JP3304497B2 - Eyepiece for visual display - Google Patents

Eyepiece for visual display

Info

Publication number
JP3304497B2
JP3304497B2 JP10136893A JP10136893A JP3304497B2 JP 3304497 B2 JP3304497 B2 JP 3304497B2 JP 10136893 A JP10136893 A JP 10136893A JP 10136893 A JP10136893 A JP 10136893A JP 3304497 B2 JP3304497 B2 JP 3304497B2
Authority
JP
Japan
Prior art keywords
eyepiece
image
aspherical
curvature
visual display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10136893A
Other languages
Japanese (ja)
Other versions
JPH06308396A (en
Inventor
研野孝吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP10136893A priority Critical patent/JP3304497B2/en
Publication of JPH06308396A publication Critical patent/JPH06308396A/en
Application granted granted Critical
Publication of JP3304497B2 publication Critical patent/JP3304497B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ポータブル型視覚表示
装置に関し、特に、観察者の頭部又は顔面に保持するこ
とが可能な頭部又は顔面装着式視覚装置の接眼レンズに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a portable visual display device, and more particularly to an eyepiece of a head or face-mounted visual device that can be held on the head or face of an observer.

【0002】[0002]

【従来の技術】近年、テレビジョンやコンピュータのデ
ィスプレー等の視覚表示装置として、大画面、高精細の
ものが使用されるようになっている。このため、CRT
に代表される表示装置はますます大型化している。これ
は、液晶表示装置においても同様である。そこで、小型
の装置でありながら高精細な大画面の観察像が得られる
頭部装着式視覚表示装置が注目されている。
2. Description of the Related Art In recent years, large-screen, high-definition devices have been used as visual display devices such as televisions and computer displays. For this reason, CRT
The display devices represented by such devices are becoming larger and larger. This is the same in the liquid crystal display device. Therefore, a head-mounted visual display device that can obtain a high-definition large-screen observation image despite its small size has attracted attention.

【0003】このような従来の頭部装着式視覚表示装置
の接眼レンズとしては、非球面の単レンズのみを用いて
2次元画像表示素子を拡大投影する方法があり(特公平
4−42650号)、その頭部装着式視覚表示装置の光
学系を図17に示す。図17において、2次元画像表示
素子を5、2次元画像表示素子5を空中に拡大投影する
接眼レンズを2、観察者眼球位置を10とする。この従
来技術においては、光学系が簡単ですむ利点があるが、
観察者の頭部から2次元画像表示素子5の突出量が多く
なり、また、観察画角を広くとろうとすると、接眼レン
ズ2の正単レンズが大きくなり、装置全体が大型になっ
てしまい、装着感が悪化する、等の問題があった。
As an eyepiece of such a conventional head-mounted visual display device, there is a method of enlarging and projecting a two-dimensional image display element using only an aspheric single lens (Japanese Patent Publication No. 4-42650). FIG. 17 shows an optical system of the head-mounted visual display device. In FIG. 17, assume that the two-dimensional image display element is 5, the eyepiece for projecting the two-dimensional image display element 5 in the air is 2 and the observer's eyeball position is 10. This conventional technique has an advantage that the optical system is simple,
If the amount of projection of the two-dimensional image display element 5 from the head of the observer increases, and if the observation angle of view is widened, the positive single lens of the eyepiece 2 becomes large, and the entire apparatus becomes large. There were problems such as a deterioration in the feeling of wearing.

【0004】[0004]

【発明が解決しようとする課題】以下、このような従来
技術との関連で本発明が解決しようとする問題点につい
て詳しく説明する。頭部装着式視覚装置にとって、装置
全体の大きさを小さくすることと、装置の重量を軽量化
することが、装着性を損なわなくするために重要な点と
なる。これを決定する要因は、接眼光学系をいかに小型
で軽量な構成とするかにかかっている。
Hereinafter, the problems to be solved by the present invention in relation to the prior art will be described in detail. For a head-mounted visual device, reducing the size of the entire device and reducing the weight of the device are important points in order not to impair the wearability. The factor that determines this depends on how the eyepiece optical system is made compact and lightweight.

【0005】また、大きな画角を確保することは、画像
観察時の臨場感を上げるために必要であり、画像の臨場
感は、提示画角によって決まってしまうといっても過言
ではない(テレビジョン学会誌Vol.45,No.1
2,pp.1589〜1596(1991))。立体感
・迫力感等の臨場感を観察者に与えるためには、水平方
向で30°(±15°)以上の提示画角を確保すること
が必要であると同時に、120°(±60°)付近でそ
の効果は飽和してしまうことが知られている。つまり、
30°以上でなるべく120°に近い観察画角にするこ
とが望ましい。
Further, it is necessary to secure a large angle of view in order to increase the sense of reality during image observation, and it is not an exaggeration to say that the sense of reality of an image is determined by the angle of view presented. John Society Journal Vol.45, No.1
2, pp. 1589-1596 (1991)). In order to give the observer a sense of realism such as a three-dimensional feeling and a powerful feeling, it is necessary to secure a presentation angle of view of 30 ° (± 15 °) or more in the horizontal direction, and at the same time, 120 ° (± 60 °) ), It is known that the effect is saturated. That is,
It is desirable that the viewing angle of view be 30 ° or more and as close as possible to 120 °.

【0006】しかし、観察画角が広くなると、接眼光学
系の収差の補正が難しくなり、周辺画像の解像力が低下
したり、像歪みの発生が大きくなり観察像が歪んだりす
る問題が発生し、実用上70°位が観察画角の限界とな
っている。
However, when the observation angle of view is widened, it becomes difficult to correct the aberration of the eyepiece optical system, and the resolution of the peripheral image is reduced, and the occurrence of image distortion is increased, and the observed image is distorted. In practice, about 70 ° is the limit of the observation angle of view.

【0007】また、この場合でも、レンズ系の構成枚数
が多くなって光学系の大きさが大きくなり、装置全体の
重さも重いものとなってしまう。
Also in this case, the number of components of the lens system increases, the size of the optical system increases, and the weight of the entire apparatus also increases.

【0008】このような接眼レンズ系を単レンズで構成
し、小型・軽量化をしようとしても、20°を超える観
察画角では、観察像の周辺でコマ収差と歪曲収差の発生
が無視できなくなり、観察画角の周辺の解像力が低下し
てしまう。
Even if such an eyepiece lens system is constituted by a single lens to reduce the size and weight, the occurrence of coma and distortion at the periphery of the observed image cannot be ignored at an observation angle of view exceeding 20 °. However, the resolution around the observation angle of view is reduced.

【0009】そこで、接眼レンズ系を非球面を有する単
レンズで構成することが考えられているが、コマ収差と
歪曲収差の発生は抑えられても、30°の画角を超える
画角では、非球面単レンズの色収差と像面湾曲収差の補
正能力の限界に近づき、解像力のよい画像を観察者に提
供することができなくなってしまう。これは、単レンズ
の両面を非球面にしても同じである。
Therefore, it has been considered that the eyepiece lens system is constituted by a single lens having an aspherical surface. However, even if the generation of coma and distortion is suppressed, at an angle of view exceeding an angle of view of 30 °, Since the correction capability of the chromatic aberration and the field curvature of the aspherical single lens approaches the limit, it becomes impossible to provide an image with good resolution to the observer. This is the same even if both surfaces of the single lens are aspherical.

【0010】接眼レンズ系を非球面単レンズで構成した
場合、非球面で補正できる収差は歪曲収差とコマ収差が
主となり、色収差とペッツバール和の補正ができない。
30°以下の視野角の場合は、非球面単レンズで構成し
ても、実用上の問題は生じない収差レベルとなるが、3
0°を超える画角を確保しようとした場合には、色収差
の中の倍率の色収差とペッツバール和による像面湾曲収
差の発生が著しくなり、いくら非球面を用いても補正不
可能になってしまう。
When the eyepiece lens system is composed of an aspherical single lens, the aberrations that can be corrected by the aspherical surface are mainly distortion and coma, and chromatic aberration and Petzval sum cannot be corrected.
In the case of a viewing angle of 30 ° or less, an aberration level that does not cause a practical problem occurs even if the lens is formed of an aspherical single lens.
If an angle of view exceeding 0 ° is to be ensured, chromatic aberration of magnification in the chromatic aberration and Petzval's sum will cause remarkable occurrence of field curvature aberration, making it impossible to correct even if any aspherical surface is used. .

【0011】本発明はこのような問題点を解決するため
になされたものであり、その目的は、30°(±15
°)以上の観察画角が観察でき、かつ、周辺までフラッ
トで鮮明な観察画像が観察できる視覚表示装置用接眼レ
ンズを提供することである。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and its object is to achieve the object of 30 ° (± 15 °).
°) It is an object of the present invention to provide an eyepiece for a visual display device that can observe an observation angle of view of more than the above and can observe a flat and clear observation image up to the periphery.

【0012】[0012]

【課題を解決するための手段】上記目的を達成する本発
明の視覚表示装置用接眼レンズは、観察像を表示する画
像表示面が略平面形状に構成された2次元表示素子と、
該2次元表示素子の平面像を曲面像に変換する変換光学
素子と、前記曲面像を平面像として拡大投影する正屈折
力の接眼レンズとからなる視覚表示装置に用いられる接
眼レンズにおいて、前記接眼レンズが少なくとも1つの
非球面と2つ以上の硝種で構成された両凸正レンズから
なり、アッベ数の大きい方の硝材のアッベ数をνd1、ア
ッベ数の小さい方の硝材のアッベ数をνd2とし、前記変
換光学素子によって変換された曲面像の面の曲率半径を
R、前記接眼レンズの焦点距離をFとすると、 14<νd1−νd2 …(1) 1<|R/F|<3 …(2) なる条件を満足すると共に、前記少なくとも1つの非球
面が光軸から離れるに従って曲率半径が大きくなるよう
に構成された非球面であることを特徴とするものであ
る。
According to the present invention, there is provided an eyepiece for a visual display device which achieves the above object, comprising: a two-dimensional display element having a substantially planar image display surface for displaying an observation image;
An eyepiece used in a visual display device comprising: a conversion optical element for converting a plane image of the two-dimensional display element into a curved surface image; and an eyepiece having a positive refractive power for enlarging and projecting the curved surface image as a plane image. The lens is composed of a biconvex positive lens composed of at least one aspheric surface and two or more glass types. The Abbe number of the glass material having a larger Abbe number is ν d1 , and the Abbe number of the glass material having a smaller Abbe number is ν and d2, the radius of curvature of the curved surface image converted by the conversion optical element R, and the focal length of the eyepiece and F, 14 <ν d1 -ν d2 ... (1) 1 <| R / F | <3 ... (2) The above condition is satisfied, and the at least one aspherical surface is an aspherical surface configured such that a radius of curvature increases as the distance from the optical axis increases.

【0013】[0013]

【作用】以下、上記構成をとる理由と作用について説明
する。特開平4−336515号に示されているよう
に、非球面を少なくとも1面用いた拡大接眼レンズは、
顕微鏡用接眼レンズを始め多くの提案がある。しかし、
頭部装着式視覚表示装置の接眼レンズにおいて、特に重
要となることは、接眼レンズの小型化と重量の軽量化で
ある。このような問題を解決するためには、レンズ構成
枚数を少なくすることが重要であることは一般によく知
られている。しかし、レンズ系の構成枚数を少なくする
ことは、各レンズで発生する収差が大きくなり、また、
発生した収差を補正するレンズ系がなくなることを意味
し、収差補正が困難になってしまう。その結果、観察画
角を大きくとることができなくなってしまう。
The reason and operation of the above configuration will be described below. As shown in JP-A-4-336515, an enlarged eyepiece using at least one aspherical surface is:
There are many proposals, including eyepieces for microscopes. But,
Particularly important in the eyepiece of the head-mounted visual display device is reduction in size and weight of the eyepiece. It is generally well known that it is important to reduce the number of lens components in order to solve such a problem. However, reducing the number of components of the lens system increases the aberration generated by each lens, and
This means that there is no lens system for correcting the generated aberration, which makes it difficult to correct the aberration. As a result, the observation angle of view cannot be made large.

【0014】例えば、単レンズで接眼光学系を構成する
と、大きな歪曲収差が発生すると共に、コマ収差、非点
収差等も発生し、結果として、観察画角は20°程度が
限界となってしまう。
For example, if an eyepiece optical system is constituted by a single lens, a large distortion will occur, and coma and astigmatism will also occur. As a result, the observation field angle is limited to about 20 °. .

【0015】特開平4−336515号は、このような
問題点を解決するために非球面を導入した例である。非
球面を用いると、特に、歪曲収差とコマ収差の改善は図
れるが、倍率の色収差とペッツバール和による像面湾曲
収差の発生までは補正できない。したがって、観察画角
も30°程度までが実用上使用できる限界となってしま
う。
JP-A-4-336515 is an example in which an aspherical surface is introduced to solve such a problem. The use of an aspherical surface can particularly improve distortion and coma, but cannot correct up to the occurrence of chromatic aberration of magnification and field curvature aberration due to Petzval sum. Therefore, the observation field angle is limited to a practically usable range up to about 30 °.

【0016】本発明を構成する重要なポイントは以下の
2点であり、この2点について順に説明する。本発明の
特徴の1点目は、上記倍率の色収差を良好に補正するた
めに、2硝種による色収差補正を行ったことである。こ
れにより、倍率の色収差の補正に対しては、良好な収差
補正が可能となり、この色収差に対しては50°近くま
で実用上十分な補正をすることができる。
The important points constituting the present invention are the following two points, and these two points will be described in order. The first feature of the present invention is that chromatic aberration correction using two types of glass is performed in order to satisfactorily correct the chromatic aberration of the magnification. As a result, it is possible to satisfactorily correct the chromatic aberration of magnification, and it is possible to sufficiently correct the chromatic aberration up to nearly 50 ° for practical use.

【0017】本発明の特徴の2点目は、像面湾曲収差を
良好に補正するために、2次元画像表示素子の平面像を
曲面に変換する変換光学素子によって、曲面物点を接眼
レンズで遠方の平面像として空中に拡大投影する構成を
とったことである。この構成は、平面である2次元画像
表示素子の物体面を、接眼光学系の像面湾曲で打ち消す
ように、予め変換光学素子で曲面物点にすることが重要
であるためである。これにより、像面湾曲収差を接眼レ
ンズ系で補正する必要がなくなり、本発明のような1群
のレンズで接眼レンズ系を構成することができる。
The second characteristic of the present invention is that, in order to satisfactorily correct the field curvature aberration, a conversion optical element that converts a plane image of a two-dimensional image display element into a curved surface, and a curved object point is converted by an eyepiece. This is a configuration in which a plane image of a distant place is enlarged and projected into the air. This configuration is because it is important to convert the object surface of the two-dimensional image display element, which is a flat surface, into a curved object point in advance by using the conversion optical element so that the object plane is canceled by the curvature of field of the eyepiece optical system. Accordingly, it is not necessary to correct the field curvature aberration with the eyepiece lens system, and the eyepiece lens system can be constituted by one group of lenses as in the present invention.

【0018】上記構成をとることによって、1群のレン
ズ系で、像面湾曲収差つまりペッツバール和の補正をし
なくても、非点収差のみ補正されていれば、フラットな
空中拡大像を提供することができる。
By adopting the above configuration, a flat aerial enlarged image can be provided if only astigmatism is corrected without correcting field curvature aberration, that is, Petzval sum, in a group of lens systems. be able to.

【0019】以下、設計の便宜上、観察者の眼側から逆
に光線追跡した場合の逆追跡法による面番号によって説
明する。倍率の色収差の補正のための条件は、2つの硝
材のアッベ数の差で決まってくる。本発明の場合は、以
下に示す条件式を満足する硝種を選ぶことが重要とな
る。アッベ数の大きい方の硝材のアッベ数をνd1、アッ
ベ数の小さい方の硝材のアッベ数をνd2とするとき、 14<νd1−νd2 …(1) なる条件を満足することが重要である。
Hereinafter, for convenience of design, the explanation will be made by using the surface number by the reverse tracing method when the ray is traced in reverse from the observer's eye side. The condition for correcting the chromatic aberration of magnification is determined by the difference between the Abbe numbers of the two glass materials. In the case of the present invention, it is important to select a glass type satisfying the following conditional expression. When the Abbe number of the glass material having the larger Abbe number is ν d1 and the Abbe number of the glass material having the smaller Abbe number is ν d2 , it is important to satisfy the following condition: 14 <ν d1 −ν d2 (1) It is.

【0020】この条件式の下限を超えてアッベ数の差が
14以下になると、色収差量の補正不足となり、倍率の
色収差の発生が補正しきれず、周辺画角の解像力が低下
してしまう。
If the difference in Abbe number is less than 14 below the lower limit of the conditional expression, the amount of chromatic aberration is insufficiently corrected, the occurrence of chromatic aberration of magnification cannot be corrected, and the resolving power of the peripheral angle of view is reduced.

【0021】次に、湾曲した物体面の曲率半径について
の条件式について説明する。逆追跡での接眼レンズ系の
像面の曲率半径をR、接眼レンズ系の焦点距離をFとす
ると、 1<|R/F|<3 …(2) なる条件を満足することが重要である。
Next, the conditional expression for the radius of curvature of the curved object surface will be described. Assuming that the radius of curvature of the image plane of the eyepiece system in reverse tracking is R, and the focal length of the eyepiece system is F, it is important to satisfy the following condition: 1 <| R / F | <3 (2) .

【0022】この条件式の下限の1を超えると、逆追跡
での接眼レンズ系の像面湾曲を補正するための物体面の
曲率半径が小さくなりすぎ、この物体面に接眼レンズ系
の像面湾曲を合わせようとすると、非点収差が大きくな
りすぎ、周辺画像の解像力が低下する。また、上限の3
を超えた場合は、今度は、非点収差が逆方向に大きくな
り、やはり周辺画像の解像力が低下する。このように、
非点収差とコマ収差のバランスをとる上で、上記条件を
満足するとよい結果が得られる。
If the lower limit of the conditional expression (1) is exceeded, the radius of curvature of the object surface for correcting the curvature of field of the eyepiece system in the reverse tracking becomes too small. When trying to match the curvature, astigmatism becomes too large, and the resolving power of the peripheral image decreases. In addition, the upper limit of 3
Is exceeded, the astigmatism increases in the opposite direction, and the resolution of the peripheral image also decreases. in this way,
In order to balance astigmatism and coma, a good result can be obtained if the above condition is satisfied.

【0023】また、少なくとも1面の非球面の形状は、
光軸から離れるに従って非球面の部分的曲率半径が大き
くなるような非球面にすることが重要である。この非球
面の形状は、コマ収差の発生を少なくするためのもので
あり、他の面で補正することが不可能となるからであ
る。
The shape of at least one aspherical surface is as follows:
It is important to make the aspherical surface such that the partial radius of curvature of the aspherical surface increases as the distance from the optical axis increases. This is because the shape of the aspherical surface is for reducing the occurrence of coma aberration, and it is impossible to correct the aspherical surface on another surface.

【0024】次に、本発明の第2の項目である、変換光
学素子について説明する。上記のような変換光学素子
は、例えば、意図的に像面湾曲を発生させたリレーレン
ズ系で構成することにより、変換光学素子として使用す
ることができる。
Next, the conversion optical element, which is the second item of the present invention, will be described. The conversion optical element as described above can be used as a conversion optical element, for example, by being configured with a relay lens system that intentionally generates a field curvature.

【0025】変換光学素子がない場合は、2次元画像表
示素子を曲面に製作することとなり、製作上の問題から
これは非常に難しい。そこで、平面上に表示された2次
元画像を接眼光学系側に凹面を向けた曲面に変換する変
換光学素子を構成に加えることによって、接眼レンズ系
に像面湾曲収差が残存していても、曲面物点を像面湾曲
のある接眼レンズ系で投影すれば、平面の空中像として
拡大投影することが可能となる。
If there is no conversion optical element, the two-dimensional image display element is manufactured on a curved surface, which is very difficult due to manufacturing problems. Therefore, by adding a conversion optical element that converts a two-dimensional image displayed on a plane into a curved surface with a concave surface facing the eyepiece optical system side, even if field curvature aberration remains in the eyepiece lens system, If a curved object point is projected by an eyepiece system having a curvature of field, it is possible to enlarge and project as a planar aerial image.

【0026】上記のように、変換光学素子は、像面湾曲
を意図的に発生させたリレーレンズ系で構成することが
可能であるし、端面を曲面にしたイメージ・ファイバー
プレート等で構成することも可能である。
As described above, the conversion optical element can be constituted by a relay lens system which intentionally generates a field curvature, or is constituted by an image fiber plate or the like having a curved end surface. Is also possible.

【0027】さらに好ましくは、接眼レンズの少なくと
も1面の非球面は、逆追跡上で最も像側の第3面に設け
ることが収差補正上好ましい。これは、最も軸外マージ
ナル光線高が第3面で最も高くなり、軸外収差のコント
ロールが第3面を非球面にすることによって可能となる
からである。
More preferably, at least one aspherical surface of the eyepiece is provided on the third image side closest to the image in the reverse tracking for aberration correction. This is because the height of the off-axis marginal ray becomes highest on the third surface, and the off-axis aberration can be controlled by making the third surface aspherical.

【0028】さらに好ましくは、接眼レンズの焦点距離
は、装置全体の大きさから短くする方が有利となるが、
接眼レンズと観察者の瞳位置との距離(アイポイント)
が12mm以上必要であることから、接眼レンズの焦点
距離Fは、 12<F<25 〔mm〕 …(3) なる条件を満足することが重要である。
More preferably, it is more advantageous to shorten the focal length of the eyepiece from the size of the entire apparatus.
Distance between eyepiece and observer's pupil position (eye point)
Is required to be 12 mm or more, it is important that the focal length F of the eyepiece lens satisfies the following condition: 12 <F <25 [mm] (3)

【0029】この下限の12mmを超えると、接眼レン
ズの焦点距離が短くなりすぎて、接眼レンズと観察者の
瞳位置との距離(アイポイント)を12mm以上確保す
ることが不可能となり、観察者の睫毛が接眼レンズに当
たってしまい、観察し難くなる。また、上限の25mm
を超えると、接眼レンズが大きく重くなりすぎ、装置全
体が大きく重くなり、装置を装着したときに観察者に違
和感や疲労感を与えてしまう。
If the lower limit of 12 mm is exceeded, the focal length of the eyepiece becomes too short, and it becomes impossible to secure a distance (eye point) of 12 mm or more between the eyepiece and the pupil position of the observer. Eyelashes hit the eyepiece, making it difficult to observe. In addition, the upper limit of 25 mm
When the value exceeds, the eyepiece becomes too large and heavy, and the whole apparatus becomes heavier and heavier, giving the observer an uncomfortable feeling and a feeling of fatigue when wearing the apparatus.

【0030】次に、第1面の曲率半径をR1 、第3面の
曲率半径をR3 とするとき、 0.4<|R1 /R3 |<2.5 …(4) なる条件を満足することが重要である。
Next, when the radius of curvature of the first surface is R 1 and the radius of curvature of the third surface is R 3 , the following condition is satisfied: 0.4 <| R 1 / R 3 | <2.5 (4) It is important to satisfy

【0031】この条件式は、第1面と第3面の屈折力の
比を表しており、接眼レンズ系の主点位置が2次元画像
表示素子側になるのか観察者の眼球位置側にあるのかを
表している。その下限の0.4を超えると、第1面の屈
折力が第3面に比べて強くなり、第1面の屈折力が強く
なりすぎ、第1面で発生するコマ収差が大きくなりすぎ
て周辺の解像力が低下してしまう。また、このコマ収差
を他の面で補正しようとしても、他の面では不可能であ
る。上限の2.5を超えると、接眼レンズ系の主点位置
が観察者の眼側にきて、アイポイントが大きくとれるよ
うになるが、今度は、第3面で発生するコマ収差と非点
収差の発生が大きくなり、非球面を導入しても補正する
ことが不可能となる。
This conditional expression represents the ratio of the refractive power of the first surface to the refractive power of the third surface. The principal point of the eyepiece system is located on the two-dimensional image display element side or on the eyeball position side of the observer. Is represented. If the lower limit of 0.4 is exceeded, the refractive power of the first surface becomes stronger than that of the third surface, the refractive power of the first surface becomes too strong, and the coma generated on the first surface becomes too large. The peripheral resolution is reduced. Further, even if it is attempted to correct this coma aberration on another surface, it is impossible on another surface. When the value exceeds the upper limit of 2.5, the principal point position of the eyepiece lens system comes to the observer's eye side, so that the eye point can be increased. However, this time, the coma aberration generated on the third surface and the astigmatism Occurrence of aberrations increases, and it becomes impossible to correct even if an aspherical surface is introduced.

【0032】[0032]

【実施例】以下、図面を参照にして本発明の視覚表示装
置用接眼レンズの実施例1〜12について説明する。図
1に実施例1の、図2に実施例6のレンズ断面を示す
が、実施例2〜5、7〜12のレンズ構成は実施例1と
ほぼ同じであるので、図示は省く。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments 1 to 12 of an eyepiece for a visual display device according to the present invention will be described below with reference to the drawings. FIG. 1 shows a lens cross section of the first embodiment, and FIG. 2 shows a lens cross section of the sixth embodiment.

【0033】図1、2において、符号1は観察者眼球の
虹彩位置にあたる接眼レンズの入射瞳位置、2は接眼レ
ンズ、3は湾曲した像面であり、光線追跡上の利便性か
ら、逆追跡によっている。
1 and 2, reference numeral 1 denotes an entrance pupil position of an eyepiece corresponding to an iris position of an observer's eyeball, reference numeral 2 denotes an eyepiece, and reference numeral 3 denotes a curved image plane. Depending on.

【0034】このような湾曲した像面3は、図3に示し
たような像面湾曲を意図的に発生させたリレー光学系
4、図4に示したようなイメージ・ファイバープレート
6等からなる変換光学素子によって、2次元画像表示素
子5の平面画像面を変換することにより得られる。な
お、2次元画像表示素子5の表示面を湾曲させて曲面像
面3とすることもできる。
The curved image plane 3 includes a relay optical system 4 intentionally generating a field curvature as shown in FIG. 3, an image fiber plate 6 as shown in FIG. 4, and the like. It is obtained by converting the plane image plane of the two-dimensional image display element 5 by the conversion optical element. Note that the display surface of the two-dimensional image display element 5 may be curved to form the curved image surface 3.

【0035】さて、接眼レンズ2は、実施例1〜5、7
〜12においては、図1に示すように、入射瞳位置1側
から、入射瞳位置1側に凸面を向けた負メニスカスレン
ズと両凸レンズからなり、両者は接着されている。ま
た、実施例6においては、図2に示すように、入射瞳位
置1側から、両凸レンズと像面3側に凸面を向けた負メ
ニスカスレンズからなり、両者は接着されている。
Now, the eyepiece 2 is shown in FIGS.
1 to 12, as shown in FIG. 1, a negative meniscus lens having a convex surface directed from the entrance pupil position 1 side to the entrance pupil position 1 side and a biconvex lens are bonded to each other. In Example 6, as shown in FIG. 2, a biconvex lens and a negative meniscus lens having a convex surface facing the image plane 3 side from the entrance pupil position 1 side are adhered to each other.

【0036】実施例1は、接眼レンズ2の第3面に非球
面を用いており、観察画角は、水平方向で30°(±1
5°)で、対角方向で37.8°であり、焦点距離はF
=23.3365mm、入射瞳径4mmである。
In the first embodiment, an aspherical surface is used for the third surface of the eyepiece 2, and the observation field angle is 30 ° (± 1) in the horizontal direction.
5 °), 37.8 ° diagonally and the focal length is F
= 23.3365 mm, entrance pupil diameter 4 mm.

【0037】実施例2は、接眼レンズの第1面、第3面
に非球面を用いており、観察画角は、水平方向で30°
(±15°)で、対角方向で37.8°であり、焦点距
離はF=24.052mm、入射瞳径4mmである。
In the second embodiment, an aspherical surface is used for the first and third surfaces of the eyepiece, and the observation angle of view is 30 ° in the horizontal direction.
(± 15 °), 37.8 ° in the diagonal direction, the focal length is F = 24.052 mm, and the entrance pupil diameter is 4 mm.

【0038】実施例3は、接眼レンズの第1面〜第3面
に非球面を用いており、観察画角は、水平方向で30°
(±15°)で、対角方向で37.8°であり、焦点距
離はF=22.965mm、入射瞳径4mmである。
In the third embodiment, an aspherical surface is used for the first to third surfaces of the eyepiece, and the angle of view is 30 ° in the horizontal direction.
(± 15 °), 37.8 ° in the diagonal direction, the focal length is F = 22.965 mm, and the entrance pupil diameter is 4 mm.

【0039】実施例4は、接眼レンズの第3面に非球面
を用いており、観察画角は、水平方向で30°(±15
°)で、対角方向で37.8°であり、焦点距離はF=
18.895mm、入射瞳径4mmである。
In the fourth embodiment, an aspherical surface is used for the third surface of the eyepiece, and the observation field angle is 30 ° (± 15 °) in the horizontal direction.
°), 37.8 ° diagonally and the focal length is F =
18.895 mm, entrance pupil diameter 4 mm.

【0040】実施例5は、接眼レンズの第3面に非球面
を用いており、観察画角は、水平方向で30°(±15
°)で、対角方向で37.8°であり、焦点距離はF=
25.726mm、入射瞳径4mmである。
In the fifth embodiment, an aspherical surface is used for the third surface of the eyepiece, and the observation field angle is 30 ° (± 15 °) in the horizontal direction.
°), 37.8 ° diagonally and the focal length is F =
25.726 mm and the entrance pupil diameter is 4 mm.

【0041】実施例6は、接眼レンズ2の第3面に非球
面を用いており、観察画角は、水平方向で30°(±1
5°)で、対角方向で37.8°であり、焦点距離はF
=26.304mm、入射瞳径4mmである。
In the sixth embodiment, an aspherical surface is used for the third surface of the eyepiece 2, and the observation field angle is 30 ° (± 1) in the horizontal direction.
5 °), 37.8 ° diagonally and the focal length is F
= 26.304 mm, and the entrance pupil diameter is 4 mm.

【0042】実施例7は、接眼レンズの第1面〜第3面
に非球面を用いており、観察画角は、水平方向で40°
(±20°)で、対角方向で50.4°であり、焦点距
離はF=19.9984mm、入射瞳径4mmである。
In the seventh embodiment, an aspherical surface is used for the first to third surfaces of the eyepiece, and the observation angle of view is 40 ° in the horizontal direction.
(± 20 °), 50.4 ° in the diagonal direction, the focal length is F = 19.9984 mm, and the entrance pupil diameter is 4 mm.

【0043】実施例8は、接眼レンズの第3面に非球面
を用いており、観察画角は、水平方向で40°(±20
°)で、対角方向で50.4°であり、焦点距離はF=
15.1818mm、入射瞳径4mmである。
In the eighth embodiment, an aspherical surface is used for the third surface of the eyepiece, and the observation angle of view is 40 ° (± 20 °) in the horizontal direction.
°), 50.4 ° diagonally and the focal length is F =
The diameter is 15.1818 mm and the entrance pupil diameter is 4 mm.

【0044】実施例9は、接眼レンズの第3面に非球面
を用いており、観察画角は、水平方向で50°(±25
°)で、対角方向で63.1°であり、焦点距離はF=
17.3167mm、入射瞳径4mmである。
In the ninth embodiment, an aspherical surface is used for the third surface of the eyepiece, and the observation field angle is 50 ° (± 25 °) in the horizontal direction.
°), 63.1 ° in the diagonal direction, and the focal length is F =
17.3167 mm and the entrance pupil diameter is 4 mm.

【0045】実施例10は、接眼レンズの第1面、第3
面に非球面を用いており、観察画角は、水平方向で50
°(±25°)で、対角方向で63.1°であり、焦点
距離はF=16.5402mm、入射瞳径4mmであ
る。
In the tenth embodiment, the first surface, the third
An aspherical surface is used, and the observation angle of view is 50 in the horizontal direction.
° (± 25 °), 63.1 ° in the diagonal direction, the focal length is F = 16.5402 mm, and the entrance pupil diameter is 4 mm.

【0046】実施例11は、接眼レンズの第1面〜第3
面に非球面を用いており、観察画角は、水平方向で50
°(±25°)で、対角方向で63.1°であり、焦点
距離はF=15.0796mm、入射瞳径4mmであ
る。
In the eleventh embodiment, the first to third surfaces of the eyepiece are described.
An aspherical surface is used, and the observation angle of view is 50 in the horizontal direction.
° (± 25 °), 63.1 ° in the diagonal direction, the focal length is F = 15.0796 mm, and the entrance pupil diameter is 4 mm.

【0047】実施例12は、接眼レンズの第3面に非球
面を用いており、観察画角は、水平方向で50°(±2
5°)で、対角方向で63.1°であり、焦点距離はF
=20.2986mm、入射瞳径4mmである。
In the twelfth embodiment, an aspherical surface is used for the third surface of the eyepiece, and the observation angle of view is 50 ° (± 2 °) in the horizontal direction.
5 °), 63.1 ° in the diagonal direction, and the focal length is F
= 20.2986 mm and the entrance pupil diameter is 4 mm.

【0048】以下、上記実施例1〜12の逆追跡のレン
ズデータを示すが、記号は、上記の外、r0 は瞳位置1
を、d0 はアイポイントを、r1 〜r3 は接眼レンズ2
の各レンズ面の曲率半径を、d1 、d2 は接眼レンズ2
の各レンズ面間の間隔を、nd1、nd2は接眼レンズ2の
各レンズのd線の屈折率、νd1、νd2は接眼レンズ2の
各レンズのアッベ数を表し、d3 は接眼レンズ2の最終
面(第3面)と像面3の間の間隔を、r4 は像面3を表
す。また、非球面形状は、その非球面上の任意の点から
非球面頂点の接平面までの距離をZ、この任意の点から
光軸までの距離をh、基準曲率半径をr、円錐定数を
K、非球面係数をA、B…とした時に、下記の式によっ
て表せられる。 Z=(h2 /r)/{1+〔1−(1+K)(h/r)2 1/2 } +Ah4 +Bh6 +・・・・ …(5) ただし、h=X2 +Y2 である。
[0048] Hereinafter, shows lens data of the reverse track of the Examples 1 to 12 but the symbols are outside of the, r 0 is the pupil position 1
, D 0 is the eye point, and r 1 to r 3 are the eyepieces 2
Are the radii of curvature of the respective lens surfaces, d 1 and d 2 are the eyepieces 2
, N d1 and n d2 are the refractive indices of the d-line of each lens of the eyepiece 2, ν d1 and ν d2 are the Abbe numbers of each lens of the eyepiece 2, and d 3 is the eyepiece. The distance between the last surface (third surface) of the lens 2 and the image plane 3, and r 4 represents the image plane 3. Further, the aspherical shape has a distance Z from an arbitrary point on the aspherical surface to a tangent plane of the aspherical vertex, a distance h from the arbitrary point to the optical axis, a reference radius of curvature r, and a conic constant. When K and the aspheric coefficient are A, B,..., It is expressed by the following equation. In Z = (h 2 / r) / {1+ [1- (1 + K) (h / r) 2 ] 1/2} + Ah 4 + Bh 6 + ···· ... (5) However, h = X 2 + Y 2 is there.

【0049】実施例1 r0 = (瞳位置) d0 = 15.000 r1 = 21.5489 d1 = 5.800 nd1 =1.84660 νd1 =23.9 r2 = 12.5356 d2 = 5.669 nd2 =1.62041 νd2 =60.3 r3 = -25.4354(非球面) d3 = 18.551 r4 = -33.5251 非球面係数 第3面 K=-4.816485 A=-0.102230 ×10-4 B= 0 νd1−νd2 =60.3−23.9= 36.4 |R/F| =|-33.53/23.34 |= 1.44 |R1 /R3 |=|21.55 /-25.44|= 0.85
Example 1 r 0 = (pupil position) d 0 = 15.000 r 1 = 21.5489 d 1 = 5.800 nd 1 = 1.84660 ν d1 = 23.9 r 2 = 12.5356 d 2 = 5.669 nd 2 = 1.62041 ν d2 = 60.3 r 3 = -25.4354 (aspherical) d 3 = 18.551 r 4 = -33.5251 third surface K = -4.816485 aspherical coefficients A = -0.102230 × 10 -4 B = 0 ν d1 -ν d2 = 60.3-23.9 = 36.4 | R / F | = | -33.53 / 23.34 | = 1.44 | R 1 / R 3 | = | 21.55 /-25.44|= 0.85
.

【0050】実施例2 r0 = (瞳位置) d0 = 15.002 r1 = 18.7558(非球面) d1 = 6.299 nd1 =1.84660 νd1 =23.9 r2 = 11.0076 d2 = 5.700 nd2 =1.62041 νd2 =60.3 r3 = -33.5874(非球面) d3 = 18.000 r4 = -32.7505 非球面係数 第1面 K=-0.411383 A= 0.469754 ×10-5 B= 0.420315 ×10-7 第3面 K=-7.120948 A= 0.267076 ×10-5 B= 0 νd1−νd2 =60.3−23.9= 36.4 |R/F| =|-32.75/24.05 |= 1.36 |R1 /R3 |=|18.76 /-33.59|= 0.56
Example 2 r 0 = (pupil position) d 0 = 15.002 r 1 = 18.7558 (aspherical surface) d 1 = 6.299 nd 1 = 1.84660 ν d1 = 23.9 r 2 = 11.0076 d 2 = 5.700 nd 2 = 1.62041 ν d2 = 60.3 r 3 = -33.5874 (aspherical) d 3 = 18.000 r 4 = -32.7505 aspherical coefficients first surface K = -0.411383 A = 0.469754 × 10 -5 B = 0.420315 × 10 -7 third surface K = -7.120948 A = 0.267076 × 10 -5 B = 0 ν d1 −ν d2 = 60.3−23.9 = 36.4 | R / F | = | −32.75 / 24.05 | = 1.36 | R 1 / R 3 | = | 18.76 / −33.59 | = 0.56
.

【0051】実施例3 r0 = (瞳位置) d0 = 15.001 r1 = 18.0810(非球面) d1 = 5.234 nd1 =1.84660 νd1 =23.9 r2 = 10.6679(非球面) d2 = 6.729 nd2 =1.62041 νd2 =60.3 r3 = -30.7567(非球面) d3 = 17.205 r4 = -33.3410 第1面 K=-0.700102 A= 0.106320 ×10-4 B= 0.283749 ×10-7 第2面 K= 0.064525 A= 0.434571 ×10-4 B=-0.168414 ×10-5 第3面 K=-12.193362 A=-0.442040 ×10-4 B= 0.623315 ×10-6 νd1−νd2 =60.3−23.9= 36.4 |R/F| =|-33.34/22.96 |= 1.45 |R1 /R3 |=|18.08 /-30.76|= 0.59
Embodiment 3 r 0 = (pupil position) d 0 = 15.001 r 1 = 18.0810 (aspherical surface) d 1 = 5.234 nd 1 = 1.84660 ν d1 = 23.9 r 2 = 10.6679 (aspherical surface) d 2 = 6.729 n d2 = 1.62041 ν d2 = 60.3 r 3 = -30.7567 (aspheric surface) d 3 = 17.205 r 4 = -33.3410 First surface K = -0.700102 A = 0.106320 × 10 -4 B = 0.283749 × 10 -7 Second surface K = 0.064525 A = 0.434571 × 10 -4 B = -0.168414 × 10 -5 Third surface K = -12.193362 A = -0.442040 × 10 -4 B = 0.623315 × 10 -6 ν d1d2 = 60.3-23.9 = 36.4 | R / F | = | -33.34 / 22.96 | = 1.45 | R 1 / R 3 | = | 18.08 /-30.76|= 0.59
.

【0052】実施例4 r0 = (瞳位置) d0 = 15.000 r1 = 17.2162 d1 = 2.500 nd1 =1.84660 νd1 =23.9 r2 = 10.6399 d2 = 7.390 nd2 =1.62041 νd2 =60.3 r3 = -21.0275(非球面) d3 = 15.110 r4 = -27.5534 非球面係数 第3面 K=-10.60884 A=-0.639428 ×10-4 B= 0.312648 ×10-6 νd1−νd2 =60.3−23.9= 36.4 |R/F| =|-27.55/18.90 |= 1.46 |R1 /R3 |=|17.22 /-21.03|= 0.82
Example 4 r 0 = (pupil position) d 0 = 15.000 r 1 = 17.2162 d 1 = 2.500 nd 1 = 1.84660 ν d1 = 23.9 r 2 = 10.6399 d 2 = 7.390 nd 2 = 1.62041 ν d2 = 60.3 r 3 = -21.0275 (aspherical) d 3 = 15.110 r 4 = -27.5534 aspherical coefficients third surface K = -10.60884 A = -0.639428 × 10 -4 B = 0.312648 × 10 -6 ν d1 -ν d2 = 60.3- 23.9 = 36.4 | R / F | = | -27.55 / 18.90 | = 1.46 | R 1 / R 3 | = | 17.22 /-21.03|= 0.82
.

【0053】実施例5 r0 = (瞳位置) d0 = 15.000 r1 = 20.3804 d1 = 2.500 nd1 =1.79500 νd1 =45.3 r2 = 11.1948 d2 = 6.794 nd2 =1.62041 νd2 =60.3 r3 = -35.8353(非球面) d3 = 21.712 r4 = -65.48284 非球面係数 第3面 K=-21.60884 A=-0.249510 ×10-4 B= 0 νd1−νd2 =60.3−45.3= 15.0 |R/F| =|-65.48/25.73 |= 2.54 |R1 /R3 |=|20.38 /-35.84|= 0.57
[0053] Example 5 r 0 = (pupil position) d 0 = 15.000 r 1 = 20.3804 d 1 = 2.500 n d1 = 1.79500 ν d1 = 45.3 r 2 = 11.1948 d 2 = 6.794 n d2 = 1.62041 ν d2 = 60.3 r 3 = -35.8353 (aspheric surface) d 3 = 21.712 r 4 = -65.48284 Aspheric surface third surface K = -21.60884 A = -0.249510 × 10 -4 B = 0 ν d1 −ν d2 = 60.3−45.3 = 15.0 | R / F | = | -65.48 / 25.73 | = 2.54 | R 1 / R 3 | = | 20.38 /-35.84|= 0.57
.

【0054】実施例6 r0 = (瞳位置) d0 = 15.000 r1 = 17.3935 d1 = 8.000 nd1 =1.62041 νd1 =60.3 r2 = -15.5421 d2 = 8.000 nd2 =1.79500 νd2 =45.3 r3 = -48.3849(非球面) d3 = 18.575 r4 = -56.31109 非球面係数 第3面 K=-13.415666 A= 0.280647 ×10-4 B= 0 νd1−νd2 =60.3−45.3= 15.0 |R/F| =|-56.31/26.30 |= 2.14 |R1 /R3 |=|17.39 /-48.38|= 0.36 実施例7 r0 = (瞳位置) d0 = 15.002 r1 = 17.9080(非球面) d1 = 5.470 nd1 =1.84660 νd1 =23.9 r2 = 9.3948(非球面) d2 = 10.909 nd2 =1.62041 νd2 =60.3 r3 = -18.0303(非球面) d3 = 13.620 r4 = -32.3658 第1面 K= 0.080234 A=-0.156333 ×10-4 B=-0.431237 ×10-7 第2面 K=-0.640682 A=-0.630077 ×10-5 B=-0.889580 ×10-7 第3面 K=-8.207213 A=-0.682298 ×10-4 B= 0.460933 ×10-6 νd1−νd2 =60.3−23.9= 36.4 |R/F| =|-32.37/20.00 |= 1.62 |R1 /R3 |=|17.91 /-18.03|= 0.99
Example 6 r 0 = (pupil position) d 0 = 15.000 r 1 = 17.3935 d 1 = 8.000 nd 1 = 1.62041 ν d1 = 60.3 r 2 = -15.5421 d 2 = 8.000 nd 2 = 1.79500 ν d2 = 45.3 r 3 = -48.3849 (aspheric surface) d 3 = 18.575 r 4 = -56.31109 aspheric surface third surface K = -13.415666 A = 0.280647 × 10 -4 B = 0 ν d1 −ν d2 = 60.3−45.3 = 15.0 | R / F | = | -56.31 / 26.30 | = 2.14 | R 1 / R 3 | = | 17.39 /-48.38|= 0.36 example 7 r 0 = (pupil position) d 0 = 15.002 r 1 = 17.9080 ( aspherical ) d 1 = 5.470 n d1 = 1.84660 ν d1 = 23.9 r 2 = 9.3948 ( aspherical) d 2 = 10.909 n d2 = 1.62041 ν d2 = 60.3 r 3 = -18.0303 ( aspherical) d 3 = 13.620 r 4 = - 32.3658 First surface K = 0.080234 A = -0.156333 × 10 -4 B = -0.431237 × 10 -7 Second surface K = -0.640682 A = -0.630077 × 10 -5 B = -0.889580 × 10 -7 Third surface K = -8.207213 A = -0.682298 × 10 -4 B = 0.460933 × 10 -6 ν d1 -ν d2 = 60.3-23.9 = 36.4 | R / | = | -32.37 / 20.00 | = 1.62 | R 1 / R 3 | = | 17.91 /-18.03|= 0.99
.

【0055】実施例8 r0 = (瞳位置) d0 = 15.000 r1 = 15.5682 d1 = 2.500 nd1 =1.84660 νd1 =23.9 r2 = 10.7162 d2 = 12.521 nd2 =1.62041 νd2 =60.3 r3 = -13.1358(非球面) d3 = 9.978 r4 = -28.2141 非球面係数 第3面 K=-2.542008 A= 0.777350 ×10-4 B= 0 νd1−νd2 =60.3−23.9= 36.4 |R/F| =|-28.21/15.18 |= 1.86 |R1 /R3 |=|15.57 /-13.14|= 1.19
Example 8 r 0 = (pupil position) d 0 = 15.000 r 1 = 15.5682 d 1 = 2.500 nd 1 = 1.84660 ν d1 = 23.9 r 2 = 10.7162 d 2 = 12.521 nd 2 = 1.62041 ν d2 = 60.3 r 3 = -13.1358 (aspherical) d 3 = 9.978 r 4 = -28.2141 third surface K = -2.542008 aspherical coefficients A = 0.777350 × 10 -4 B = 0 ν d1 -ν d2 = 60.3-23.9 = 36.4 | R / F | = | -28.21 / 15.18 | = 1.86 | R 1 / R 3 | = | 15.57 /-13.14|= 1.19
.

【0056】実施例9 r0 = (瞳位置) d0 = 15.000 r1 = 22.8036 d1 = 2.500 nd1 =1.84660 νd1 =23.9 r2 = 15.6474 d2 = 14.739 nd2 =1.62041 νd2 =60.3 r3 = -13.3094(非球面) d3 = 12.761 r4 = -35.3690 非球面係数 第3面 K=-2.231257 A= 0.192329 ×10-4 B= 0 νd1−νd2 =60.3−23.9= 36.4 |R/F| =|-35.37/17.32 |= 2.04 |R1 /R3 |=|22.80 /-13.31|= 1.71
Example 9 r 0 = (pupil position) d 0 = 15.000 r 1 = 22.8036 d 1 = 2.500 n d1 = 1.84660 v d1 = 23.9 r 2 = 15.6474 d 2 = 14.739 n d2 = 1.62041 v d2 = 60.3 r 3 = -13.3094 (aspherical) d 3 = 12.761 r 4 = -35.3690 third surface K = -2.231257 aspherical coefficients A = 0.192329 × 10 -4 B = 0 ν d1 -ν d2 = 60.3-23.9 = 36.4 | R / F | = | -35.37 / 17.32 | = 2.04 | R 1 / R 3 | = | 22.80 /-13.31|= 1.71
.

【0057】実施例10 r0 = (瞳位置) d0 = 15.000 r1 = 20.6169(非球面) d1 = 2.500 nd1 =1.84660 νd1 =23.9 r2 = 14.8332 d2 = 11.179 nd2 =1.62041 νd2 =60.3 r3 = -12.4068(非球面) d3 = 11.179 r4 = -34.2441 非球面係数 第1面 K= 0.056745 A=-0.894154 ×10-5 B= 0.724808 ×10-8 第3面 K=-2.905002 A= 0.442459 ×10-5 B= 0 νd1−νd2 =60.3−23.9= 36.4 |R/F| =|-34.24/16.54 |= 2.07 |R1 /R3 |=|20.62 /-12.41|= 1.66
Example 10 r 0 = (pupil position) d 0 = 15.000 r 1 = 20.6169 (aspherical surface) d 1 = 2.500 nd 1 = 1.84660 ν d1 = 23.9 r 2 = 14.8332 d 2 = 11.179 nd 2 = 1.62041 ν d2 = 60.3 r 3 = -12.4068 (aspherical) d 3 = 11.179 r 4 = -34.2441 aspherical coefficients first surface K = 0.056745 A = -0.894154 × 10 -5 B = 0.724808 × 10 -8 third surface K = -2.905002 A = 0.442459 × 10 -5 B = 0 ν d1 -ν d2 = 60.3-23.9 = 36.4 | R / F | = | -34.24 / 16.54 | = 2.07 | R 1 / R 3 | = | 20.62 /-12.41 | = 1.66
.

【0058】実施例11 r0 = (瞳位置) d0 = 15.000 r1 = 22.1333(非球面) d1 = 2.500 nd1 =1.84660 νd1 =23.9 r2 = 18.0466(非球面) d2 = 17.493 nd2 =1.62041 νd2 =60.3 r3 = -10.3053(非球面) d3 = 10.006 r4 = -40.2685 第1面 K= 0.460822 A= 0.133503 ×10-4 B=-0.160835 ×10-6 第2面 K=-0.289289 A= 0.214610 ×10-3 B=-0.834993 ×10-6 第3面 K=-3.278657 A=-0.600474 ×10-4 B= 0.223437 ×10-6 νd1−νd2 =60.3−23.9= 36.4 |R/F| =|-40.27/15.08 |= 2.67 |R1 /R3 |=|22.13 /-10.31|= 2.15
Embodiment 11 r 0 = (pupil position) d 0 = 15.000 r 1 = 22.1333 (aspheric surface) d 1 = 2.500 n d1 = 1.84660 ν d1 = 23.9 r 2 = 18.0466 (aspheric surface) d 2 = 17.493 n d2 = 1.62041 ν d2 = 60.3 r 3 = -10.3053 (aspherical surface) d 3 = 10.006 r 4 = -40.2685 First surface K = 0.460822 A = 0.133503 × 10 -4 B = -0.160835 × 10 -6 Second surface K = −0.289289 A = 0.214610 × 10 −3 B = −0.834993 × 10 −6 Third surface K = −3.278657 A = −0.600474 × 10 −4 B = 0.223437 × 10 −6 ν d1 −ν d2 = 60.3−23.9 = 36.4 | R / F | = | -40.27 / 15.08 | = 2.67 | R 1 / R 3 | = | 22.13 /-10.31|= 2.15
.

【0059】実施例12 r0 = (瞳位置) d0 = 15.000 r1 = 28.8302 d1 = 4.665 nd1 =1.84660 νd1 =23.9 r2 = 17.1240 d2 = 14.697 nd2 =1.62041 νd2 =60.3 r3 = -14.8762(非球面) d3 = 15.638 r4 = -34.7933 非球面係数 第3面 K=-2.658889 A=-0.117671 ×10-4 B= 0 νd1−νd2 =60.3−23.9= 36.4 |R/F| =|-34.79/20.30 |= 1.71 |R1 /R3 |=|28.83 /-14.88|= 1.94
Example 12 r 0 = (pupil position) d 0 = 15.000 r 1 = 28.8302 d 1 = 4.665 nd 1 = 1.84660 ν d1 = 23.9 r 2 = 17.1240 d 2 = 14.697 nd 2 = 1.62041 ν d2 = 60.3 r 3 = -14.8762 (aspherical) d 3 = 15.638 r 4 = -34.7933 third surface K = -2.658889 aspherical coefficients A = -0.117671 × 10 -4 B = 0 ν d1 -ν d2 = 60.3-23.9 = 36.4 | R / F | = | -34.79 / 20.30 | = 1.71 | R 1 / R 3 | = | 28.83 /-14.88|= 1.94
.

【0060】次に、上記実施例1〜12の球面収差、非
点収差、歪曲収差、横収差を表す収差図をそれぞれ図5
〜図16に示す。
Next, aberration diagrams representing spherical aberration, astigmatism, distortion, and lateral aberration of the above-mentioned Examples 1 to 12 are shown in FIG.
To FIG.

【0061】[0061]

【発明の効果】以上の説明から明らかなように、本発明
の視覚表示装置用接眼レンズによると、広い提示画角
で、周辺の画角まで鮮明に観察できるので、広画角で鮮
明な画像観察ができる頭部装着型表示装置を提供するこ
とができる。
As is apparent from the above description, according to the eyepiece for a visual display device of the present invention, a clear image can be obtained with a wide angle of view because it is possible to clearly observe a wide angle of view and a peripheral angle of view. A head-mounted display device capable of observation can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の視覚表示装置用接眼レンズ
のレンズ断面図である。
FIG. 1 is a lens cross-sectional view of an eyepiece for a visual display device according to a first embodiment of the present invention.

【図2】実施例6のレンズ断面図である。FIG. 2 is a sectional view of a lens according to a sixth embodiment.

【図3】変換光学素子としてリレー光学系を用いた視覚
表示装置の光学系を示す図である。
FIG. 3 is a diagram showing an optical system of a visual display device using a relay optical system as a conversion optical element.

【図4】変換光学素子としてイメージ・ファイバープレ
ートを用いた視覚表示装置の光学系を示す図である。
FIG. 4 is a diagram showing an optical system of a visual display device using an image fiber plate as a conversion optical element.

【図5】実施例1の球面収差、非点収差、歪曲収差、横
収差を表す収差図である。
5 is an aberration diagram showing a spherical aberration, an astigmatism, a distortion, and a lateral aberration of Example 1. FIG.

【図6】実施例2の図5と同様な収差図である。FIG. 6 is an aberration diagram similar to FIG. 5 of the second embodiment.

【図7】実施例3の図5と同様な収差図である。FIG. 7 is an aberration diagram similar to FIG. 5 of the third embodiment.

【図8】実施例4の図5と同様な収差図である。FIG. 8 is an aberration diagram similar to FIG. 5 of the fourth embodiment.

【図9】実施例5の図5と同様な収差図である。FIG. 9 is an aberration diagram similar to FIG. 5 of the fifth embodiment.

【図10】実施例6の図5と同様な収差図である。FIG. 10 is an aberration diagram similar to FIG. 5 of the sixth embodiment.

【図11】実施例7の図5と同様な収差図である。FIG. 11 is an aberration diagram similar to FIG. 5 in the seventh embodiment.

【図12】実施例8の図5と同様な収差図である。FIG. 12 is an aberration diagram similar to FIG. 5 of the eighth embodiment.

【図13】実施例9の図5と同様な収差図である。FIG. 13 is an aberration diagram similar to FIG. 5 of the ninth embodiment.

【図14】実施例10の図5と同様な収差図である。FIG. 14 is an aberration diagram similar to FIG. 5 of the tenth embodiment.

【図15】実施例11の図5と同様な収差図である。FIG. 15 is an aberration diagram similar to FIG. 5 of the eleventh embodiment.

【図16】実施例12の図5と同様な収差図である。FIG. 16 is an aberration diagram similar to FIG. 5 in Example 12.

【図17】従来の頭部装着式視覚表示装置の光学系を示
す図である。
FIG. 17 is a diagram showing an optical system of a conventional head-mounted visual display device.

【符号の説明】[Explanation of symbols]

1…接眼レンズの入射瞳位置 2…接眼レンズ 3…曲面像面 4…リレー光学系 5…2次元画像表示素子 6…イメージ・ファイバープレート Reference Signs List 1: entrance pupil position of eyepiece lens 2: eyepiece lens 3: curved image surface 4: relay optical system 5: two-dimensional image display device 6: image fiber plate

フロントページの続き (56)参考文献 特開 平3−101709(JP,A) 特開 平4−159509(JP,A) 特開 平4−177313(JP,A) 特開 平4−52615(JP,A) 特開 昭63−121008(JP,A) 特開 平5−303056(JP,A) 特開 平5−303054(JP,A) 特表 昭61−501946(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 G02B 27/02 Continuation of front page (56) References JP-A-3-101709 (JP, A) JP-A-4-159509 (JP, A) JP-A-4-177313 (JP, A) JP-A-4-52615 (JP) JP-A-63-30008 (JP, A) JP-A-5-303056 (JP, A) JP-A-5-303054 (JP, A) JP-T-61-501946 (JP, A) (58) Surveyed fields (Int.Cl. 7 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04 G02B 27/02

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 観察像を表示する画像表示面が略平面形
状に構成された2次元表示素子と、該2次元表示素子の
平面像を曲面像に変換する変換光学素子と、前記曲面像
平面像として拡大投影する正屈折力の接眼レンズとか
らなる視覚表示装置に用いられる接眼レンズにおいて、
前記接眼レンズが少なくとも1つの非球面と2つ以上の
硝種で構成された両凸正レンズからなり、アッベ数の大
きい方の硝材のアッベ数をνd1、アッベ数の小さい方の
硝材のアッベ数をνd2とし、前記変換光学素子によって
変換された曲面像の面の曲率半径をR、前記接眼レンズ
の焦点距離をFとすると、 14<νd1−νd2 …(1) 1<|R/F|<3 …(2) なる条件を満足すると共に、前記少なくとも1つの非球
面が光軸から離れるに従って曲率半径が大きくなるよう
に構成された非球面であることを特徴とする視覚表示装
置用接眼レンズ。
An image display surface for displaying an observation image is substantially flat.
A two-dimensional display element configured to Jo, vision consists of a converting optical element for converting the planar image of the two-dimensional display device into a curved image, a positive refractive power of the ocular lens for enlarging and projecting the curved surface image as a planar image In an eyepiece used for a display device,
Whether the eyepiece at least one aspheric surface and a biconvex positive lens consisting of two or more glass type Rannahli, the glass material having a larger Abbe number Abbe number [nu d1, the glass material having a smaller Abbe number If the Abbe number is ν d2 , the radius of curvature of the surface of the curved image converted by the conversion optical element is R, and the focal length of the eyepiece is F, 14 <ν d1 −ν d2 (1) 1 <| R / F | <3 (2) A visual display characterized by satisfying the following condition, wherein the at least one aspherical surface is an aspherical surface configured such that a radius of curvature increases as the distance from the optical axis increases. Eyepiece for device.
【請求項2】 前記少なくとも1つの非球面は、前記接
眼レンズの最も前記曲面像に近い面に配置されているこ
とを特徴とする請求項1記載の視覚表示装置用接眼レン
ズ。
2. An eyepiece for a visual display device according to claim 1, wherein said at least one aspherical surface is disposed on a surface of said eyepiece closest to said curved surface image.
【請求項3】 前記接眼レンズの最も瞳側の面と瞳の間
の距離(アイポイント)が12mm以上に構成され、以
下の条件(3)を満足することを特徴とする請求項2記
載の視覚表示装置用接眼レンズ。 12<F<25 〔mm〕 …(3)
3. The system according to claim 2, wherein a distance (eye point) between a surface closest to the pupil of the eyepiece and the pupil is 12 mm or more, and satisfies the following condition (3). Eyepieces for visual display devices. 12 <F <25 [mm] (3)
【請求項4】 前記接眼レンズの最も瞳側の面(第1
面)の曲率半径をR1、最も前記曲面像に近い面(第3
面)の曲率半径をR3 としたときに、以下の条件(4)
を満足することを特徴とする請求項3記載の視覚表示装
置用接眼レンズ。 0.4<|R1 /R3 |<2.5 …(4)
4. The most pupil-side surface of the eyepiece (first surface)
The radius of curvature of the surface (R 1 ) is R 1 , and the surface (the third
When the radius of curvature of the surface) is R 3 , the following condition (4)
The eyepiece for a visual display device according to claim 3, wherein: 0.4 <| R 1 / R 3 | <2.5 (4)
JP10136893A 1993-04-27 1993-04-27 Eyepiece for visual display Expired - Fee Related JP3304497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10136893A JP3304497B2 (en) 1993-04-27 1993-04-27 Eyepiece for visual display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10136893A JP3304497B2 (en) 1993-04-27 1993-04-27 Eyepiece for visual display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000111692A Division JP3245584B2 (en) 2000-01-01 2000-04-13 Visual display device

Publications (2)

Publication Number Publication Date
JPH06308396A JPH06308396A (en) 1994-11-04
JP3304497B2 true JP3304497B2 (en) 2002-07-22

Family

ID=14298886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10136893A Expired - Fee Related JP3304497B2 (en) 1993-04-27 1993-04-27 Eyepiece for visual display

Country Status (1)

Country Link
JP (1) JP3304497B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316834B2 (en) 2011-11-24 2016-04-19 Panasonic Intellectual Property Management Co., Ltd. Head-mounted display device with foveated pixels
WO2017076236A1 (en) * 2015-11-05 2017-05-11 丰唐物联技术(深圳)有限公司 Display control method and device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000105344A (en) 1998-09-30 2000-04-11 Fuji Photo Optical Co Ltd Ocular for displayed picture observation device
JP2001066522A (en) 1999-08-31 2001-03-16 Fuji Photo Optical Co Ltd Ocular for picture display device
JP2005134867A (en) * 2003-10-08 2005-05-26 Nikon Corp Image display device
US9465191B2 (en) * 2013-06-21 2016-10-11 Microsoft Technology Licensing, Llc Lenses for curved sensor systems
CN105137600A (en) * 2015-09-02 2015-12-09 胡东海 Virtual reality helmet and visual sense compensation method
US11073701B2 (en) 2016-07-06 2021-07-27 Panasonic Intellectual Property Management Co., Ltd. Head-mounted display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9316834B2 (en) 2011-11-24 2016-04-19 Panasonic Intellectual Property Management Co., Ltd. Head-mounted display device with foveated pixels
WO2017076236A1 (en) * 2015-11-05 2017-05-11 丰唐物联技术(深圳)有限公司 Display control method and device

Also Published As

Publication number Publication date
JPH06308396A (en) 1994-11-04

Similar Documents

Publication Publication Date Title
US5768039A (en) Head-mounted image display apparatus
US5677797A (en) Method for correcting field curvature
US5559637A (en) Field curvature corrector
US5661604A (en) Image display apparatus
JP3155360B2 (en) Visual display device
US5659430A (en) Visual display apparatus
US9995925B2 (en) Observation optical system, and image displaying apparatus having the same
JP3387338B2 (en) Eyepiece optical system and eyepiece image display device
JPH06308424A (en) Head mounted display device
JPH06324285A (en) Visual display device
JP3009056B2 (en) Eyepiece
JP3304497B2 (en) Eyepiece for visual display
JP2717552B2 (en) Telecentric projection lens
US5099361A (en) Projection lens and projection television system using the same
KR980010589A (en) Large Diameter Telecentric Lens
JP3262889B2 (en) Visual display device
JP3245472B2 (en) Head mounted display
JP3617257B2 (en) Eyepiece optical system and eyepiece image display device
JP3263062B2 (en) Visual display device
JP3245584B2 (en) Visual display device
JP3647185B2 (en) Eyepiece optical system and eyepiece image display device
JPH06347708A (en) Display device
JP2001235707A (en) Video display device
JP3245585B2 (en) Head mounted display device
JP2605016B2 (en) Eyepiece

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees