using an optical acoustic modulator, and a two-frequency laser using a longitudinal mode. In both cases, polarizations of light having different frequencies are orthogonal to each other. It is considered that there is, but this orthogonality is not perfect. Therefore, when a heterodyne interferometer is configured by using these two-frequency lasers as a light source and the interferometric measurement is performed, nonlinearity occurs between the phase of the heterodyne signal and the measured length, which is one of the causes of the measurement error. That is, if the orthogonality is perfect, no optical beat is observed when the two-frequency laser light is detected by a detector having no anisotropy, but if the orthogonality is not perfect, an optical beat appears. This is crosstalk, and this crosstalk causes the above-mentioned nonlinearity.

【0003】従来クロストークの量をあらかじめ測定し
ておき、この量が与える非線形量を計算して測定された
長さに補正を加える試みがなされていた。しかし、測定
現場においては実時間性の面で問題があり、やはり直交
性の良い2周波レーサ光源をつくるり出した方が良い。
Conventionally, it has been attempted to measure the amount of crosstalk in advance, calculate a non-linear amount given by this amount, and correct the measured length. However, there is a problem in terms of real-time property at the measurement site, and it is still better to create a dual frequency laser light source with good orthogonality.

【0004】[0004]

【発明が解決しようとする課題】2周波レーザのうち、
ゼーマンレーザは磁場の影響でクロストークが複雑であ
り、また光音響素子を用いたものは問題のあり方が異な
るので、本発明はクロストークの形が単純な縦モードを
利用した2周波レーザのクロストークを対象とする。
Of the two-frequency lasers,
The Zeeman laser has a complicated crosstalk due to the influence of a magnetic field, and the problem using the photoacoustic element is different. Therefore, the present invention provides a crosstalk of a two-frequency laser using a longitudinal mode having a simple crosstalk shape. Intended for talk.

【0005】[0005]

【発明の概要】内部共振器形の隣り合った縦モードで、
周波数がf1とf2の偏光は互いに直交した直線偏光で
あると言われているが、細かく見ると直線偏光ではなく
また直交もしていない。模式的には図1の(a)のよう
に楕円偏光でしかも直交性も完全ではない。本発明で
は、このような偏光からなる光を2つに分割し、分割し
た光に対し一方は(b)→(c)→(d)→(e)他方
には(b’)→(c’)→(d’)→(e’)のような
偏光に対する操作を行い、最後に2つの光を重ね合わせ
て(f)のような直交した直線偏光をつくっている。
SUMMARY OF THE INVENTION In the internal resonator type adjacent longitudinal modes,
It is said that the polarized lights of frequencies f1 and f2 are linearly polarized lights which are orthogonal to each other, but when viewed in detail, they are neither linearly polarized light nor orthogonal. Schematically, as shown in FIG. 1A, the light is elliptically polarized light and the orthogonality is not perfect. In the present invention, such polarized light is split into two, and one of the split light is (b) → (c) → (d) → (e) and the other is (b ′) → (c Operations such as')-> (d ')->(e') are performed, and finally two lights are superposed to form orthogonal linearly polarized light as shown in (f).

【0006】(b),(b’)のような偏光は特定な方
位を持った位相子例えば四分の一波長板(λ/4板)に
より一方の偏光だけではあるが完全な直線偏光に変える
ことができる。周波数f2の光を直線偏光にしたのが
(c)、周波数f1の光を直線偏光にしたのが(c’)
である。次にこの(c)(c’)の光りに対し、直線偏
光とした偏光の方位と直交した方位の成分(d)
(d’)におけるθ1、θ2を取り出しさらに二分の一
は波長板(λ/2板)等を用いて偏光の方位を調整し
(e)(e’)のような直線偏光をつくり、偏光ビーム
分割器を用いて2つの光を重ね合わせることになる。
The polarized light as shown in (b) and (b ') is converted into a completely linear polarized light by using a retarder having a specific direction, for example, a quarter-wave plate (λ / 4 plate), though it is only one polarized light. Can be changed. The light of frequency f2 was linearly polarized (c), and the light of frequency f1 was linearly polarized (c ').
Is. Next, with respect to the light of (c) and (c '), the component (d) of the azimuth orthogonal to the azimuth of the polarized light that is linearly polarized
Take out θ1 and θ2 in (d '), and for the other half, adjust the azimuth of the polarized light using a wave plate (λ / 2 plate) or the like to make linear polarized light like (e) and (e'). A splitter will be used to superimpose the two lights.

【0007】[0007]

【実施例】図2は本発明の一実施例にかかる装置を示す
構成図である。
2 is a block diagram showing an apparatus according to an embodiment of the present invention.

【0008】周波数がf1、f2の2周はレーザ光はキ
ューブビーム分割器1により透過光と反射光の2つの光
に分割される。透過光は周波数f2の光が直線偏光にな
るよう方位が調整されたλ/4板2を通り偏光ビーム分
割器3に入る。この分割器3の透過光はf2の直線偏光
とf1の楕円偏光のうちf2の偏光方位への投影成分で
あるためクロストークの元である光ビートを含んだ光f
2+bとなっているので捨てられる。反射光はf1の楕
円偏光のうち、f2の偏光方位に直交した方位の成分で
あるので、光ビートは含まれていない。このf1の成分
はさらに偏光子4で方位が調整され偏光ビーム分割器5
に入る。
A laser beam is divided into two light beams, a transmitted light beam and a reflected light beam, by a cube beam splitter 1 in two rounds of frequencies f1 and f2. The transmitted light passes through the λ / 4 plate 2 whose azimuth is adjusted so that the light of the frequency f2 becomes linearly polarized light and enters the polarization beam splitter 3. Since the transmitted light of the splitter 3 is a projection component of the f2 linearly polarized light and the f1 elliptically polarized light to the polarization direction of f2, the light f including the optical beat that is the source of crosstalk is generated.
Since it is 2 + b, it is discarded. Since the reflected light is a component of the elliptically polarized light of f1 in the direction orthogonal to the polarization direction of f2, the optical beat is not included. The azimuth of this component of f1 is further adjusted by the polarizer 4, and the polarization beam splitter 5
to go into.

【0009】一方キューブビーム分割器1の反射光の偏
光はλ/2板7により90°回転させられた後、λ/4
板6によりf1の光が直線偏光にされる。このf1の直
線偏光の方位の成分は光ビートを含んでおり、偏光ビー
ム分割器8の透過光として捨てられる。分割器8の反射
光はf1の光の偏光方位に直交した偏光成分であるので
光ビートは含んでいない。この反射光はλ/2板9で再
び偏光方位が90゜回転された後偏光子10で方位が調
整され偏光ビーム分割器5に入り前記の透過側の光と重
ねられ、直交する直線偏光を持つ2周波レーザ光がつく
られる。
On the other hand, the polarization of the reflected light from the cube beam splitter 1 is rotated by 90 ° by the λ / 2 plate 7, and then λ / 4.
The light of f1 is linearly polarized by the plate 6. The component of the azimuth of the linearly polarized light of f1 contains an optical beat and is discarded as the transmitted light of the polarized beam splitter 8. The reflected light of the splitter 8 is a polarization component orthogonal to the polarization direction of the light of f1 and therefore does not include an optical beat. This reflected light is rotated again by 90 ° in the λ / 2 plate 9 and then the azimuth is adjusted by the polarizer 10 to enter the polarization beam splitter 5 where it is superimposed on the light on the transmission side to produce orthogonal linearly polarized light. A dual-frequency laser beam is created.

【0010】図3は他の構成を持つ実施例である。図2
の実施例では入射光に対し射出光が平行移動するのに対
し、本実施例では両者が同一線上にあるようになってい
ることと、図2の実施例では取り出して利用する偏光が
偏光ビーム分割器3、8の成分であるのに対し、図3に
おいてはS成分を捨てP成分を利用している点が異なる
以外は全く等価である。すなわちλ/4板2、6は一方
の偏光を直線偏光にするための位相子、λ/2板7、9
は偏光方位を調整するための位相子、偏光子4も偏光方
位を調整するためのものである。またプリズム11、1
2は単なる反射鏡である。
FIG. 3 shows an embodiment having another structure. Figure 2
In this embodiment, the emitted light is moved in parallel with the incident light, whereas in the present embodiment, the two are on the same line, and in the embodiment of FIG. In contrast to the components of the dividers 3 and 8, in FIG. 3, they are completely equivalent except that the S component is discarded and the P component is used. That is, the λ / 4 plates 2 and 6 are phase shifters for converting one polarization into linearly polarized light, and the λ / 2 plates 7 and 9 are
Is a retarder for adjusting the polarization direction, and the polarizer 4 is also for adjusting the polarization direction. Also, the prisms 11 and 1
Reference numeral 2 is a simple reflecting mirror.

【0011】また、レーサでは戻り光が問題となるが、
本光学系はファラデ素子を用いた光アイソレーターの挿
入が容易である。
Further, although the return light is a problem in the racer,
In this optical system, it is easy to insert an optical isolator using a Farade element.

【0012】[0012]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の偏光操作の順序を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing the order of polarization operations of the present invention.

【図2】 本発明の実施例である。FIG. 2 is an example of the present invention.

【図3】 本発明の他の実施例である。FIG. 3 is another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

f1、f2 周波数 θ1、θ2 偏光子の方位 1、 キューブビーム分割器 2、 λ/4板 3、 偏光ビーム分割器 4、 偏光子 5、 偏光ビーム分割器 6、 λ/4板 7、 λ/2板 8、 偏光ビーム分割器 9、 λ/2板 10、 偏光子 11、 反射プリズム 12、 反射プリズム f1, f2 Frequency θ1, θ2 Polarizer azimuth 1, Cube beam splitter 2, λ / 4 plate 3, Polarizing beam splitter 4, Polarizer 5, Polarizing beam splitter 6, λ / 4 plate 7, λ / 2 Plate 8, polarized beam splitter 9, λ / 2 plate 10, polarizer 11, reflection prism 12, reflection prism

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 周波数がf1の楕円偏光と該楕円偏光と
ほヾ直交する楕円偏光で周波数がf2である2つの光か
らなる2周波レーザ光に対し、該2周波レーザ光を第1
の光束と第2の光束に分割する手段と第1の光束におい
ては周波数f1の光を、第2の光束においては周波数f
2の光を直線偏光に変換する手段と、第1の光束におい
ては周波数がf1の直線偏光、第2の光束においては周
波数がf2の直線偏光の方位に対し、それぞれ直交した
方位の偏光を取り出す手段と該2つの直線偏光を直行さ
せて重ね合わす手段を持つことを特徴とする2周波直交
直線偏光作成装置。
1. A two-frequency laser beam consisting of an elliptically polarized light having a frequency of f1 and two elliptically polarized lights substantially orthogonal to the elliptically polarized light and having a frequency of f2
Means for splitting into a second light flux and a light flux of frequency f1 in the first light flux, and a frequency f in the second light flux.
A means for converting the second light into a linearly polarized light, and a polarized light having an azimuth orthogonal to the azimuth of the linearly polarized light having a frequency f1 in the first light flux and the linearly polarized light having a frequency f2 in the second light flux. A dual-frequency orthogonal linearly polarized light producing device comprising means and means for making the two linearly polarized light orthogonal and superimposing them.
JP7847693A 1993-02-26 1993-02-26 Device for forming linear polarization orthogonally intersecting two-frequency Pending JPH06250125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7847693A JPH06250125A (en) 1993-02-26 1993-02-26 Device for forming linear polarization orthogonally intersecting two-frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7847693A JPH06250125A (en) 1993-02-26 1993-02-26 Device for forming linear polarization orthogonally intersecting two-frequency

Publications (1)

Publication Number Publication Date
JPH06250125A true JPH06250125A (en) 1994-09-09

Family

ID=13663072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7847693A Pending JPH06250125A (en) 1993-02-26 1993-02-26 Device for forming linear polarization orthogonally intersecting two-frequency

Country Status (1)

Country Link
JP (1) JPH06250125A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870443A (en) * 2016-09-23 2018-04-03 中国航空工业集团公司北京航空制造工程研究所 A kind of all -fiber feedback laser optics coherence tomography system based on heterodyne method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870443A (en) * 2016-09-23 2018-04-03 中国航空工业集团公司北京航空制造工程研究所 A kind of all -fiber feedback laser optics coherence tomography system based on heterodyne method

Similar Documents

Publication Publication Date Title
US7375819B2 (en) System and method for generating beams of light using an anisotropic acousto-optic modulator
US6452682B2 (en) Apparatus to transform two nonparallel propagating optical beam components into two orthogonally polarized beam
JP4028427B2 (en) Interferometer that eliminates beam walk-off using beam retrace
US7372576B2 (en) System and method for generating beams of light using an anisotropic acousto-optic modulator
JP2005338076A (en) System using polarization operation retroreflector
US20060098205A1 (en) Optical connection for interferometry
JPH09178415A (en) Light wave interference measuring device
JP2003517145A (en) Interferometer with reduced ghost beam effect
JP3513432B2 (en) Optical frequency domain reflection measuring device and optical frequency domain reflection measuring method
JPH0781915B2 (en) Method and apparatus for real-time measurement of the polarization state of quasi-monochromatic rays
JP2007537436A (en) Polarization interferometer with error beam removal or separation caused by polarization leakage
TW542902B (en) Birefringent beam combiners for polarized beams in interferometers
JPS61219803A (en) Apparatus for measuring physical quantity
JPH06250125A (en) Device for forming linear polarization orthogonally intersecting two-frequency
JPS58160848A (en) Photointerferometer
US5048120A (en) Arrangement for the generation of an FSK-modulated optical signal having two polarization states that are orthogonal to one another from an FSK-modulated optical transmitted signal
JP3036951B2 (en) Light wave interference measurement device
JPH1144503A (en) Light wave interference measuring device
JP2748198B2 (en) High extinction ratio orthogonal dual frequency light source for heterodyne interferometer
JP3382644B2 (en) Orthogonal polarization heterodyne interferometer
JPS6088929A (en) Optical heterodyne module
JPH05302810A (en) Heterodyne two wave lengths displacement interference meter
JPH11344303A (en) Laser interference length measuring apparatus
JP2016170160A (en) Laser interferometer
JPH0894317A (en) Displacement sensor