JPH06250113A - Head mounted display device - Google Patents

Head mounted display device

Info

Publication number
JPH06250113A
JPH06250113A JP5035211A JP3521193A JPH06250113A JP H06250113 A JPH06250113 A JP H06250113A JP 5035211 A JP5035211 A JP 5035211A JP 3521193 A JP3521193 A JP 3521193A JP H06250113 A JPH06250113 A JP H06250113A
Authority
JP
Japan
Prior art keywords
lens
optical system
image
eyepiece
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5035211A
Other languages
Japanese (ja)
Other versions
JP3245472B2 (en
Inventor
Osamu Konuma
修 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP03521193A priority Critical patent/JP3245472B2/en
Priority to US08/201,384 priority patent/US5546227A/en
Publication of JPH06250113A publication Critical patent/JPH06250113A/en
Application granted granted Critical
Publication of JP3245472B2 publication Critical patent/JP3245472B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an eyepiece optical system which is compact in size without using a relay optical system and has a good flatening characteristic and a small total Petzual's sum by constructing the eyepiece system with an optical element which has a semitransmissive surface, a surface reflection mirror and a lens system which has at least one positive refractive power lens. CONSTITUTION:The device is provided with display elements which display information contents, an eyepiece optical system which enlarges and projects virtual images to eyeballs without forming an image of the display contents in the optical path and a supporting means which supports the eyepiece system right front of the eyeballs. The eyepiece optical system consists of an optical element which has a semitransmissive surface, a surface reflection mirror and a lens system which has at least one positive refractive power lens. It is desirable to make 0.5<1n2phi1/phi21<4 where phi1 is the refractive power of the surface reflection mirror, phi2 is the refractive power of the lens system which has a positive refractive power and n2 is the refractive index of a 'd' line of vitreous material of the lens. Moreover, the negative Petzual's value of the reflection mirror is made small by the added positive lens and the total Petzual's sum is made smaller.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、頭部装着式表示装置に
関し、特に、使用者の頭部もしくは顔面に保持すること
が可能なポータブル型の頭部装着式表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a head-mounted display device, and more particularly to a portable head-mounted display device that can be held on the head or face of a user.

【0002】[0002]

【従来の技術】バーチャルリアリティー用あるいは個人
的に大画面の画像を楽しむことを目的として、ヘルメッ
ト型、ゴーグル型の頭部もしくは顔面に保持する頭部装
着式表示装置が開発されている。
2. Description of the Related Art A head-mounted display device for holding on the head or face of a helmet type or goggles type has been developed for the purpose of enjoying images on a large screen for virtual reality or personally.

【0003】例えば、特開平3−191389号に示さ
れているように、図25の断面図において、情報の内容
を表示する2次元表示素子1と、その表示内容を眼球に
拡大投影するために表示素子と対向して設けられた拡大
反射鏡2と、両者の間に配置された半透鏡3とを備える
ことにより、小型の表示装置で大画面の画像が得られる
ものがある。さらに、上記半透鏡3に外界像をも透過す
る作用を持たせれば、図に破線で示したように外界の光
も眼球に達し、表示素子1上の画像と外界像を同時に重
ね合わせて見ることができる。
For example, as shown in Japanese Unexamined Patent Publication No. 3-191389, in the cross-sectional view of FIG. 25, a two-dimensional display element 1 for displaying the contents of information, and for displaying the displayed contents on an eyeball in an enlarged manner are displayed. By providing the magnifying reflecting mirror 2 provided so as to face the display element and the semi-transparent mirror 3 arranged between the two, a small display device can obtain a large-screen image. Further, if the semi-transparent mirror 3 is made to have a function of transmitting the external image as well, the external light reaches the eyeball as shown by the broken line in the figure, and the image on the display element 1 and the external image are simultaneously superposed and viewed. be able to.

【0004】拡大反射鏡2を半透鏡とし、図26に示す
ように、これを眼球に対向して配置しても、上述した場
合と同様の効果が得られる。
Even if the magnifying reflecting mirror 2 is a semi-transparent mirror and is arranged so as to face the eyeball as shown in FIG. 26, the same effect as that described above can be obtained.

【0005】また、米国特許4,269,476号に示
されているように、表示素子上の表示内容をリレー光学
系により一度中間像として結像し、その中間像を拡大反
射鏡により眼球に拡大投影するものも知られている。
Further, as shown in US Pat. No. 4,269,476, the display content on the display element is once formed as an intermediate image by a relay optical system, and the intermediate image is formed on the eyeball by a magnifying reflecting mirror. It is also known to magnify and project.

【0006】[0006]

【発明が解決しようとする課題】上記特開平3−191
389号の光学系は、図25及び図26に示したよう
に、拡大反射鏡を2次元表示素子側に反射面を向けた表
面反射鏡とし、全体として2次元表示素子と表面反射鏡
と半透鏡の3部品で構成したコンパクトな接眼光学系で
あるが、像面の平坦性を示すペッツバール和PS: PS=Σ(1/nf) は、表面反射鏡では、n=−1、f>0であるので、全
体としてこの構成をとる限りは、必然的に、PS<0と
なる。ある大きさの2次元表示素子を用いて大画面を得
ようとして画角を大きくとると、fは小さくなるので、
PSは負の大きな値となる。したがって、従来の装置の
光学系は、像面の平坦性が著しく損なわれているという
問題がある。像面の平坦性が悪いと、観察画像中心部と
周辺部で観察者に提示される空中拡大像の光軸方向の位
置が大きく異なり、眼の調節作用を大きく働かせる必要
が生じ、観察者の眼の疲労が激しく、表示装置としてふ
さわしくない。また、眼の調節作用の限界である近点を
越えてより近くに投影してしまうと、観察できなくなっ
てしまう。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
In the optical system of No. 389, as shown in FIGS. 25 and 26, the magnifying reflecting mirror is a surface reflecting mirror having a reflecting surface facing the two-dimensional display element side, and the two-dimensional display element and the surface reflecting mirror are semi-transparent. Although it is a compact eyepiece optical system composed of three parts of a transparent mirror, Petzval sum PS: PS = Σ (1 / nf), which shows the flatness of the image plane, is n = −1, f> 0 in the surface reflecting mirror. Therefore, as long as this configuration is taken as a whole, PS <0 is inevitable. When the angle of view is increased to obtain a large screen by using a two-dimensional display element of a certain size, f becomes small.
PS has a large negative value. Therefore, the optical system of the conventional device has a problem that the flatness of the image plane is significantly impaired. If the flatness of the image plane is poor, the position in the optical axis direction of the magnified aerial image presented to the observer in the central part and the peripheral part of the observed image will be significantly different, and it will be necessary to exert a large effect on the accommodation of the eye. It causes severe eye fatigue and is not suitable as a display device. Also, if the image is projected closer than the near point, which is the limit of the accommodative action of the eye, it becomes impossible to observe.

【0007】一例として、表面反射鏡の曲率半径r=5
4.3mm、すなわち、焦点距離f=27.15mm、
画角30°で、図25に示した構成をとった場合の球面
収差、非点収差、歪曲収差及びコマ収差を示す収差図を
図27に示した。ここでの像面の湾曲量は、観察像の中
心部と周辺部での差が約1ディオプターに相当し、眼の
調節量は著しく大きい。この場合、PS=1/(−1)
×27.15=−0.037となる。
As an example, the radius of curvature r of the surface reflecting mirror is 5
4.3 mm, that is, the focal length f = 27.15 mm,
FIG. 27 is an aberration diagram showing spherical aberration, astigmatism, distortion, and coma when the configuration shown in FIG. 25 is taken at an angle of view of 30 °. The amount of curvature of the image plane here corresponds to a difference of about 1 diopter between the central portion and the peripheral portion of the observed image, and the amount of accommodation of the eye is significantly large. In this case, PS = 1 / (-1)
X27.15 = -0.037.

【0008】これに対して、米国特許4,269,47
6号の光学系は、こうした像面の湾曲を補正するため
に、リレー光学系を用いて一度湾曲した中間像を結像
し、その中間像を物点として表面反射鏡もしくは裏面反
射鏡により眼球に平坦性の良い像を投影している。しか
し、リレー光学系を用いているため、接眼光学系の全長
が長く、大型であるという問題がある。頭部装着式の表
示装置としては、小型であることが、快適な装着感を達
成するために重要であることは当然である。
In contrast, US Pat. No. 4,269,47
In order to correct such curvature of the image plane, the optical system of No. 6 forms an intermediate image once curved by using a relay optical system, and uses the intermediate image as an object point by a front reflecting mirror or a back reflecting mirror. An image with good flatness is projected on. However, since the relay optical system is used, there is a problem that the total length of the eyepiece optical system is long and large. As a head-mounted display device, it is natural that small size is important for achieving a comfortable wearing feeling.

【0009】本発明はこのような従来技術の問題点に鑑
みてなされたものであり、その目的は、リレー光学系を
用いずに、コンパクトでありながら、像面の平坦性が良
い、言い換えれば、全体のペッツバール和の小さい接眼
光学系を用いた頭部装着式表示装置を提供することであ
る。
The present invention has been made in view of the above problems of the prior art, and an object thereof is to use a relay optical system, be compact, and have good flatness of an image surface. , A head-mounted display device using an eyepiece optical system having a small Petzval sum as a whole.

【0010】[0010]

【課題を解決するための手段】上記目的を達成する第1
の本発明の頭部装着式表示装置は、情報内容を表示する
表示素子と、その表示内容を光路中で結像することなし
に眼球に虚像として拡大投影する接眼光学系と、前記接
眼光学系を眼球直前に支持する支持手段とを備えた頭部
装着式表示装置において、前記接眼光学系を半透過面を
有する光学素子と、表面反射鏡と、少なくとも1枚の正
の屈折力を有するレンズ系とで構成したことを特徴とす
るものである。
[Means for Solving the Problems] First to achieve the above object
The head-mounted display device of the present invention includes a display element for displaying information content, an eyepiece optical system for magnifying and projecting the display content as a virtual image on the eyeball without forming an image in the optical path, and the eyepiece optical system. A head-mounted display device having a supporting means for supporting the lens immediately before the eyeball, an optical element having a semi-transmissive surface for the eyepiece optical system, a surface reflecting mirror, and at least one lens having a positive refractive power. It is characterized by being configured with a system.

【0011】この場合、表面反射鏡の屈折力をφ1 、正
の屈折力を有するレンズ系の屈折力をφ2 、そのレンズ
の硝材のd線の屈折率をn2 とするとき、 0.5<|n2 φ1 /φ2 |<4 ・・・・(1) を満足することがより好ましい。
In this case, when the refractive power of the surface reflecting mirror is φ 1 , the refractive power of the lens system having a positive refractive power is φ 2 , and the refractive index of the d-line of the glass material of the lens is n 2 , It is more preferable that 5 <| n 2 φ 1 / φ 2 | <4 (1) is satisfied.

【0012】また、第2の本発明の頭部装着式表示装置
は、情報内容を表示する表示素子と、その表示内容を光
路中で結像することなしに眼球に虚像として拡大投影す
る接眼光学系と、前記接眼光学系を眼球直前に支持する
支持手段とを備えた頭部装着式表示装置において、前記
接眼光学系を半透過面を有する光学素子と、裏面反射鏡
とで構成したことを特徴とするものである。
The head-mounted display device according to the second aspect of the present invention includes a display element for displaying information content and an eyepiece optics for enlarging and projecting the display content as a virtual image on the eyeball without forming an image in the optical path. A head-mounted display device comprising a system and a supporting means for supporting the eyepiece optical system immediately before the eyeball, wherein the eyepiece optical system is composed of an optical element having a semi-transmissive surface and a back reflector. It is a feature.

【0013】この場合、裏面反射鏡の反射面の屈折力を
φ3 、裏面反射鏡を構成するレンズの硝材のd線の屈折
率をn3 、接眼光学系全系の焦点距離をFとするとき、 |Fφ3 /n3 2 |<1 ・・・・(3) を満足することがより好ましい。
In this case, the refractive power of the reflecting surface of the back reflecting mirror is φ 3 , the refractive index of the d-line of the glass material of the lens forming the back reflecting mirror is n 3 , and the focal length of the entire eyepiece optical system is F. At this time, it is more preferable to satisfy | Fφ 3 / n 3 2 | <1 ... (3).

【0014】[0014]

【作用】以下、本発明において上記の構成をとる理由と
作用について述べる。一般的に、光学系の像面の平坦性
を改善するには、全体のペッツバール和を小さくすれば
よく、正負のレンズをバランス良く配置すればよい。し
かし、そうすると、光学系の全長は一般的に長くなり、
本発明のような頭部装着式表示装置の場合は、接眼光学
系が顔面の前で大型となり、重量が増したり、前方に長
く突出することとなり、重量バランスが顔面前方に偏っ
たりしてしまい、頭部装着式の装置としてふさわしくな
い。
The reason why the above construction is adopted and the operation thereof will be described below. In general, in order to improve the flatness of the image plane of the optical system, it is sufficient to reduce the Petzval sum of the whole and to arrange the positive and negative lenses in a well-balanced manner. But then, the total length of the optical system is generally long,
In the case of a head-mounted display device such as the present invention, the eyepiece optical system becomes large in front of the face, the weight increases, or it projects to the front longer, and the weight balance is biased toward the front of the face. , Not suitable as a head-mounted device.

【0015】本発明による頭部装着式表示装置の接眼光
学系は、コンパクトでありながら光学系全体のペッツバ
ール和を小さくすることに成功したものである。
The eyepiece optical system of the head-mounted display device according to the present invention is compact and succeeds in reducing the Petzval sum of the entire optical system.

【0016】まず、眼球に虚像を拡大投影するための反
射鏡によって必然的に発生する負のペッツバール値を小
さくすることを考える。そのためには、正のペッツバー
ル値を発生する面又は光学素子を光路中に追加して、反
射鏡の負のペッツバール値と相殺させると同時に、反射
鏡のパワーを小さくし、負のペッツバール値そのものを
小さくすればよい。反射鏡は、言い換えれば、正レンズ
と同様の正のパワーを持つので、ここで追加した正レン
ズと正のパワーを分担し合うことにより、反射鏡自身の
パワーは小さくなり、焦点距離は大きくなって、負のペ
ッツバール値が小さくなるのである。
First, let us consider reducing the negative Petzval value that is inevitably generated by a reflecting mirror for magnifying and projecting a virtual image on the eyeball. To do so, add a surface or an optical element that generates a positive Petzval value in the optical path to offset the negative Petzval value of the reflecting mirror, and at the same time reduce the power of the reflecting mirror to reduce the negative Petzval value itself. You can make it smaller. In other words, the reflecting mirror has the same positive power as the positive lens.By sharing the positive power with the positive lens added here, the power of the reflecting mirror itself decreases and the focal length increases. Therefore, the negative Petzval value becomes smaller.

【0017】そこで、本発明の第1の接眼光学系は、表
面反射鏡と少なくとも1枚の正の屈折力を有するレンズ
系で構成して、パワーを分散させ、表面鏡の負のペッツ
バール値と正の屈折力を有するレンズ系の正のペッツバ
ール値とをうまく相殺させて、全系のペッツバール和を
小さくしたものである。一般的に、パワーを分散させる
ことは、光学系の収差補正にはよく使われる手段である
が、本発明の接眼光学系においては、表面反射鏡のパワ
ーをφ1 、追加する正の屈折力を有するレンズ系のパワ
ーをφ2 、そのレンズの硝材のd線の屈折率をn2 とし
たとき、 0.5<|n2 φ1 /φ2 |<4 ・・・・(1) を満足することがさらに好ましい。この条件式(1)
は、正負のペッツバール値の比を制限するものであり、
|n2 φ1 /φ2 |が0.5以下であると、追加する正
の屈折力を有するレンズ系で発生する正のペッツバール
値が過大であり、また、これが4以上であると、表面反
射鏡で発生する負のペッツバール値が過大であり、どち
らの場合も全系のペッツバール和を小さくできない。な
お、特に、 1<|n2 φ1 /φ2 |<3 ・・・・(1)’ を満足することが、ペッツバール和を小さくする上で一
層好ましく、画像周辺まで解像力の良い観察像を観察者
に提供することができる。
Therefore, the first eyepiece optical system of the present invention comprises a surface reflecting mirror and at least one lens system having a positive refracting power to disperse the power and to obtain a negative Petzval value of the surface mirror. This is to make the Petzval sum of the entire system small by canceling out the positive Petzval value of the lens system having a positive refractive power. Generally, dispersing the power is a means often used for aberration correction of the optical system, but in the eyepiece optical system of the present invention, the power of the surface reflecting mirror is φ 1 , and the positive refractive power to be added is When the power of the lens system having the above is φ 2 and the refractive index of the glass material of the lens at the d-line is n 2 , 0.5 <| n 2 φ 1 / φ 2 | <4 (1) It is more preferable to be satisfied. This conditional expression (1)
Limits the ratio of positive and negative Petzval values,
If | n 2 φ 1 / φ 2 | is 0.5 or less, the positive Petzval value generated in the lens system having positive refractive power to be added is excessive, and if it is 4 or more, the surface is The negative Petzval value generated by the reflector is too large, and in both cases the Petzval sum of the entire system cannot be made small. In addition, it is more preferable to satisfy 1 <| n 2 φ 1 / φ 2 | <3 (3) ... (1) 'in order to reduce the Petzval sum, and to obtain an observation image with good resolution up to the periphery of the image. Can be provided to the observer.

【0018】半透過面を有する光学素子は、表示素子の
光軸を眼球の光軸まで90°だけ偏向させる本発明のレ
イアウト上必要なものである。したがって、少なくとも
1枚の正の屈折力を持つレンズ系は、表示素子と半透過
面を有する光学素子の間、もしくは、顔面と干渉しない
間隔を保ちながら眼球と半透過面を有する光学素子の間
に追加する必要がある。
The optical element having a semi-transmissive surface is necessary for the layout of the present invention to deflect the optical axis of the display element by 90 ° to the optical axis of the eyeball. Therefore, at least one lens system having a positive refractive power is provided between the display element and the optical element having the semi-transmissive surface, or between the optical element having the eyeball and the semi-transmissive surface while keeping a distance that does not interfere with the face. Need to be added to.

【0019】さらに好ましくは、表面反射鏡の曲率半径
をR、接眼光学系全体の焦点距離をFとしたとき、 2<R/F<3 ・・・・(2) を満足することが望ましい。上記のR/Fが2以下であ
ると、追加する正の屈折力を有するレンズ系の屈折力が
弱くなり、反射鏡で発生する内方性コマ収差が大きくな
る。逆に、これが3以上であると、追加する正の屈折力
を有するレンズ系の屈折力が強くなり、このレンズ系で
発生する外方性コマ収差が大きくなる。このコマ収差
は、本発明の接眼光学系のように構成要素の少ない光学
系では、他で補正することは難しくなり、軸外の結像性
能を著しく乱すことになる。
More preferably, when the radius of curvature of the surface reflecting mirror is R and the focal length of the entire eyepiece optical system is F, it is desirable that 2 <R / F <3 (2) is satisfied. When the above R / F is 2 or less, the refractive power of the lens system having the positive refractive power to be added becomes weak, and the inward coma generated in the reflecting mirror becomes large. On the contrary, if this is 3 or more, the refractive power of the lens system having the positive refractive power to be added becomes strong, and the outward coma aberration generated in this lens system becomes large. It is difficult to correct this coma aberration by an optical system having a small number of constituent elements such as the eyepiece optical system of the present invention, which significantly disturbs the off-axis imaging performance.

【0020】本発明の第2の接眼光学系は、少なくとも
半透過面を有する光学素子と裏面反射鏡で構成し、前記
PS=Σ(1/nf)の式において、裏面鏡の反射面
で、n=−(裏面鏡材質の屈折率)<−1、f>0とす
ることにより、反射面での負のペッツバール値を表面反
射鏡(n=−1)場合に比べて小さくし、全系のペッツ
バール和を小さくしたものである。さらに、本発明の接
眼光学系においては、裏面鏡の反射面のパワーをφ3
裏面鏡を構成するレンズの硝材のd線の屈折率をn3
接眼光学系全系の焦点距離をFとするとき、 |Fφ3 /n3 2 |<1 ・・・・(3) を満足することがさらに好ましい。この条件式(3)
は、正負のペッツバール値の比を制限するものであり、
|Fφ3 /n3 2 |が1以上であると、裏面鏡の反射面
で発生する負のペッツバール値が大きすぎて、上記構成
のコンパクトな光学系では、全系のペッツバール和を小
さくできずに、発生する像面湾曲が大きくなり、観察者
に負担をかけたり、明瞭な観察像を提供することはでき
なくなったりする。
A second eyepiece optical system of the present invention is composed of an optical element having at least a semi-transmissive surface and a back surface reflecting mirror, and in the above expression of PS = Σ (1 / nf), the back surface mirror reflecting surface is: By setting n =-(refractive index of rear surface mirror material) <-1, f> 0, the negative Petzval value on the reflecting surface is made smaller than that of the surface reflecting mirror (n = -1), and the entire system is reduced. It is a smaller Petzval sum of. Furthermore, in the eyepiece optical system of the present invention, the power of the reflecting surface of the rear surface mirror is φ 3 ,
The refractive index of the d-line of the glass material of the lens forming the rear surface mirror is n 3 ,
When the focal length of the entire eyepiece optical system is F, | Fφ 3 / n 3 2 | <1 (3) is more preferable. This conditional expression (3)
Limits the ratio of positive and negative Petzval values,
If | Fφ 3 / n 3 2 | is 1 or more, the negative Petzval value generated on the reflecting surface of the rear surface mirror is too large, and the Petzval sum of the entire system cannot be reduced in the compact optical system having the above configuration. In addition, the curvature of field that is generated becomes large, which imposes a burden on the observer and cannot provide a clear observation image.

【0021】なお、特に、 |Fφ3 /n3 2 |<0.6 ・・・・(3)’ を満足することが、ペッツバール和を小さくする上で一
層好ましく、画像周辺まで解像力の良い観察像を観察者
に提供することができる。
In particular, it is more preferable to satisfy | Fφ 3 / n 3 2 | <0.6 (3) 'in order to reduce the Petzval sum, and to observe with good resolution up to the periphery of the image. The image can be provided to the observer.

【0022】半透過面を有する光学素子は、表示素子の
光軸を眼球の光軸まで90°だけ偏向させる本発明のレ
イアウト上必要なものである。
The optical element having a semi-transmissive surface is necessary for the layout of the present invention to deflect the optical axis of the display element by 90 ° to the optical axis of the eyeball.

【0023】また、さらに好ましくは、裏面鏡のパワー
によっては、正のペッツバール値を発生する少なくとも
1枚の正の屈折力を有するレンズ系、又は、負のペッツ
バール値を発生する少なくとも1枚の負の屈折力を有す
るレンズ系を、表示素子と半透過面を有する光学素子の
間、もしくは、顔面と干渉しない間隔を保ちながら眼球
と半透過面を有する光学素子の間に追加するのが、全体
のペッツバール和を一層小さくする上で好ましい。
More preferably, depending on the power of the rear surface mirror, at least one lens system having a positive refractive power that produces a positive Petzval value or at least one negative lens system that produces a negative Petzval value. A lens system having a refracting power of is added between the display element and the optical element having the semi-transmissive surface, or between the eyeball and the optical element having the semi-transmissive surface while keeping a distance that does not interfere with the face. It is preferable for further reducing the Petzval sum of

【0024】さらに好ましくは、裏面鏡の曲率半径を
R、接眼光学系全体の焦点距離をFとしたとき、 2<R/F<8 ・・・・(4) を満足することが望ましい。上記のR/Fが2以下であ
ると、全体の焦点距離を保って一定の観察画角を保とう
とすると、追加するレンズ系の屈折力が弱くなり、反射
鏡で発生する内方性コマ収差が大きくなる。また、これ
が8以上であると、逆に、裏面鏡を構成するレンズの反
射面でない方の面、又は、追加する正の屈折力を有する
レンズ系の屈折力が強くなり、このパワーの強くなった
屈折面へ入射する軸外光線の上側マージナル光線と下側
マージナル光線の面への入射角が極端に異なってしま
い、外方性コマ収差が発生する。どちらの場合も、他の
レンズ系で補正することは不可能なので、軸外の結像性
能が悪化し、視野周辺まで明瞭な観察像を得ることがで
きなくなってしまう。
More preferably, when the radius of curvature of the rear surface mirror is R and the focal length of the entire eyepiece optical system is F, 2 <R / F <8 (4) is preferably satisfied. If the above R / F is 2 or less, the refracting power of the lens system to be added becomes weak and the internal coma aberration generated in the reflecting mirror is attempted to maintain a constant viewing angle of view while maintaining the entire focal length. Grows larger. On the other hand, if this is 8 or more, on the contrary, the refracting power of the surface of the lens that constitutes the rear-view mirror, which is not the reflecting surface, or the lens system having the positive refracting power to be added becomes strong, and this power becomes strong. In addition, the incident angles of the upper marginal ray and the lower marginal ray of the off-axis rays incident on the refracting surface on the surface are extremely different from each other, which causes outward coma. In either case, since it cannot be corrected by another lens system, the off-axis imaging performance deteriorates, and it becomes impossible to obtain a clear observation image up to the periphery of the visual field.

【0025】[0025]

【実施例】以下、図面を参照にして、本発明の頭部装着
式表示装置の実施例1〜12について説明する。
Embodiments 1 to 12 of the head-mounted display device of the present invention will be described below with reference to the drawings.

【0026】以下の実施例は、全て、2次元表示素子の
長辺長が14.55mm(対角長18.36mm)であ
り、それに対応した観察画角が30°の例であり、この
数値に限らず、全体の構成を係数倍することによって2
次元表示素子の大きさに対応できることは、明らかであ
る。
The following examples are all examples in which the long side length of the two-dimensional display element is 14.55 mm (diagonal length 18.36 mm) and the observation angle of view corresponding thereto is 30 °. Not limited to 2 by multiplying the entire configuration by a factor
It is obvious that the size of the dimensional display element can be dealt with.

【0027】また、半透過面を有する光学素子としてキ
ューブビームスプリッタープリズムを用いた例を全て示
したが、これに限らずハーフミラー等を用いて容易に構
成することができる。
Although all the examples using the cube beam splitter prism as the optical element having the semi-transmissive surface have been shown, the present invention is not limited to this, and a half mirror or the like can be easily used.

【0028】実施例1〜12の断面図を図1〜図12に
示すが、各断面図は2次元表示素子の短辺方向の断面図
である。
Cross-sectional views of Examples 1 to 12 are shown in FIGS. 1 to 12, and each cross-sectional view is a cross-sectional view in the short side direction of the two-dimensional display element.

【0029】また、各実施例のレンズデータは後記する
が、各データは観察者眼球から2次元表示素子への逆追
跡データであり、実際の使用に際しては、像面に2次元
表示素子を配置する。
Further, although the lens data of each embodiment will be described later, each data is reverse tracking data from the observer's eyeball to the two-dimensional display element, and in actual use, the two-dimensional display element is arranged on the image plane. To do.

【0030】以下、実施例1から4までは、第1の本発
明の実施例である。すなわち、図1、図2の実施例1、
2は、何れも凹面表面反射鏡を使用した例であり、正の
ペッツバール値を発生させる両凸の正レンズを瞳孔位置
と半透鏡の間に配置することにより、全体のペッツバー
ル和を小さくし、平坦性の良い像面を得ている。図1
3、図14に、それぞれの実施例の球面収差、非点収
差、歪曲収差及びコマ収差を示す収差図を示す。収差図
中、球面収差は瞳孔比Rで、また、非点収差、歪曲収差
及びコマ収差は画角ωで表してある。
Hereinafter, Examples 1 to 4 are Examples of the first present invention. That is, the first embodiment of FIGS.
2 is an example using a concave surface reflecting mirror, and by placing a biconvex positive lens that generates a positive Petzval value between the pupil position and the semi-transparent mirror, the overall Petzval sum is reduced, An image plane with good flatness is obtained. Figure 1
3 and 14 are aberration diagrams showing spherical aberration, astigmatism, distortion, and coma in each example. In the aberration diagrams, spherical aberration is represented by the pupil ratio R, and astigmatism, distortion, and coma are represented by the angle of view ω.

【0031】また、図3、図4の実施例3、4は、何れ
も凹面表面反射鏡を使用した例であり、この場合は、正
のペッツバール値を発生させる両凸の正レンズを半透鏡
と2次元表示素子の間に配置することにより、全体のペ
ッツバール和を小さくし、平坦性の良い像面を得てい
る。図15、図16に、それぞれの実施例の図13と同
様な収差図を示す。
The third and fourth embodiments shown in FIGS. 3 and 4 are examples in which a concave surface reflecting mirror is used. In this case, a biconvex positive lens for generating a positive Petzval value is a semi-transparent mirror. And the two-dimensional display element, the Petzval sum of the whole is reduced and an image plane with good flatness is obtained. FIGS. 15 and 16 show aberration diagrams similar to FIG. 13 of the respective examples.

【0032】また、実施例5から12までは、第2の本
発明の実施例である。すなわち、図5の実施例5は、裏
面反射鏡にメニスカスの正レンズを用いた例であり、全
体のペッツバール和は小さいが、両凸の正レンズをさら
に半透鏡と2次元表示素子の間に配置して全体のペッツ
バール和を一層小さくしている。この場合、正レンズを
瞳孔側よりも像面側に配置すると、コマ収差、非点収差
を発生させずに、ペッツバール和を一層小さくできる。
図17にこの実施例の図13と同様な収差図を示す。
The fifth to twelfth examples are examples of the second invention. That is, Example 5 of FIG. 5 is an example in which a meniscus positive lens is used for the back surface reflecting mirror, and although the overall Petzval sum is small, a biconvex positive lens is further provided between the semi-transparent mirror and the two-dimensional display element. Placed to make the overall Petzval sum even smaller. In this case, if the positive lens is arranged closer to the image plane than the pupil side, the Petzval sum can be further reduced without causing coma and astigmatism.
FIG. 17 shows an aberration diagram similar to that of FIG. 13 of this example.

【0033】また、図6の実施例6は、裏面反射鏡に平
凸レンズを用いた例であり、この例のように、ビームス
プリッタープリズムと平凸レンズを接合してもよいが、
ビームスプリッタープリズムの1面に反射作用の曲率を
付けることもできるので、部品点数を減らすことができ
る。裏面反射鏡のレンズが平凸レンズのために、反射面
でない平面側で非点収差が発生しない。図18にこの実
施例の図13と同様な収差図を示す。
The sixth embodiment of FIG. 6 is an example in which a plano-convex lens is used for the back surface reflecting mirror. Although a beam splitter prism and a plano-convex lens may be cemented as in this example,
Since it is possible to add a curvature of reflection to one surface of the beam splitter prism, the number of parts can be reduced. Since the lens of the back reflecting mirror is a plano-convex lens, astigmatism does not occur on the flat surface side which is not the reflecting surface. FIG. 18 shows an aberration diagram similar to that of FIG. 13 of this example.

【0034】図7の実施例7は、裏面反射鏡に平凸レン
ズを用いた例であり、同様に、ビームスプリッタープリ
ズムと平凸レンズを接合してもよいが、ビームスプリッ
タープリズムの1面に反射作用の曲率を付けることもで
きるので、部品点数を減らすことができる。この例で
は、正のペッツバール値を発生させるように、ビームス
プリッタープリズムの瞳位置側に両凸の正レンズをさら
に配置してペッツバール和を一層小さくしている。この
正レンズのパワーを変えたり、光軸方向に移動させたり
することにより、観察者の視度に合わせた視度補正が可
能である。図19にこの実施例の図13と同様な収差図
を示す。
Example 7 in FIG. 7 is an example in which a plano-convex lens is used for the back surface reflecting mirror. Similarly, a beam splitter prism and a plano-convex lens may be cemented, but one surface of the beam splitter prism has a reflecting action. Since the curvature of can be added, the number of parts can be reduced. In this example, a biconvex positive lens is further arranged on the pupil position side of the beam splitter prism so as to generate a positive Petzval value, and the Petzval sum is further reduced. By changing the power of this positive lens or moving it in the optical axis direction, it is possible to correct the diopter in accordance with the diopter of the observer. FIG. 19 shows an aberration diagram similar to that of FIG. 13 of this example.

【0035】図8の実施例8は、裏面反射鏡に平凸レン
ズを用いた例であり、同様に、ビームスプリッタープリ
ズムと平凸レンズを接合してもよいが、ビームスプリッ
タープリズムの1面に反射作用の曲率を付けることもで
きるので、部品点数を減らすことができる。この例で
は、正のペッツバール値を発生させるように、ビームス
プリッタープリズムの2次元表示素子側にビームスプリ
ッタープリズムに向かって凸面を向けたメニスカス正レ
ンズをさらに配置してペッツバール和を一層小さくして
いる。このようにすると、実施例7に比べて、アイポイ
ントと装置間の距離が稼げる。図20にこの実施例の図
13と同様な収差図を示す。
Example 8 in FIG. 8 is an example in which a plano-convex lens is used for the back surface reflecting mirror. Similarly, a beam splitter prism and a plano-convex lens may be cemented, but one surface of the beam splitter prism has a reflecting action. Since the curvature of can be added, the number of parts can be reduced. In this example, in order to generate a positive Petzval value, a meniscus positive lens having a convex surface facing the beam splitter prism is further arranged on the two-dimensional display element side of the beam splitter prism to further reduce the Petzval sum. . By doing so, the distance between the eyepoint and the device can be increased as compared with the seventh embodiment. FIG. 20 shows an aberration diagram similar to that of FIG. 13 of this example.

【0036】図9の実施例9は、裏面反射鏡に両凸レン
ズを用いた例であり、全体のペッツバール和は小さい。
しかし、反射面でない面により非点収差が発生するの
で、ビームスプリッタープリズムに向かって凸面を向け
たメニスカスの負のパワーの小さいレンズを2次元表示
素子近傍に配置して、ペッツバール値を悪化させずに非
点収差を補正している。図21にこの実施例の図13と
同様な収差図を示す。
Example 9 in FIG. 9 is an example in which a biconvex lens is used for the back surface reflecting mirror, and the Petzval sum of the whole is small.
However, astigmatism is generated by a surface that is not a reflecting surface, so a lens with a small negative meniscus power with a convex surface facing the beam splitter prism is placed near the two-dimensional display element without deteriorating the Petzval value. Astigmatism is corrected. FIG. 21 shows an aberration diagram similar to that of FIG. 13 of this example.

【0037】図10の実施例10は、裏面反射鏡に両凸
レンズを用いた例であり、全体のペッツバール値は小さ
い。しかし、両凸レンズの反射面でない面により非点収
差が発生する。そこで、この面を非球面にすることによ
り非点収差を補正している。この非球面は、光軸から周
辺に向かって曲率半径が大きくなる形状であり、メリジ
オナル像面を像高の高い位置でレンズに近づく方向に倒
す作用をする。図22にこの実施例の図13と同様な収
差図を示す。
Example 10 in FIG. 10 is an example in which a biconvex lens is used for the back surface reflecting mirror, and the overall Petzval value is small. However, astigmatism occurs due to the non-reflecting surface of the biconvex lens. Therefore, astigmatism is corrected by making this surface an aspherical surface. This aspherical surface has a shape in which the radius of curvature increases from the optical axis toward the periphery, and acts to tilt the meridional image surface toward the lens at a position where the image height is high. FIG. 22 shows an aberration diagram similar to that of FIG. 13 of this example.

【0038】図11の実施例11は、裏面反射鏡に両凸
レンズを用いた例であり、全体のペッツバール値は小さ
い。しかし、両凸レンズの反射面でない面により非点収
差が発生する。そこで、反射面を非球面にすることによ
り非点収差を補正している。この非球面は、光軸から周
辺に向かって曲率半径が大きくなる形状であり、メリジ
オナル像面を像高の高い位置でレンズに近づく方向に倒
す作用をする。図23にこの実施例の図13と同様な収
差図を示す。
The eleventh embodiment of FIG. 11 is an example in which a biconvex lens is used for the back surface reflecting mirror, and the overall Petzval value is small. However, astigmatism occurs due to the non-reflecting surface of the biconvex lens. Therefore, astigmatism is corrected by making the reflecting surface aspherical. This aspherical surface has a shape in which the radius of curvature increases from the optical axis toward the periphery, and acts to tilt the meridional image surface toward the lens at a position where the image height is high. FIG. 23 shows an aberration diagram similar to that of FIG. 13 of this example.

【0039】図12の実施例12は、画面サイズが1
6:9のいわゆるハイビジョン対応の光学系を想定した
ものであり、裏面反射鏡を使用することによってペッツ
バール和が小さくなっているが、さらに、瞳孔側に凸面
を向けたメニスカス形状の負レンズを瞳孔位置と半透鏡
の間に配置して、全体のペッツバール和を一層小さくす
ると共に、裏面反射鏡を構成する正レンズの屈折率を
1.8以上とすることで、裏面反射鏡の反射面でない面
の曲率を緩くして出来るだけコマ収差、非点収差の発生
を小さくしている。このとき、負レンズは、瞳近傍に配
置して特にコマ収差をさらに補正する。この負レンズの
パワーを変えたり、光軸方向に移動させたりすること
で、観察者の視度に合わせた視度補正が可能である。図
24にこの実施例の図13と同様な収差図を示す。
In Example 12 of FIG. 12, the screen size is 1
This is based on the assumption of a so-called 6: 9 high-definition optical system, and the Petzval sum is reduced by using a back surface reflecting mirror. Furthermore, a meniscus negative lens with a convex surface facing the pupil side is used. By arranging it between the position and the semi-transparent mirror, the total Petzval sum is further reduced, and the refractive index of the positive lens constituting the back surface reflecting mirror is set to 1.8 or more, so that the surface not being the reflecting surface of the back surface reflecting mirror. The coma and astigmatism are minimized by reducing the curvature of the. At this time, the negative lens is arranged near the pupil to further correct coma in particular. By changing the power of the negative lens or moving it in the optical axis direction, it is possible to correct the diopter in accordance with the diopter of the observer. FIG. 24 shows an aberration diagram similar to that of FIG. 13 of this example.

【0040】以下に各実施例のレンズデータを示すが、
記号は、上記の外、r1 、r2 …は瞳孔位置及び像面を
含めた各レンズ面の曲率半径、d1 、d2 …は各レンズ
面間の間隔、nd1、nd2…は各レンズのd線の屈折率で
ある。また、非球面形状は、光軸方向をx、光軸に直交
する方向をyとした時、次の式で表される。 x=(y2/r)/[1+{ 1-(1+K) (y2/r2)}1/2 ]+
A44 +A66 +A88 + A1010 ただし、rは近軸曲率半径、Kは円錐係数、A4、A6
A8、A10 は非球面係数である。
The lens data of each embodiment are shown below.
The symbols are the above, r 1 , r 2 ... Is the radius of curvature of each lens surface including the pupil position and the image plane, d 1 , d 2 ... Is the distance between the lens surfaces, and n d1 , n d2 . The refractive index of the d-line of each lens. Further, the aspherical shape is expressed by the following formula, where x is the optical axis direction and y is the direction orthogonal to the optical axis. x = (y 2 / r) / [1+ {1- (1 + K) (y 2 / r 2 )} 1/2 ] +
A 4 y 4 + A 6 y 6 + A 8 y 8 + A 10 y 10 where r is the paraxial radius of curvature, K is the conic coefficient, A 4 , A 6 ,
A 8 and A 10 are aspherical coefficients.

【0041】実施例1 r1 = ∞ (瞳孔位置) d1 =22.000 r2 = 59.176 d2 = 2.000 nd1 =1.5163 r3 = -60.551 d3 = 1.000 r4 = ∞ d4 =24.000 nd2 =1.5163 r5 = ∞ d5 = 2.000 r6 = -73.145 (反射面) d6 = 2.000 r7 = ∞ d7 =24.000 nd3 =1.5163 r8 = ∞ d8 = 0.998 r9 = 像面 (2次元表示素子) |n2 φ1 /φ2 |=2.4 R/F=2.6 PS=-0.016 。Example 1 r 1 = ∞ (pupil position) d 1 = 22.000 r 2 = 59.176 d 2 = 2.000 n d1 = 1.5163 r 3 = -60.551 d 3 = 1.000 r 4 = ∞ d 4 = 24.000 n d2 = 1.5163 r 5 = ∞ d 5 = 2.000 r 6 = -73.145 (reflecting surface) d 6 = 2.000 r 7 = ∞ d 7 = 24.000 n d3 = 1.5163 r 8 = ∞ d 8 = 0.998 r 9 = image surface (two-dimensional) Display element) | n 2 φ 1 / φ 2 | = 2.4 R / F = 2.6 PS = −0.016.

【0042】実施例2 r1 = ∞ (瞳孔位置) d1 =22.000 r2 = 70.973 d2 = 2.000 nd1 =1.8829 r3 = -183.579 d3 = 1.000 r4 = ∞ d4 =24.000 nd2 =1.5163 r5 = ∞ d5 = 2.000 r6 = -73.319 (反射面) d6 = 2.000 r7 = ∞ d7 =24.000 nd3 =1.5163 r8 = ∞ d8 = 0.971 r9 = 像面 (2次元表示素子) |n2 φ1 /φ2 |=2.9 R/F=2.6 PS=-0.018 。Example 2 r 1 = ∞ (pupil position) d 1 = 22.000 r 2 = 70.973 d 2 = 2.000 n d1 = 1.8829 r 3 = -183.579 d 3 = 1.000 r 4 = ∞ d 4 = 24.000 n d2 = 1.5163 r 5 = ∞ d 5 = 2.000 r 6 = -73.319 (Reflecting surface) d 6 = 2.000 r 7 = ∞ d 7 = 24.000 n d3 = 1.5163 r 8 = ∞ d 8 = 0.971 r 9 = Image surface (2D Display element) | n 2 φ 1 / φ 2 | = 2.9 R / F = 2.6 PS = −0.018.

【0043】実施例3 r1 = ∞ (瞳孔位置) d1 =22.000 r2 = ∞ d2 =24.000 nd1 =1.5163 r3 = ∞ d3 = 2.000 r4 = -66.235 (反射面) d4 = 2.000 r5 = ∞ d5 =24.000 nd2 =1.5163 r6 = ∞ d6 = 8.000 r7 = -18.134 d7 = 3.000 nd3 =1.5163 r8 = 226.719 d8 = 4.021 r9 = 像面 (2次元表示素子) |n2 φ1 /φ2 |=1.5 R/F=2.4 PS=-0.01 。Example 3 r 1 = ∞ (pupil position) d 1 = 22.000 r 2 = ∞ d 2 = 24.000 n d1 = 1.5163 r 3 = ∞ d 3 = 2.000 r 4 = -66.235 (reflection surface) d 4 = 2.000 r 5 = ∞ d 5 = 24.000 n d2 = 1.5163 r 6 = ∞ d 6 = 8.000 r 7 = -18.134 d 7 = 3.000 n d3 = 1.5163 r 8 = 226.719 d 8 = 4.021 r 9 = image plane (two-dimensional) Display element) | n 2 φ 1 / φ 2 | = 1.5 R / F = 2.4 PS = −0.01.

【0044】実施例4 r1 = ∞ (瞳孔位置) d1 =22.000 r2 = ∞ d2 =24.000 nd1 =1.5163 r3 = ∞ d3 = 2.000 r4 = -68.874 (反射面) d4 = 2.000 r5 = ∞ d5 =24.000 nd2 =1.5163 r6 = ∞ d6 =10.550 r7 = -18.429 d7 = 7.047 nd3 =1.8829 r8 = 729.279 d8 = 0.956 r9 = 像面 (2次元表示素子) |n2 φ1 /φ2 |=1.1 R/F=2.6 PS=-0.003 。Example 4 r 1 = ∞ (pupil position) d 1 = 22.000 r 2 = ∞ d 2 = 24.000 n d1 = 1.5163 r 3 = ∞ d 3 = 2.000 r 4 = -68.874 (reflection surface) d 4 = 2.000 r 5 = ∞ d 5 = 24.000 n d2 = 1.5163 r 6 = ∞ d 6 = 10.550 r 7 = -18.429 d 7 = 7.047 n d3 = 1.8829 r 8 = 729.279 d 8 = 0.956 r 9 = Image plane (2D Display element) | n 2 φ 1 / φ 2 | = 1.1 R / F = 2.6 PS = −0.003.

【0045】実施例5 r1 = ∞ (瞳孔位置) d1 =22.000 r2 = ∞ d2 =24.000 nd1 =1.5163 r3 = ∞ d3 = 2.000 r4 = -89.160 d4 = 2.000 nd2 =1.5163 r5 = -70.000 (反射面) d5 = 2.000 nd3 =1.5163 r6 = -89.160 d6 = 2.000 r7 = ∞ d7 =24.000 nd4 =1.5163 r8 = ∞ d8 = 7.487 r9 = -15.973 d9 = 3.000 nd5 =1.5163 r10= 136.371 d10= 1.799 r11= 像面 (2次元表示素子) |Fφ3 /n3 2 |=0.51 R/F=2.6 PS=0.005 。Example 5 r 1 = ∞ (pupil position) d 1 = 22.000 r 2 = ∞ d 2 = 24.000 n d1 = 1.5163 r 3 = ∞ d 3 = 2.000 r 4 = -89.160 d 4 = 2.000 n d2 = 1.5163 r 5 = -70.000 (reflecting surface) d 5 = 2.000 n d3 = 1.5163 r 6 = -89.160 d 6 = 2.000 r 7 = ∞ d 7 = 24.000 n d4 = 1.5163 r 8 = ∞ d 8 = 7.487 r 9 = -15.973 d 9 = 3.000 n d5 = 1.5163 r 10 = 136.371 d 10 = 1.799 r 11 = image plane (two-dimensional display element) | Fφ 3 / n 3 2 | = 0.51 R / F = 2.6 PS = 0.005.

【0046】実施例6 r1 = ∞ (瞳孔位置) d1 =22.000 r2 = ∞ d2 =24.000 nd1 =1.5163 r3 = ∞ d3 = 2.000 nd2 =1.5163 r4 = -84.704 (反射面) d4 = 2.000 nd3 =1.5163 r5 = ∞ d5 =24.000 nd4 =1.5163 r6 = ∞ d6 =10.500 r7 = 像面 (2次元表示素子) |Fφ3 /n3 2 |=0.45 R/F=3.2 PS=-0.016 。Example 6 r 1 = ∞ (pupil position) d 1 = 22.000 r 2 = ∞ d 2 = 24.000 n d1 = 1.5163 r 3 = ∞ d 3 = 2.000 n d2 = 1.5163 r 4 = -84.704 (reflection surface) ) D 4 = 2.000 n d3 = 1.5163 r 5 = ∞ d 5 = 24.000 n d4 = 1.5163 r 6 = ∞ d 6 = 10.500 r 7 = image surface (two-dimensional display element) | Fφ 3 / n 3 2 | = 0.45 R / F = 3.2 PS = -0.016.

【0047】実施例7 r1 = ∞ (瞳孔位置) d1 =22.000 r2 = 134.955 d2 = 2.000 nd1 =1.5163 r3 = -78.954 d3 = 1.000 r4 = ∞ d4 =24.000 nd2 =1.5163 r5 = ∞ d5 = 2.000 nd3 =1.5163 r6 = -96.939 (反射面) d6 = 2.000 nd4 =1.5163 r7 = ∞ d7 =24.000 nd5 =1.5163 r8 = ∞ d8 = 5.540 r9 = 像面 (2次元表示素子) |Fφ3 /n3 2 |=0.39 R/F=3.5 PS=-0.013 。Example 7 r 1 = ∞ (pupil position) d 1 = 22.000 r 2 = 134.955 d 2 = 2.000 n d1 = 1.5163 r 3 = -78.954 d 3 = 1.000 r 4 = ∞ d 4 = 24.000 n d2 = 1.5163 r 5 = ∞ d 5 = 2.000 n d3 = 1.5163 r 6 = -96.939 (Reflecting surface) d 6 = 2.000 n d4 = 1.5163 r 7 = ∞ d 7 = 24.000 n d5 = 1.5163 r 8 = ∞ d 8 = 5.540 r 9 = image plane (two-dimensional display element) | Fφ 3 / n 3 2 | = 0.39 R / F = 3.5 PS = −0.013.

【0048】実施例8 r1 = ∞ (瞳孔位置) d1 =22.000 r2 = ∞ d2 =24.000 nd1 =1.5163 r3 = ∞ d3 = 2.000 nd2 =1.5163 r4 = -89.861 (反射面) d4 = 2.000 nd3 =1.5163 r5 = ∞ d5 =24.000 nd4 =1.5163 r6 = ∞ d6 = 8.000 r7 = -26.585 d7 = 3.000 nd5 =1.5163 r8 = -91.042 d8 = 2.170 r9 = 像面 (2次元表示素子) |Fφ3 /n3 2 |=0.41 R/F=3.3 PS=-0.014 。Example 8 r 1 = ∞ (pupil position) d 1 = 22.000 r 2 = ∞ d 2 = 24.000 n d1 = 1.5163 r 3 = ∞ d 3 = 2.000 n d2 = 1.5163 r 4 = -89.861 (reflection surface) ) d 4 = 2.000 n d3 = 1.5163 r 5 = ∞ d 5 = 24.000 n d4 = 1.5163 r 6 = ∞ d 6 = 8.000 r 7 = -26.585 d 7 = 3.000 n d5 = 1.5163 r 8 = -91.042 d 8 = 2.170 r 9 = image plane (two-dimensional display element) | Fφ 3 / n 3 2 | = 0.41 R / F = 3.3 PS = −0.014.

【0049】実施例9 r1 = ∞ (瞳孔位置) d1 =22.000 r2 = ∞ d2 =24.000 nd1 =1.5163 r3 = ∞ d3 = 0.500 r4 = 254.351 d4 = 2.000 nd2 =1.5163 r5 = -100.000 (反射面) d5 = 2.000 nd3 =1.5163 r6 = 254.351 d6 = 0.500 r7 = ∞ d7 =24.000 nd4 =1.5163 r8 = ∞ d8 = 6.000 r9 = -9.537 d9 = 1.000 nd5 =1.5163 r10= -9.195 d10= 4.550 r11= 像面 (2次元表示素子) |Fφ3 /n3 2 |=0.37 R/F=3.5 PS=-0.013 。Example 9 r 1 = ∞ (pupil position) d 1 = 22.000 r 2 = ∞ d 2 = 24.000 n d1 = 1.5163 r 3 = ∞ d 3 = 0.500 r 4 = 254.351 d 4 = 2.50 n d2 = 1.5163 r 5 = -100.000 (reflecting surface) d 5 = 2.000 n d3 = 1.5163 r 6 = 254.351 d 6 = 0.500 r 7 = ∞ d 7 = 24.000 n d4 = 1.5163 r 8 = ∞ d 8 = 6.000 r 9 = -9.537 d 9 = 1.000 n d5 = 1.5163 r 10 = -9.195 d 10 = 4.550 r 11 = image plane (two-dimensional display element) | Fφ 3 / n 3 2 | = 0.37 R / F = 3.5 PS = -0.013.

【0050】実施例10 r1 = ∞ (瞳孔位置) d1 =22.000 r2 = ∞ d2 =24.000 nd1 =1.5163 r3 = ∞ d3 = 0.500 r4 = 177.140 (非球面) d4 = 3.000 nd2 =1.5163 r5 = -100.000 (反射面) d5 = 3.000 nd3 =1.5163 r6 = 177.140 (非球面) d6 = 0.500 r7 = ∞ d7 =24.000 nd4 =1.5163 r8 = ∞ d8 = 9.640 r9 = 像面 (2次元表示素子) 第4面(第6面) K =-1 A4 =-0.623×10-6 A6 =A8 =A10= 0 |Fφ3 /n3 2 |=0.36 R/F=3.6 PS=-0.013 。Example 10 r 1 = ∞ (pupil position) d 1 = 22.000 r 2 = ∞ d 2 = 24.000 n d1 = 1.5163 r 3 = ∞ d 3 = 0.500 r 4 = 177.140 (aspherical surface) d 4 = 3.000 n d2 = 1.5163 r 5 = -100.000 (reflecting surface) d 5 = 3.0000 n d3 = 1.5163 r 6 = 177.140 (aspherical surface) d 6 = 0.500 r 7 = ∞ d 7 = 24.000 n d4 = 1.5163 r 8 = ∞ d 8 = 9.640 r 9 = image surface (two-dimensional display element) 4th surface (6th surface) K = -1 A 4 = -0.623 × 10 -6 A 6 = A 8 = A 10 = 0 | Fφ 3 / n 3 2 | = 0.36 R / F = 3.6 PS = -0.013.

【0051】実施例11 r1 = ∞ (瞳孔位置) d1 =22.000 r2 = ∞ d2 =24.000 nd1 =1.5163 r3 = ∞ d3 = 0.500 r4 = 194.949 d4 = 2.000 nd2 =1.5163 r5 = -98.725 (反射面,非球面) d5 = 2.000 nd3 =1.5163 r6 = 194.949 d6 = 0.500 r7 = ∞ d7 =24.000 nd4 =1.5163 r8 = ∞ d8 =10.290 r9 = 像面 (2次元表示素子) 非球面係数 第5面 K =-1 A4 = 0.655×10-7 A6 =A8 =A10= 0 |Fφ3 /n3 2 |=0.36 R/F=3.5 PS=-0.013 。Example 11 r 1 = ∞ (pupil position) d 1 = 22.000 r 2 = ∞ d 2 = 24.000 n d1 = 1.5163 r 3 = ∞ d 3 = 0.500 r 4 = 194.949 d 4 = 2.000 n d2 = 1.5163 r 5 = -98.725 (reflecting surface, aspherical surface) d 5 = 2.000 n d3 = 1.5163 r 6 = 194.949 d 6 = 0.500 r 7 = ∞ d 7 = 24.000 n d4 = 1.5163 r 8 = ∞ d 8 = 10.290 r 9 = Image surface (two-dimensional display element) Aspherical coefficient Fifth surface K = -1 A 4 = 0.655 × 10 -7 A 6 = A 8 = A 10 = 0 | Fφ 3 / n 3 2 | = 0.36 R / F = 3.5 PS = -0.013.

【0052】実施例12 r1 = ∞ (瞳孔位置) d1 =22.000 r2 = 30.533 d2 = 1.000 nd1 =1.5163 r3 = 19.611 d3 = 5.000 r4 = ∞ d4 =24.000 nd2 =1.5163 r5 = ∞ d5 = 1.000 r6 = 95.111 d6 = 6.000 nd3 =1.8829 r7 = -200.000 (反射面) d7 = 6.000 nd4 =1.8829 r8 = 95.111 d8 = 1.000 r9 = ∞ d9 =24.000 nd5 =1.5163 r10= ∞ d10=15.280 r11= 像面 (2次元表示素子) |Fφ3 /n3 2 |=0.03 R/F=6.9 PS=-0.007 。Example 12 r 1 = ∞ (pupil position) d 1 = 22.000 r 2 = 30.533 d 2 = 1.000 n d1 = 1.5163 r 3 = 19.611 d 3 = 5.000 r 4 = ∞ d 4 = 24.000 n d2 = 1.5163 r 5 = ∞ d 5 = 1.000 r 6 = 95.111 d 6 = 6.000 n d3 = 1.8829 r 7 = -200.000 (reflection surface) d 7 = 6.000 n d4 = 1.8829 r 8 = 95.111 d 8 = 1.000 r 9 = ∞ d 9 = 24.000 n d5 = 1.5163 r 10 = ∞ d 10 = 15.280 r 11 = image plane (two-dimensional display element) | Fφ 3 / n 3 2 | = 0.03 R / F = 6.9 PS = -0.007.

【0053】[0053]

【発明の効果】以上の説明から明らかなように、本発明
によれば、コンパクトでありながら、光学系のペッツバ
ール和を小さくでき、画像中心部から周辺部まで平坦性
の良い画像を提供できるので、観察者の眼の疲労感のな
い頭部装着式表示装置を提供することができる。
As is clear from the above description, according to the present invention, the Petzval sum of the optical system can be made small while providing a flat image from the central portion to the peripheral portion of the image, while being compact. It is possible to provide a head-mounted display device that does not cause the eyestrain of the observer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の頭部装着式表示装置の実施例1の断面
図である。
FIG. 1 is a sectional view of a head-mounted display device according to a first embodiment of the present invention.

【図2】実施例2の断面図である。FIG. 2 is a sectional view of a second embodiment.

【図3】実施例3の断面図である。FIG. 3 is a sectional view of a third embodiment.

【図4】実施例4の断面図である。FIG. 4 is a sectional view of a fourth embodiment.

【図5】実施例5の断面図である。FIG. 5 is a sectional view of a fifth embodiment.

【図6】実施例6の断面図である。FIG. 6 is a sectional view of a sixth embodiment.

【図7】実施例7の断面図である。FIG. 7 is a sectional view of Example 7.

【図8】実施例8の断面図である。8 is a sectional view of Example 8. FIG.

【図9】実施例9の断面図である。FIG. 9 is a sectional view of Example 9.

【図10】実施例10の断面図である。FIG. 10 is a sectional view of Example 10.

【図11】実施例11の断面図である。FIG. 11 is a cross-sectional view of Example 11.

【図12】実施例12の断面図である。FIG. 12 is a sectional view of Example 12.

【図13】実施例1の接眼光学系の球面収差、非点収
差、歪曲収差及びコマ収差を示す収差図である。
FIG. 13 is an aberration diagram showing spherical aberration, astigmatism, distortion and coma of the eyepiece optical system of Example 1.

【図14】実施例2の接眼光学系の図13と同様な収差
図である。
FIG. 14 is an aberration diagram similar to FIG. 13 of the eyepiece optical system of Example 2.

【図15】実施例3の接眼光学系の図13と同様な収差
図である。
15 is an aberration diagram for the eyepiece optical system of Example 3, similar to FIG.

【図16】実施例4の接眼光学系の図13と同様な収差
図である。
FIG. 16 is an aberration diagram similar to FIG. 13 of the eyepiece optical system of Example 4.

【図17】実施例5の接眼光学系の図13と同様な収差
図である。
FIG. 17 is an aberration diagram similar to FIG. 13 of the eyepiece optical system of Example 5.

【図18】実施例6の接眼光学系の図13と同様な収差
図である。
FIG. 18 is an aberration diagram for the eyepiece optical system of Example 6, similar to FIG.

【図19】実施例7の接眼光学系の図13と同様な収差
図である。
FIG. 19 is an aberration diagram similar to FIG. 13 of the eyepiece optical system of Example 7.

【図20】実施例8の接眼光学系の図13と同様な収差
図である。
FIG. 20 is an aberration diagram similar to FIG. 13 of the eyepiece optical system of Example 8.

【図21】実施例9の接眼光学系の図13と同様な収差
図である。
FIG. 21 is an aberration diagram similar to FIG. 13 of the eyepiece optical system of Example 9.

【図22】実施例10の接眼光学系の図13と同様な収
差図である。
22 is an aberration diagram similar to FIG. 13 of the eyepiece optical system of Example 10. FIG.

【図23】実施例11の接眼光学系の図13と同様な収
差図である。
23 is an aberration diagram similar to FIG. 13 of the eyepiece optical system of Example 11. FIG.

【図24】実施例12の接眼光学系の図13と同様な収
差図である。
FIG. 24 is an aberration diagram similar to FIG. 13 of the eyepiece optical system of Example 12.

【図25】従来の1つの頭部装着式表示装置の断面図で
ある。
FIG. 25 is a cross-sectional view of one conventional head-mounted display device.

【図26】従来の変形例の頭部装着式表示装置の断面図
である。
FIG. 26 is a sectional view of a conventional head-mounted display device according to a modified example.

【図27】図25の接眼光学系の図13と同様な収差図
である。
27 is an aberration diagram similar to FIG. 13 of the eyepiece optical system in FIG. 25.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 情報内容を表示する表示素子と、その表
示内容を光路中で結像することなしに眼球に虚像として
拡大投影する接眼光学系と、前記接眼光学系を眼球直前
に支持する支持手段とを備えた頭部装着式表示装置にお
いて、 前記接眼光学系を半透過面を有する光学素子と、表面反
射鏡と、少なくとも1枚の正の屈折力を有するレンズ系
とで構成したことを特徴とする頭部装着式表示装置。
1. A display element for displaying information content, an eyepiece optical system for magnifying and projecting the display content as a virtual image on the eyeball without forming an image in the optical path, and a support for supporting the eyepiece optical system immediately before the eyeball. In the head-mounted display device including means, the eyepiece optical system includes an optical element having a semi-transmissive surface, a surface reflecting mirror, and at least one lens system having a positive refractive power. A characteristic head-mounted display device.
【請求項2】 情報内容を表示する表示素子と、その表
示内容を光路中で結像することなしに眼球に虚像として
拡大投影する接眼光学系と、前記接眼光学系を眼球直前
に支持する支持手段とを備えた頭部装着式表示装置にお
いて、 前記接眼光学系を半透過面を有する光学素子と、裏面反
射鏡とで構成したことを特徴とする頭部装着式表示装
置。
2. A display element for displaying information contents, an eyepiece optical system for magnifying and projecting the display contents as a virtual image on the eyeball without forming an image in the optical path, and a support for supporting the eyepiece optical system immediately before the eyeball. A head-mounted display device including a means, wherein the eyepiece optical system includes an optical element having a semi-transmissive surface and a back surface reflecting mirror.
JP03521193A 1993-02-24 1993-02-24 Head mounted display Expired - Fee Related JP3245472B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP03521193A JP3245472B2 (en) 1993-02-24 1993-02-24 Head mounted display
US08/201,384 US5546227A (en) 1993-02-24 1994-02-24 Image display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03521193A JP3245472B2 (en) 1993-02-24 1993-02-24 Head mounted display

Publications (2)

Publication Number Publication Date
JPH06250113A true JPH06250113A (en) 1994-09-09
JP3245472B2 JP3245472B2 (en) 2002-01-15

Family

ID=12435515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03521193A Expired - Fee Related JP3245472B2 (en) 1993-02-24 1993-02-24 Head mounted display

Country Status (1)

Country Link
JP (1) JP3245472B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101358A (en) * 1994-09-30 1996-04-16 Nec Corp Video display device
WO1996018126A1 (en) * 1994-12-09 1996-06-13 Enplas Corporation Head-mount display and optical system used for the same
JPH08166541A (en) * 1994-12-13 1996-06-25 Olympus Optical Co Ltd Picture display device
US5777794A (en) * 1995-09-26 1998-07-07 Olympus Optical Co., Ltd. Image display apparatus
JP2007256929A (en) * 2006-02-23 2007-10-04 Olympus Corp Lens system
JP2008046253A (en) * 2006-08-11 2008-02-28 Canon Inc Image display device
WO2012086160A1 (en) * 2010-12-20 2012-06-28 富士フイルム株式会社 Viewfinder and camera
CN107367833A (en) * 2017-07-27 2017-11-21 苏州观云飞视觉科技有限公司 A kind of goggle structure and augmented reality system
WO2017199441A1 (en) * 2016-05-20 2017-11-23 日立マクセル株式会社 Projection optical system, head-up display device, and automobile
EP3709069A1 (en) * 2019-03-11 2020-09-16 Samsung Electronics Co., Ltd. Display apparatus capable of laterally shifting image

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08101358A (en) * 1994-09-30 1996-04-16 Nec Corp Video display device
WO1996018126A1 (en) * 1994-12-09 1996-06-13 Enplas Corporation Head-mount display and optical system used for the same
KR100412760B1 (en) * 1994-12-09 2004-03-31 가부시키가이샤 세가 Head mounted display devices and optical systems for displays used in these devices
JPH08166541A (en) * 1994-12-13 1996-06-25 Olympus Optical Co Ltd Picture display device
US5777794A (en) * 1995-09-26 1998-07-07 Olympus Optical Co., Ltd. Image display apparatus
JP2007256929A (en) * 2006-02-23 2007-10-04 Olympus Corp Lens system
JP2008046253A (en) * 2006-08-11 2008-02-28 Canon Inc Image display device
US8718464B2 (en) 2010-12-20 2014-05-06 Fujifilm Corporation View finder and camera
WO2012086160A1 (en) * 2010-12-20 2012-06-28 富士フイルム株式会社 Viewfinder and camera
JPWO2012086160A1 (en) * 2010-12-20 2014-05-22 富士フイルム株式会社 Viewfinder and camera
JP5809168B2 (en) * 2010-12-20 2015-11-10 富士フイルム株式会社 Viewfinder and camera
WO2017199441A1 (en) * 2016-05-20 2017-11-23 日立マクセル株式会社 Projection optical system, head-up display device, and automobile
JPWO2017199441A1 (en) * 2016-05-20 2018-12-27 マクセル株式会社 Projection optical system, head-up display device, and automobile
CN109154719A (en) * 2016-05-20 2019-01-04 麦克赛尔株式会社 Projection optical system, head up display device and automobile
US10852539B2 (en) 2016-05-20 2020-12-01 Maxell, Ltd. Projection optical system, head-up display device, and vehicle
CN107367833A (en) * 2017-07-27 2017-11-21 苏州观云飞视觉科技有限公司 A kind of goggle structure and augmented reality system
EP3709069A1 (en) * 2019-03-11 2020-09-16 Samsung Electronics Co., Ltd. Display apparatus capable of laterally shifting image
US10977770B2 (en) 2019-03-11 2021-04-13 Samsung Electronics Co., Ltd. Display apparatus capable of laterally shifting image
US11682104B2 (en) 2019-03-11 2023-06-20 Samsung Electronics Co., Ltd. Display apparatus capable of laterally shifting image

Also Published As

Publication number Publication date
JP3245472B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
US5790312A (en) Optical system
US5659430A (en) Visual display apparatus
JP3599828B2 (en) Optical device
US5644436A (en) Concentric optical system
US5546227A (en) Image display apparatus
US5517366A (en) Concentric optical system
JP3155360B2 (en) Visual display device
JP3537230B2 (en) Eyepiece optical system and image display device using the same
JP3392929B2 (en) Video display device
US20040085647A1 (en) Optical element and compound display apparatus using the same
JP3387338B2 (en) Eyepiece optical system and eyepiece image display device
JPH06324285A (en) Visual display device
JPH06308424A (en) Head mounted display device
JPH06294943A (en) Visual display device
JPH1075407A (en) Image display device
JP2000221440A (en) Picture display device
US5777794A (en) Image display apparatus
JP3245472B2 (en) Head mounted display
JP3304497B2 (en) Eyepiece for visual display
JP3262889B2 (en) Visual display device
JP3647185B2 (en) Eyepiece optical system and eyepiece image display device
JP3245473B2 (en) Video display device
JP3212784B2 (en) Visual display device
JP3263062B2 (en) Visual display device
JPH07218859A (en) Image display device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011009

LAPS Cancellation because of no payment of annual fees